Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2017

Open Access 01.12.2017 | Research article

Characteristics and longitudinal progression of chronic obstructive pulmonary disease in GOLD B patients

verfasst von: Philip J. Lawrence, Umme Kolsum, Vandana Gupta, Gavin Donaldson, Richa Singh, Bethan Barker, Leena George, Adam Webb, Anthony J. Brookes, Christopher Brightling, Jadwiga Wedzicha, Dave Singh

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2017

Abstract

Background

The characteristics and natural history of GOLD B COPD patients are not well described. The clinical characteristics and natural history of GOLD B patients over 1 year in a multicentre cohort of COPD patients in the COPDMAP study were assessed. We aimed to identify the subgroup of patients who progressed to GOLD D (unstable GOLD B patients) and identify characteristics associated with progression.

Methods

Three hundred seventy COPD patients were assessed at baseline and 12 months thereafter. Demographics, lung function, health status, 6 min walk tests and levels of systemic inflammation were assessed. Students t tests and Mann Whitney-U tests were used.

Results

One hundred seven (28.9%) of patients were categorised as GOLD B at baseline. These GOLD B patients had similar FEV1 to GOLD A patients (66% predicted). More GOLD B patients were current smokers (p = 0.031), had chronic bronchitis (p = 0.0003) and cardiovascular comorbidities (p = 0.019) compared to GOLD A. At 12 months, 25.3% of GOLD B patients progressed to GOLD D. These patients who progressed (unstable patients) had worse health status and symptoms (SGRQ-C Total, 50.0 v 41.1, p = 0.019 and CAT, 21.0 v 14.0, p = 0.006) and lower FEV1 (60% v 69% p = 0.014) at baseline compared to stable patients who remained in GOLD B.

Conclusions

Unstable GOLD B patients who progressed to GOLD D had a higher level of symptoms at baseline. A high symptom burden may predict an increased likelihood of disease progression in GOLD B patients.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s12890-017-0384-8) contains supplementary material, which is available to authorized users.
Abkürzungen
6MWT
6 minute walk test
ATS
American Thoracic Society
BMI
Body mass index
CAT
COPD assessment test
CES-D
Centre for Epidemiological Studies Depression Scale
COPD
Chronic obstructive pulmonary disease
CRP
C-reactive protein
ERS
European Respiratory Society
FBC
Full blood counts
FEV1
Forced expiratory volume in 1 second
FFM(I)
Fat free mass (index)
FVC
Forced vital capacity
GOLD
Global Initiative for Chronic Obstructive Pulmonary Disease
mMRC
Modified MRC scale
PBS
Phosphate buffered saline
PPM
Potentially pathogenic microorganisms
qPCR
Quantitative polymerase chain reaction
SGRQ-C
St George’s respiratory questionnaire

Background

Chronic obstructive pulmonary disease (COPD) is a heterogeneous condition, comprising different clinical and pathophysiological features that vary in both presence and severity between patients [1]. The Global Initiative for Chronic Obstructive Pulmonary Disease (GOLD) recommends a combined assessment to stratify patients into one of four categories (A/B/C/D) based on the severity of airflow limitation, degree of symptoms and exacerbation risk [1]. Patients with more symptoms are allocated into groups B or D and patients with high exacerbation risk and/or Forced Expiratory Volume in 1 s (FEV1) < 50% predicted are allocated into groups C or D. There are different pharmacological treatment recommendations for each category.
GOLD B patients are defined by mild to moderate airflow obstruction (FEV1 > 50%), a low exacerbation rate (<2 exacerbations per year and no hospitalisations) and a high burden of symptoms. Group B patients may deteriorate and change GOLD category; in the ECLIPSE cohort study, only 36% of group B patients remained stable after 1 year, 7% and 35% deteriorated to the higher risk categories C and D respectively, and 22% improved to group A [2]. The progression of group B patients may be due to FEV1 decline or an increase in exacerbations, or both.
COPD is often referred to as a progressive disease [1, 3]. However, the ECLIPSE study demonstrated that FEV1 did not change in some COPD patients over a 3 year follow up period [2]. The risk factors for greater FEV1 decline included current smoking, emphysema and exacerbations [4]. Recently, Lange, et al. [5], reported that the rate of FEV1 decline in COPD patients who have a low FEV1 in early adult life, indicating sub-optimal lung growth, is lower compared to COPD patients with normal FEV1 in early adult life (27 mls versus 52 mls/year respectively). These findings underscore the variation in lung function decline in COPD, influenced by multiple factors.
There appears to be heterogeneity within group B, as a subgroup of patients move over time into higher risk categories. We report a detailed characterisation of the natural history of GOLD B patients over 1 year in the COPDMAP cohort study. We describe the clinical features of group B compared to group A patients at the start of the study. We studied the stability of group B patients over 1 year, and describe the clinical characteristics of GOLD B patients who progressed to higher risk GOLD categories.

Methods

Study design

COPD patients aged 40 or over were recruited at 3 sites (Manchester, Leicester and Imperial/UCL) into the COPDMAP prospective observational cohort study (http://​www.​copdmap.​org). All patients had a physician diagnosis of COPD, post-bronchodilator (post BD) FEV1/forced vital capacity (FVC) ratio <0.7 and ≥10 pack year smoking history. All patients provided written informed consent using protocols approved by the local Ethics Committees at each site (11/L0/1630; 10/H/1003/108; 07/H0406/157).
Stable visits were performed at baseline and at 6 month intervals up to 2 years. At the baseline visit, the demographic details and exacerbation history were collected. Symptoms and functional capacity were assessed and pulmonary function tests performed. Cardiovascular comorbidities were categorised as the following; body mass index (BMI) ≥25, stroke, peripheral vascular disease, high cholesterol, high blood pressure, heart attack, diabetes, atrial fibrillation, angina and other relevant cardiac events. Sputum and blood samples were obtained from patients at least 6 weeks after an exacerbation episode. These procedures were repeated at 6 monthly follow up visits; the yearly visit data is presented here. Exacerbation history throughout the observation period was based on patient recall to match how patients were classification at baseline. Patient recall agrees well with events detected with daily diary cards [6].
Patients were categorised as GOLD A, B, C or D using the 2016 GOLD guidelines [1]. Post bronchodilator FEV1 and preceding 1 year exacerbation history were used to categorise risk, whilst, either the highest COPD assessment test (CAT) or modified MRC Scale (mMRC) score was used to categorise symptoms. A change in FEV1 > 60 mls over 1 year was used to identify rapid decliners [7].
The following patient reported outcome measurements were performed; the CAT [8] and St George’s Respiratory Questionnaire (SGRQ-C) [9] for health status, the mMRC Scale for dyspnoea [10], and Centre for Epidemiological Studies Depression Scale (CES-D) for depression [11].
Lung function was assessed by spirometry, plethysmography and gas transfer and was performed in accordance with European Respiratory Society (ERS)/American Thoracic Society (ATS) recommendations [1214]. Reversibility was performed using salbutamol 400mcg. Fat free mass (FFM) and fat free mass index (FFMI) were determined by bioelectrical impedance analysis. Functional capacity was assessed by the 6 min walk test (6MWT) and performed in accordance with ATS/ERS standard. [15] A practice walk was performed if patients had not performed a 6 min walk test over the preceding 1 year.
Spontaneous and/or induced sputum was processed for quantitative polymerase chain reaction (qPCR). Selected sputum plugs were homogenised with phosphate-buffered saline (PBS) with glass beads and qPCR was performed for the detection of the common respiratory potentially pathogenic microorganisms (PPM) H. influenzae, M.catarrhalis and S. pneumoniae as previously described [16]. The threshold for detection for pathogens by qPCR was 1 × 104 copies per ml. Venepuncture was performed and the samples collected were sent to the local hospital laboratories for full blood counts (FBC) and C-reactive protein (CRP) analysis.

Statistical analysis

The Kolmogorov–Smirnov test was applied to determine the normality of data. Differences in between groups were performed using unpaired t tests or Mann–Whitney test for parametric and non-parametric data respectively. Categorical variables were analysed using chi square test. P < 0.05 was considered statistically significant. Statistical analyses were performed using GraphPad Prism version 5.00 (San Diego, California; USA).

Results

Three hundred seventy patients completed the baseline visit; demographics are shown in Table 1. The GOLD categorisation using the higher of the two symptom scores was as follows; 9.2% in group A (n = 34), 28.9% in group B (n = 107), 3.2% in group C (n = 12) and 58.7% in group D (n = 217) (Fig. 1). Categorisation using only the CAT score showed that patients in groups A and C would remain in these groups, whilst 3.7% (4/107) of the group B and 2.3% (5/217) of the group D patients would be categorised into groups A and C respectively. Likewise if patients were categorised using only the mMRC score, all patients in group A and C remained in their groups, whilst 31.8% (34/107) of the group B and 24.9% (54/217) of the group D patients would be reclassified into groups A and C respectively.
Table 1
Baseline demographics of patients
Demographic
n = 370
Gender (% Male)
65
Age (years)
70.2 (8.8)
Smoking status (Current %)
30.0
Pack years
46.0 [10.0–220.0]
BMI (kg/m2)
26.2 [15.6–49.2]
Exacerbations (1 year prior)
1.0 [0.0–15.0]
Inhaled steroid use %
78.8
Oral steroid use %
3.8
LABA use %
70.7
LAMA use %
75.0
Azithromycin use %
3.5
Post BD FEV1 (L)
1.4 (0.6)
Post BD FEV1 %
57.0 [20.0–117.0]
Post BD Ratio
0.5 [0.2–0.8]
GOLD A n (%)
34 (9.2)
GOLD B n (%)
107 (28.9)
GOLD C n (%)
12 (3.2)
GOLD D n (%)
217 (58.7)
Summaries are presented as percentages, Mean (SD) or Median [Range] as appropriate
Definitions of abbreviations; BMI body mass index, LABA long acting beta agonist, LAMA long acting muscarinic antagonist, Post BD post bronchodilator, FEV 1 forced expired volume in first second
Table 2 shows the baseline clinical characteristics of GOLD A and B patients. FEV1 % predicted was similar between the groups, despite the greater symptoms in GOLD B patients. There were more current smokers in group B (36.5% v 15.2% respectively, p = 0.031) and a significantly higher proportion of group B patients had chronic bronchitis (57.4% v 21.2%, p = 0.0003) and cardiovascular comorbidities (82.2% v 61.8% p = 0.019). The clinical characteristics of GOLD C and D patients are presented in the data supplement in Additional file 1: Table S1. The comparison of clinical characteristics between GOLD B and D patients are shown online in Additional file 2: Table S2; the number of exacerbations, symptoms burden and lung function were significantly worse in GOLD D patients compared to GOLD B.
Table 2
Baseline characteristics of patients categorised as GOLD A and B
 
GOLD A (n = 34)
GOLD B (n = 107)
p value
Demographics
 Gender (% Male)
58.8
67.3
0.41
 Pack years
44.5 [10.0–135.0]
45 [10.0–220.0]
0.53
 Smoking status (% Current)
15.2
36.5
0.031
 BMI (Kg/m2)
26.1 [20.6–47.0]
27.2 [16.5–49.2]
0.73
 FFMI (Kg/m2)
17.3 [12.9–28.7]
17.6 [10.0–27.0]
0.92
 Chronic bronchitis (%)
21.2
57.4
0.0003
 Exacerbations (1 year prior)
0.0 [0.0–1.0]
0.0 [0.0–1.0]
0.11
Co-morbidities
 Cardiovascular comorbidity any (%)
61.8
82.2
0.019
 Comorbidities any (%)
35.3
16.8
0.03
Patient reported outcomes
 SGRQ total
19.3 [1.0–40.0]
40.9 [5.7–82.4]
<0.0001
 SGRQ symptoms
29.5 (16.5)
55.3 (17.8)
<0.0001
 SGRQ impact
12.0 [3.0–24.0]
25.0 [0.0–75.5]
<0.0001
 SGRQ activity
34.8 (18.5)
58.9 (22.6)
<0.0001
 CAT
6.0 [2.0–9.0]
16.0 [4.0–39.0]
<0.0001
 CES-D
5.0 [1.0–6.0]
11.5 [1.0–4.0]
<0.0001
Functional capacity
 6MWD (metres)
457.0 [169.0–636.0]
405.7 [119.0–702.0]
0.07
Lung function
 Vital capacity %
102.3 (22.5)
100.7 (17.9)
0.73
 Total lung capacity %
108.9 (16.1)
109.2 (20.1)
0.96
 Residual volume %
130.6 [89.1–179.9]
132.0 [63.0–286.0]
0.90
 Inspiratory capacity %
87.1 (23.0)
89.5 (21.3)
0.65
 FRC %
125.8 (24.0)
128.7 (33.2)
0.71
 DLCO %
70.8 [56.0–116.5]
63.0 [28.0–106.0]
0.05
 KCO %
86.8 [64.0–126.5]
76.4 [35.0–137.0]
0.13
 VA %
84.2 (13.3)
80.8 (10.7)
0.25
 Post FEV1 %
71.0 (15.2)
68.3 (11.4)
0.27
 Reversibility %
9.8 [4.0–16.0]
6.7 [−3.0–+38.0]
0.13
 Reversibility mls
150.0 [−40.0–+290.0]
100.0 [−80.0–+670.0]
0.21
Bacteriology
 Bacterial load (genome copies/ml)
7.11 × 106 [0–1.81 × 1010]
7.74 × 104 [0–4.91 × 108]
0.29
 Colonised (% >1 × 104 total PPM)
63.7
55.6
0.75
Systemic inflammation
 CRP (mg/L)
3.0 [1.0–22.0]
3.0 [1.0–157.0]
0.35
 WBC (109/L)
6.8 [3.6–12.0]
7.3 [5.0–12.6]
0.11
 Eosinophils (109/L)
0.2 [0.0–0.8]
0.2 [0.0–0.9]
0.83
Summaries are presented as mean (SD), percentage or Median [Range] as appropriate
Definitions of abbreviations: BMI body mass index, FFMI fat free mass index, SGRQ St George’s Respiratory Questionnaire, CAT COPD Assessment Test, CES-D Centre for Epidemiologic Studies Depression, 6MWD six minute walk distance, FRC functional residual capacity, DLCO diffusing capacity of the lungs for carbon monoxide, KCO carbon monoxide transfer coefficient, VA alveolar volume, CRP C-reactive protein, WBC white blood count, PPM potentially pathogenic microorganism
Seventy five out of 107 GOLD B patients attended for 1 year follow up; the major reasons for this decrease in numbers were loss to follow up and withdrawal of consent. The majority of patients were stable and remained in group B at 1 year (68.0%). There were 19 unstable GOLD B patients (25.3%) who progressed to GOLD D; 8 patients due to a decline in FEV1, 10 patients due to an increase in exacerbation risk, and 1 subject displayed both of these characteristics.
The mean change in FEV1 over 1 year was a decline of 66mls (Fig. 2). There was no decline in FEV1 in 23 patients, whilst 44 patients (58.7%) displayed a decline greater than 60mls over the year.
At 2 year follow up, 40 out of 107 GOLD B patients remained in the study. Of those patients who remained stable at 1 year (n = 28), the majority remained in group B (n = 15; 53.6%), with a third progressing to group to D (n = 9; 32.1%). Of the 19 patients who deteriorated to GOLD D at 1 year, 12 remained in the study at 2 years. The majority of patients (n = 8) remained in group D, while the remaining patients (n = 4) reverted to group B (Fig. 1).
Table 3 shows the clinical characteristics at 1 year of patients who remained in group B at 1 year and those who progressed to group D (stable and unstable patients respectively). At 1 year, unstable patients had significantly more exacerbations over the previous year (means 1.5 v 0.2, p = <0.0001), higher mean CAT scores (20.0 v 15.5, p = 0.018), worse mean SGRQ total scores (50.0 v 41.1, p = 0.001), higher mean C-reactive protein levels (5.0 v 3.0, p = 0.017), and reduced mean 6MWD (347.3 v 440.5, p = 0.023).
Table 3
Comparison of 1 year characteristics of patients who remained stable (GOLD B) and unstable patients (GOLD D) from baseline
 
GOLD B (n = 51)
GOLD D (n = 19)
p - value
Demographics
 Gender (% Male)
75.6
52.6
0.15
 BMI (Kg/m2)
27.0 [16.2–44.8]
27.7 [21.7–48.5]
0.32
 FFMI (Kg/m2)
18.3 [8.8–24.0]
17.6 [11.7–27.0]
0.75
 Exacerbations (1 year prior)
0.0 [0.0–1.0]
2.0 [0.0–4.0]
<0.0001
Patient reported outcomes
 SGRQ total
41.1 (15.5)
50.0 [22.2–82.3]
0.001
 SGRQ symptoms
54.6 (19.9)
61.0 (17.5)
0.24
 SGRQ impact
26.3 [2.1–71.6]
42.4 [4.6–60.1]
0.05
 SGRQ activity
59.3 [0.0–100.0]
78.1 [22.5–100.0]
0.003
 CAT
15.5 [9.0–35.0]
20.0 [9.0–37.0]
0.018
 CES-D
12.0 [0.0–33.0]
15.0 [0.0–31.0]
0.58
Functional capacity
 6MWD (metres)
440.5 (125.7)
347.3 (123.4)
0.023
Lung function
 Vital capacity %
99.2 (21.9)
93.6 (13.1)
0.40
 Total lung capacity %
110.2 (17.0)
110.5 (23.5)
0.96
 Residual volume %
132.0 (30.4)
150.0 (55.9)
0.16
 Inspiratory capacity %
93.1 (21.8)
91.4 (20.9)
0.81
 FRC %
125.6 (25.7)
132.5 (45.9)
0.52
 DLCO %
56.5 [40.0–102.0]
61.5 [32.0–115.0]
0.87
 KCO %
75.5 (80.1)
74.7 (85.0)
0.53
 VA %
81.4 (13.1)
76.9 (14.2)
0.29
 Post FEV1 %
68.2 (12.3)
57.3 (12.8)
0.002
 Reversibility %
−4.4 [−53.8–+8.0]
−8.1 [17.3–+8.3]
0.25
 Reversibility mls
20.0 [−170.0–580]
90 [−120–200]
0.90
 Change in FEV1 from baseline
−80.0 [−420.0–+939.0]
−120.0 [−531.0–+180.0]
0.07
Bacteriology
 Bacterial load (genome copies/ml)
2.36 × 106 [0–8.89 × 108]
10.3 × 107 [0–1.76 × 108]
0.25
 Colonised (% >1 × 104 total PPM)
71.4
77.2
1.00
Systemic inflammation
 CRP (mg/L)
3.0 [1.0–20.0]
5.0 [2.0–20.0]
0.017
 WBC (109/L)
6.9 [3.6–13.5]
7.5 [4.8–11.8]
0.73
 Eosinophils (109/L)
0.2 [0.1–0.6]
0.2 [0.0–0.4]
0.24
Summaries are presented as mean (SD), percentage or Median [Range] as appropriate
Definitions of abbreviations: BMI body mass index, FFMI fat free mass index, SGRQ St George’s Respiratory Questionnaire, CAT COPD assessment test, CES-D Centre for Epidemiologic Studies Depression, 6MWD six minute walk distance, FRC functional residual capacity, DLCO diffusing capacity of the lungs for carbon monoxide, KCO carbon monoxide transfer coefficient, VA alveolar volume, CRP C-reactive protein, WBC white blood count, PPM potentially pathogenic microorganisms
Table 4 shows the characteristics of the stable and unstable patients at the baseline visit. Unstable patients had a significantly lower mean FEV1 % predicted (69.7% v 62.4%; p = 0.016), worse mean SGRQ score (40.1 v 50.0; p = 0.019) and mean CAT score (14.0 v 21.0; p = 0.006), and higher mean CRP levels with a trend towards significance (3.0 v 4.5; p = 0.06). Patients who declined due to FEV1 change had lower FEV1 at baseline (means 55.7% v 67.8%; p = 0.0023), and a much greater magnitude of FEV1 deterioration over 1 year (284 mls v 44 mls; p = 0.0021), and were more likely to be current smokers (62.5% v 10.0%; p = 0.04) (see Additional file 3: Table S3 in the data supplement).
Table 4
Baseline characteristics of patients who remained stable (GOLD B) and unstable patients (GOLD D) at 1 year
 
Stable (n = 51)
Unstable (n = 19)
p - value
Demographics
 Gender (% Male)
72.5
52.6
0.15
 Pack years
45.0 [10.0–220.0]
52.0 [10.0–113.0]
0.67
 Smoking status (% Current)
37.3
36.8
1.00
 BMI (Kg/m2)
27.2 [17.3–49.2]
27.9 [20.7–45.0]
0.28
 FFMI (Kg/m2)
17.8 (3.4)
18.7 (3.4)
0.34
 Chronic bronchitis (%)
58.3
61.1
1.00
 Exacerbations (1 year prior)
0.0 [0.0–1.0]
0.0 [0.0–1.0]
0.88
Co-morbidities
 Cardiovascular comorbidity any (%)
94.1
94.7
1.00
 Comorbidities any (%)
94.1
94.7
1.00
Patient reported outcomes
 SGRQ total
40.1 [14.6–80.0]
50.0 [22.2–82.3]
0.019
 SGRQ symptoms
55.1 [22.0–91.0]
60.8 [15.4–90.0]
0.10
 SGRQ impact
26.0 [2.5–71.6]
35.9 [9.0–73.7]
0.20
 SGRQ activity
59.3 [7.6–100.0]
79.0 [15.6–100.0]
0.003
 CAT
14.0 [4.0–28.0]
21.0 [8.0–39.0]
0.006
 CES-D
11.0 [1.0–32.0]
12.5 [3.0–38.0]
0.94
Functional capacity
 6MWD (metres)
425.3 (98.5)
361.5 (124.8)
0.06
Lung function
 Vital capacity %
103.3 (19.8)
96.6 (16.5)
0.25
 Total lung capacity %
108.8 (19.9)
111.8 (24.6)
0.65
 Residual volume %
130.9 (37.4)
150.4 (60.2)
0.16
 Inspiratory capacity %
87.0 (23.0)
89.8 (16.1)
0.67
 FRC %
129.3 (30.7)
134.2 (44.5)
0.65
 DLCO %
66.2 (20.3)
64.1 (24.3)
0.76
 KCO %
75.5 [41.2–137.0]
81.5 [35.0–124.0]
0.97
 VA %
82.8 (12.0)
79.2 (9.3)
0.32
 Post FEV1 %
69.7 (11.7)
62.4 (9.0)
0.016
 Reversibility %
5.0 [−3.0–+33.0]
7.4 [0.8–32.0]
0.47
 Reversibility mls
90.0 [−40.0–+670.0]
95.0 [20.0–+380.0]
0.90
Bacteriology
 Bacterial load (genome copies/ml)
1.44 × 105 [0.0–2.43 × 108]
7.4 × 102 [0–10.4 × 107]
0.66
 Colonised (% >1 × 104 total PPM)
66.7
46.2
0.30
Systemic inflammation
 CRP (mg/L)
3.0 [1.0–35.5]
4.5 [1.0–157.0]
0.06
 WBC (109/L)
7.2 [5.4–12.6]
7.4 [5.0–12.6]
0.42
 Eosinophils (109/L)
0.2 [0.0–0.9]
0.2 [0.1–0.3]
0.32
Summaries are presented as mean (SD), percentage or Median [Range] as appropriate
Definitions of abbreviations: BMI body mass index, FFMI fat free mass index, SGRQ St George’s Respiratory Questionnaire, CAT COPD Assessment Test, CES-D Centre for Epidemiologic Studies Depression, 6MWD six minute walk distance, FRC functional residual capacity, DLCO diffusing capacity of the lungs for carbon monoxide, KCO carbon monoxide transfer coefficient, VA alveolar volume, CRP C-reactive protein, WBC white blood count, PPM potentially pathogenic microorganisms

Discussion

The criteria used to define GOLD B patients results in a degree of homogeneity in terms of symptoms, lung function and exacerbation history when assessed at a single visit. However, longitudinal follow up reveals a heterogeneous course of disease. GOLD B patients who progressed to GOLD D had more severe disease characteristics at the start of the 1 year follow up. This unstable subgroup had significantly worse CAT and SGRQ scores and lower FEV1 compared to stable patients at baseline. Progression of GOLD B to GOLD D appears to be more likely in highly symptomatic patients.
Approximately equal numbers of unstable patients deteriorated due to FEV1 alone or exacerbations alone (8 versus 10 respectively). Although these are small groups to perform sub-analysis, there were very clear differences in the rate of FEV1 decline between these groups (means 284 versus 44 mls respectively), and there were more current smokers in the former group. The role of current smoking in promoting lung function decline is known [4], and we show here a subgroup of group B patients where current smoking is associated with a very rapid rate of FEV1 decline. The progression to group D in these patients was associated with both a lower FEV1 at baseline and a large decrease in FEV1 over 1 year (mean 284 mls). This indicates that switching from group B to D because of FEV1 criteria is not simply due to small changes in lung function that might occur in patients with lung function measurements just above the FEV1 50% predicted threshold.
The worse patient reported outcome scores at baseline in unstable group B patients suggest increased disease activity. The deterioration of group B patients towards group D is likely to have started before the baseline visit in many of these patients. The high symptom burden is probably related to increased disease activity associated with rapid FEV1 decline. Alternatively, for patients who progressed to group D because of exacerbations, the higher symptom burden may be due to mild or unreported exacerbations in the previous year, which subsequently evolved to moderate to severe exacerbations during the follow up period.
Different thresholds have been used to define COPD patients with a rapid decline in FEV1; 40 mls/year has been suggested [17], while 60 mls/year has also been used [7]. We observed a mean decrease of 66 mls/year, with 58.7% of patients showing >60 ml decline. This is a higher mean rate of FEV1 decline than previously observed in many cohort studies and clinical trials [18, 19]. However, Koskela et al. [20] recently reported one third of patients with rapid declining FEV1 had a mean decrease of 78 mls/year compared to the 28 mls/year in the rest of the patients. Here we focused just on group B patients. FEV1 decline is known to vary with GOLD stage 1–4 and with GOLD group A-D. Goosens et al. [18] reported a mean 48 mls/year decline in FEV1 in GOLD B patients, while Kim et al. [19] reported a smaller mean decline of 27 mls/year in GOLD B patients. Our higher rate of decline compared to these previous reports in group B patients may reflect the recruitment strategy used, focusing on hospital clinics and therefore recruiting more severe/symptomatic patients. This lung function decline could not be explained by changes in medication as patients remained on their normal medications when entering this observational study.
In the ECLIPSE study, 36% of group B patients remained stable, while 35% progressed to group D after 1 year and 22% improved to group A [2]. In our COPDMAP cohort, a slightly lower proportion (25%) progressed to group D, but many more remained stable (68%). ECLIPSE was a worldwide study while COPDMAP is a UK study, and these differences may simply reflect the varied healthcare of the patients in different studies and locations.
Significantly more group B patients were current smokers compared to group A. Furthermore, group B had more comorbidities and a greater prevalence of chronic bronchitis compared to group A patients. Despite these differences, and a higher symptom burden in group B, there were no differences in lung function between groups. Similarly, previous studies have reported similar lung function in group B compared to group A patients [19]. These findings highlight that the increased symptom burden, including increased breathlessness, in group B patients is not attributed to airflow obstruction alone, and further underscores the poor relationship between lung function and symptoms in COPD patients. The increased symptom burden in GOLD B patients is likely to be due, at least in part, to the increased prevalence of co-morbidities.
Other cohort studies have not reported lower rates of current smoking in group A patients compared to group B [19, 21, 22]. Our relatively small number of group A patients means that the estimate of current smokers in our study is not robust.
We only had a small number of patients who attended for 2 year follow up, but nevertheless the pattern of approximately 25% further switching to group D in the second year was observed. Furthermore, the majority of patients who had progressed to group D after 1 year remained in this category at 2 years.
A key strength of the current study is the detailed characterisation of the GOLD B group. Potential limitations are the sample sizes for subgroup analysis, and the dropout rate during longitudinal follow up.

Conclusion

In conclusion, we show that a subset of GOLD B patients who moved to the higher risk D category after 1 year had greater symptoms and worse health status at the start of the study. Patient reported outcome scores appear to be related to the risk of disease progression in this GOLD category. Within GOLD B there also appears to be a subgroup with a very high rate of lung function decline associated with current smoking. These findings demonstrate the heterogeneous nature of GOLD B patients during longitudinal follow up, and that this group of patients who are at risk of disease progression should be carefully followed-up in clinical practice.

Acknowledgments

The authors would like to thank the patients, investigators and study site staff who participated in COPD MAP.

Funding

This study is independent research supported by COPD MAP consortium; Medical Research Council; National Institute for Health Research Respiratory and Allergy Clinical Research Facility at University Hospital of South Manchester NHS Foundation Trust; National Institute for Health Research Respiratory Biomedical Research Unit at the Royal Brompton and Harefield NHS Foundation Trust and Imperial College, London and NIHR Respiratory Biomedical Research, Leicester. The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Availability of data and materials

The datasets supporting the conclusions of this article are included within the article (and its additional files).

Authors’ contributions

PJL, UK, CB, JAW, DS were responsible for the concept and design of study. VG, GCD, RS, BB, LG, AW, AB were involved in data acquisition. PJL, UK and DS were responsible for data analysis, interpretation and drafting the manuscript. VG, GCD, RS, BB, LG, AW, AB, CB and JAW revised the manuscript critically for intellectual content. All authors have approved the final version to be published and are jointly accountable for all aspects of the work.

Competing interests

PL, UK, VG, BB, RS,LG, AW,AB have no competing interests; GD received personal fees from MiCom SRL; CEB has received grants and or consultancy paid via his Institution from GSK, Az/MedImmune, Novartis, Chiesi, BI, Pfizer, Theravance, Vectura; JW reports personal fees and non-financial support from Novartis, GlaxoSmithKline, Takeda, Astra Zeneca, Boehringer Ingelheim, Johnson and Johnson, Vifor Pharma and personal fees from Pfizer, Chiesi, Napp; DS has received sponsorship to attend international meetings, honoraria for lecturing or attending advisory boards and research grants from various pharmaceutical companies including Almirall, AstraZeneca, Boehringer Ingelheim, Chiesi, Genentech, GlaxoSmithKline, Glenmark, Merck, NAPP, Novartis, Pfizer, Respivert, Skypharma, Takeda, Teva, Therevance and Verona.
Not Applicable.
All patients provided written informed consent using protocols approved by the local Ethics Committees at each site (Hampstead, 11/L0/1630; Greater Manchester South, 10/H/1003/108; East Midlands, 07/H0406/157).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Available from: www.goldcopd.org. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. Available from: www.​goldcopd.​org.
2.
Zurück zum Zitat Agusti A, et al. Characteristics, stability and outcomes of the 2011 GOLD COPD groups in the ECLIPSE cohort. Eur Respir J. 2013;42(3):636–46.CrossRefPubMed Agusti A, et al. Characteristics, stability and outcomes of the 2011 GOLD COPD groups in the ECLIPSE cohort. Eur Respir J. 2013;42(3):636–46.CrossRefPubMed
3.
Zurück zum Zitat Anto JM, et al. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J. 2001;17(5):982–94.CrossRefPubMed Anto JM, et al. Epidemiology of chronic obstructive pulmonary disease. Eur Respir J. 2001;17(5):982–94.CrossRefPubMed
4.
Zurück zum Zitat Vestbo J, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365(13):1184–92.CrossRefPubMed Vestbo J, et al. Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med. 2011;365(13):1184–92.CrossRefPubMed
5.
Zurück zum Zitat Lange P, et al. Prediction of the clinical course of chronic obstructive pulmonary disease, using the new GOLD classification: a study of the general population. Am J Respir Crit Care Med. 2012;186(10):975–81.CrossRefPubMed Lange P, et al. Prediction of the clinical course of chronic obstructive pulmonary disease, using the new GOLD classification: a study of the general population. Am J Respir Crit Care Med. 2012;186(10):975–81.CrossRefPubMed
6.
Zurück zum Zitat Quint JK, et al. Predictive accuracy of patient-reported exacerbation frequency in COPD. Eur Respir J. 2011;37(3):501–7.CrossRefPubMed Quint JK, et al. Predictive accuracy of patient-reported exacerbation frequency in COPD. Eur Respir J. 2011;37(3):501–7.CrossRefPubMed
7.
Zurück zum Zitat Ramirez-Venegas A, et al. FEV1 decline in patients with chronic obstructive pulmonary disease associated with biomass exposure. Am J Respir Crit Care Med. 2014;190(9):996–1002.CrossRefPubMed Ramirez-Venegas A, et al. FEV1 decline in patients with chronic obstructive pulmonary disease associated with biomass exposure. Am J Respir Crit Care Med. 2014;190(9):996–1002.CrossRefPubMed
8.
Zurück zum Zitat Jones PW, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648–54.CrossRefPubMed Jones PW, et al. Development and first validation of the COPD Assessment Test. Eur Respir J. 2009;34(3):648–54.CrossRefPubMed
9.
Zurück zum Zitat Meguro M, et al. Development and validation of an improved, COPD-specific version of the St. George respiratory questionnaire. Chest. 2007;132(2):456–63.CrossRefPubMed Meguro M, et al. Development and validation of an improved, COPD-specific version of the St. George respiratory questionnaire. Chest. 2007;132(2):456–63.CrossRefPubMed
10.
Zurück zum Zitat Mahler DA, Wells CK. Evaluation of clinical methods for rating dyspnea. Chest. 1988;93(3):580–6.CrossRefPubMed Mahler DA, Wells CK. Evaluation of clinical methods for rating dyspnea. Chest. 1988;93(3):580–6.CrossRefPubMed
11.
Zurück zum Zitat Radolff LS. The CES-D scale: a self report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.CrossRef Radolff LS. The CES-D scale: a self report depression scale for research in the general population. Appl Psychol Meas. 1977;1:385–401.CrossRef
12.
13.
Zurück zum Zitat Wanger J, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.CrossRefPubMed Wanger J, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.CrossRefPubMed
14.
Zurück zum Zitat Macintyre N, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–35.CrossRefPubMed Macintyre N, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–35.CrossRefPubMed
15.
Zurück zum Zitat American Toracic Society (ATS) Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7. American Toracic Society (ATS) Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 2002;166:111–7.
16.
Zurück zum Zitat Garcha DS, et al. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax. 2012;67(12):1075–80.CrossRefPubMed Garcha DS, et al. Changes in prevalence and load of airway bacteria using quantitative PCR in stable and exacerbated COPD. Thorax. 2012;67(12):1075–80.CrossRefPubMed
17.
Zurück zum Zitat Lange P, Celli B, Agusti A. Lung-function trajectories and chronic obstructive pulmonary disease. N Engl J Med. 2015;373(16):1575.CrossRefPubMed Lange P, Celli B, Agusti A. Lung-function trajectories and chronic obstructive pulmonary disease. N Engl J Med. 2015;373(16):1575.CrossRefPubMed
18.
Zurück zum Zitat Goossens LM, et al. Does the 2013 GOLD classification improve the ability to predict lung function decline, exacerbations and mortality: a post-hoc analysis of the 4-year UPLIFT trial. BMC Pulm Med. 2014;14:163.CrossRefPubMedPubMedCentral Goossens LM, et al. Does the 2013 GOLD classification improve the ability to predict lung function decline, exacerbations and mortality: a post-hoc analysis of the 4-year UPLIFT trial. BMC Pulm Med. 2014;14:163.CrossRefPubMedPubMedCentral
19.
Zurück zum Zitat Kim J, et al. Lung function decline rates according to GOLD group in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1819–27.CrossRefPubMedPubMedCentral Kim J, et al. Lung function decline rates according to GOLD group in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2015;10:1819–27.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Koskela J, Katajisto M, Kallio A, Kilpelainen M, Lindqvist A, Laitinen T. Individual FEV1 Trajectories Can Be Identified from a COPD Cohort. Copd. 2016;13(4):425–30. Koskela J, Katajisto M, Kallio A, Kilpelainen M, Lindqvist A, Laitinen T. Individual FEV1 Trajectories Can Be Identified from a COPD Cohort. Copd. 2016;13(4):425–30.
21.
Zurück zum Zitat Boland MR, et al. Are GOLD ABCD groups better associated with health status and costs than GOLD 1234 grades? A cross-sectional study. Prim Care Respir J. 2014;23(1):30–7.CrossRefPubMed Boland MR, et al. Are GOLD ABCD groups better associated with health status and costs than GOLD 1234 grades? A cross-sectional study. Prim Care Respir J. 2014;23(1):30–7.CrossRefPubMed
22.
Zurück zum Zitat Wesolowski S, Boros PW, Debowski T. Chronic obstructive pulmonary disease in Poland: distribution of patients according to the new GOLD 2011 classification. Cross-sectional survey. Pneumonol Alergol Pol. 2014;82(6):511–7.CrossRefPubMed Wesolowski S, Boros PW, Debowski T. Chronic obstructive pulmonary disease in Poland: distribution of patients according to the new GOLD 2011 classification. Cross-sectional survey. Pneumonol Alergol Pol. 2014;82(6):511–7.CrossRefPubMed
Metadaten
Titel
Characteristics and longitudinal progression of chronic obstructive pulmonary disease in GOLD B patients
verfasst von
Philip J. Lawrence
Umme Kolsum
Vandana Gupta
Gavin Donaldson
Richa Singh
Bethan Barker
Leena George
Adam Webb
Anthony J. Brookes
Christopher Brightling
Jadwiga Wedzicha
Dave Singh
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2017
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-017-0384-8

Weitere Artikel der Ausgabe 1/2017

BMC Pulmonary Medicine 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.