Skip to main content
Erschienen in: Inflammation 6/2019

07.09.2019 | Original Article

Characteristics of Changes in Inflammatory Cytokines as a Function of Hepatic Ischemia-Reperfusion Injury Stage in Mice

verfasst von: Shi-peng Li, Fei-fei Wang, Wen-kui Zhang, Ming-ze Bian, Shen-yan Zhang, Han Yan, Yuan Fang, Hai-ming Zhang

Erschienen in: Inflammation | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Liver ischemia-reperfusion injury (IRI) can severely compromise the prognosis of patients receiving liver surgery. While inflammation contributes to the damage resulting from IRI, only a limited number of inflammation biomarkers have been identified as being associated with the different stages of hepatic IRI. As an approach to identify some of these inflammatory cytokines and the molecular mechanisms involved within different stages of hepatic IRI, we used an advanced antibody array assay to detect multiple proteins. With this technology, we observed specific differences in the content of inflammatory cytokines between ischemic and sham controls, as well as a function of the different reperfusion stages in a hepatic IRI mouse model. For example, while liver tissue content of IL-12p40/p70 was significantly increased in the ischemic stage, it was significantly decreased in the reperfusion stage as compared with that of the sham group. For other inflammatory cytokines, no changes were obtained between the ischemic and reperfusion stages with levels of IL-17, Eotaxin-2, Eotaxin, and sTNF RII all being consistently increased, while those of TIMP-1, TIMP-2, BLC, and MCSF consistently decreased as compared with that of the sham group at all reperfusion stages examined. Results from protein function annotation Gene Ontology and the KEGG pathway revealed that inflammatory cytokines are enriched in a network associated with activation of inflammatory response signaling pathways such as TLR, TNF, and IL-17 when comparing responses of the IR versus sham groups. The identification of cytokines along with their roles at specific stages of IRI may reveal important new biological markers for the diagnosis and prognosis of hepatic IRI.
Literatur
1.
Zurück zum Zitat Li, J., R.J. Li, G.Y. Lv, and H.Q. Liu. 2015. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury. European Review for Medical and Pharmacological Sciences 19: 2036–2047.PubMed Li, J., R.J. Li, G.Y. Lv, and H.Q. Liu. 2015. The mechanisms and strategies to protect from hepatic ischemia-reperfusion injury. European Review for Medical and Pharmacological Sciences 19: 2036–2047.PubMed
2.
Zurück zum Zitat Cannistra, M., M. Ruggiero, A. Zullo, G. Gallelli, S. Serafini, M. Maria, A. Naso, et al. 2016. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. International Journal of Surgery 33 (Suppl 1): S57–S70.CrossRef Cannistra, M., M. Ruggiero, A. Zullo, G. Gallelli, S. Serafini, M. Maria, A. Naso, et al. 2016. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. International Journal of Surgery 33 (Suppl 1): S57–S70.CrossRef
3.
Zurück zum Zitat Xi, J., M. Yan, S. Li, H. Song, L. Liu, Z. Shen, and J.Z. Cai. 2019. NOD1 activates autophagy to aggravate hepatic ischemia-reperfusion injury in mice. Journal of Cellular Biochemistry 120: 10605–10612.CrossRef Xi, J., M. Yan, S. Li, H. Song, L. Liu, Z. Shen, and J.Z. Cai. 2019. NOD1 activates autophagy to aggravate hepatic ischemia-reperfusion injury in mice. Journal of Cellular Biochemistry 120: 10605–10612.CrossRef
4.
Zurück zum Zitat Sikalias, N., T. Karatzas, K. Alexiou, L. Mountzalia, M. Demonakou, I.D. Kostakis, A. Zacharioudaki, A. Papalois, and G. Kouraklis. 2018. Intermittent Ischemic Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury and Extensive Hepatectomy in Steatotic Rat Liver. Journal of Investigative Surgery 31: 366–377.CrossRef Sikalias, N., T. Karatzas, K. Alexiou, L. Mountzalia, M. Demonakou, I.D. Kostakis, A. Zacharioudaki, A. Papalois, and G. Kouraklis. 2018. Intermittent Ischemic Preconditioning Protects Against Hepatic Ischemia-Reperfusion Injury and Extensive Hepatectomy in Steatotic Rat Liver. Journal of Investigative Surgery 31: 366–377.CrossRef
5.
Zurück zum Zitat Kan, C., L. Ungelenk, A. Lupp, O. Dirsch, and U. Dahmen. 2018. Ischemia-Reperfusion Injury in Aged Livers-The Energy Metabolism, Inflammatory Response, and Autophagy. Transplantation 102: 368–377.PubMed Kan, C., L. Ungelenk, A. Lupp, O. Dirsch, and U. Dahmen. 2018. Ischemia-Reperfusion Injury in Aged Livers-The Energy Metabolism, Inflammatory Response, and Autophagy. Transplantation 102: 368–377.PubMed
6.
Zurück zum Zitat Li, C.X., C.M. Lo, Q. Lian, K.T. Ng, X.B. Liu, Y.Y. Ma, X. Qi, et al. 2016. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response. Oncotarget 7: 27711–27723.PubMedPubMedCentral Li, C.X., C.M. Lo, Q. Lian, K.T. Ng, X.B. Liu, Y.Y. Ma, X. Qi, et al. 2016. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response. Oncotarget 7: 27711–27723.PubMedPubMedCentral
7.
Zurück zum Zitat Wu, H.H., C.C. Huang, C.P. Chang, M.T. Lin, K.C. Niu, and Y.F. Tian. 2018. Heat Shock Protein 70 (HSP70) Reduces Hepatic Inflammatory and Oxidative Damage in a Rat Model of Liver Ischemia/Reperfusion Injury with Hyperbaric Oxygen Preconditioning. Medical Science Monitor 24: 8096–8104.CrossRef Wu, H.H., C.C. Huang, C.P. Chang, M.T. Lin, K.C. Niu, and Y.F. Tian. 2018. Heat Shock Protein 70 (HSP70) Reduces Hepatic Inflammatory and Oxidative Damage in a Rat Model of Liver Ischemia/Reperfusion Injury with Hyperbaric Oxygen Preconditioning. Medical Science Monitor 24: 8096–8104.CrossRef
8.
Zurück zum Zitat Ma, G., C. Chen, H. Jiang, Y. Qiu, Y. Li, X. Li, X. Zhang, J. Liu, and T. Zhu. 2017. Ribonuclease attenuates hepatic ischemia reperfusion induced cognitive impairment through the inhibition of inflammatory cytokines in aged mice. Biomedicine & Pharmacotherapy 90: 62–68.CrossRef Ma, G., C. Chen, H. Jiang, Y. Qiu, Y. Li, X. Li, X. Zhang, J. Liu, and T. Zhu. 2017. Ribonuclease attenuates hepatic ischemia reperfusion induced cognitive impairment through the inhibition of inflammatory cytokines in aged mice. Biomedicine & Pharmacotherapy 90: 62–68.CrossRef
9.
Zurück zum Zitat Matsumoto, T., K. O'Malley, P.A. Efron, C. Burger, P.F. McAuliffe, P.O. Scumpia, T. Uchida, et al. 2006. Interleukin-6 and STAT3 protect the liver from hepatic ischemia and reperfusion injury during ischemic preconditioning. Surgery 140: 793–802.CrossRef Matsumoto, T., K. O'Malley, P.A. Efron, C. Burger, P.F. McAuliffe, P.O. Scumpia, T. Uchida, et al. 2006. Interleukin-6 and STAT3 protect the liver from hepatic ischemia and reperfusion injury during ischemic preconditioning. Surgery 140: 793–802.CrossRef
10.
Zurück zum Zitat Suyavaran, A., C. Ramamurthy, R. Mareeswaran, A. Subastri, R.P. Lokeswara, and C. Thirunavukkarasu. 2015. TNF-alpha suppression by glutathione preconditioning attenuates hepatic ischemia reperfusion injury in young and aged rats. Inflammation Research 64: 71–81.CrossRef Suyavaran, A., C. Ramamurthy, R. Mareeswaran, A. Subastri, R.P. Lokeswara, and C. Thirunavukkarasu. 2015. TNF-alpha suppression by glutathione preconditioning attenuates hepatic ischemia reperfusion injury in young and aged rats. Inflammation Research 64: 71–81.CrossRef
11.
Zurück zum Zitat Kibat, J., T. Schirrmann, M.J. Knape, S. Helmsing, D. Meier, M. Hust, C. Schroder, et al. 2016. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology 33: 574–581.CrossRef Kibat, J., T. Schirrmann, M.J. Knape, S. Helmsing, D. Meier, M. Hust, C. Schroder, et al. 2016. Utilisation of antibody microarrays for the selection of specific and informative antibodies from recombinant library binders of unknown quality. New Biotechnology 33: 574–581.CrossRef
12.
Zurück zum Zitat Sun, X.L., Y.L. Zhang, S.M. Xi, L.J. Ma, and S.P. Li. 2019. MiR-330-3p suppresses phosphoglycerate mutase family member 5 -inducted mitophagy to alleviate hepatic ischemia-reperfusion injury. Journal of Cellular Biochemistry 120: 4255–4267.CrossRef Sun, X.L., Y.L. Zhang, S.M. Xi, L.J. Ma, and S.P. Li. 2019. MiR-330-3p suppresses phosphoglycerate mutase family member 5 -inducted mitophagy to alleviate hepatic ischemia-reperfusion injury. Journal of Cellular Biochemistry 120: 4255–4267.CrossRef
13.
Zurück zum Zitat Qu, Y., H.L. Zhang, X.P. Zhang, and H.L. Jiang. 2018. Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress. Human & Experimental Toxicology 37: 135–141.CrossRef Qu, Y., H.L. Zhang, X.P. Zhang, and H.L. Jiang. 2018. Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress. Human & Experimental Toxicology 37: 135–141.CrossRef
14.
Zurück zum Zitat Chen, J., D.M. Zhang, X. Feng, J. Wang, Y.Y. Qin, T. Zhang, Q. Huang, R. Sheng, Z. Chen, M. Li, and Z.H. Qin. 2018. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology 131: 377–388.CrossRef Chen, J., D.M. Zhang, X. Feng, J. Wang, Y.Y. Qin, T. Zhang, Q. Huang, R. Sheng, Z. Chen, M. Li, and Z.H. Qin. 2018. TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes. Neuropharmacology 131: 377–388.CrossRef
15.
Zurück zum Zitat Zhao, D., S.C. Deng, Y. Ma, Y.H. Hao, and Z.H. Jia. 2018. miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion. Neuroreport 29: 655–660.CrossRef Zhao, D., S.C. Deng, Y. Ma, Y.H. Hao, and Z.H. Jia. 2018. miR-221 alleviates the inflammatory response and cell apoptosis of neuronal cell through targeting TNFAIP2 in spinal cord ischemia-reperfusion. Neuroreport 29: 655–660.CrossRef
16.
Zurück zum Zitat Ling, H., H. Chen, M. Wei, X. Meng, Y. Yu, and K. Xie. 2016. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 39: 347–356.CrossRef Ling, H., H. Chen, M. Wei, X. Meng, Y. Yu, and K. Xie. 2016. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury. Inflammation 39: 347–356.CrossRef
17.
Zurück zum Zitat Gregova, K., S. Cikos, M. Bilecova-Rabajdova, P. Urban, J. Varga, S. Feterik, and J. Vesela. 2015. Intestinal ischemia-reperfusion injury mediates expression of inflammatory cytokines in rats. General Physiology and Biophysics 34: 95–99.CrossRef Gregova, K., S. Cikos, M. Bilecova-Rabajdova, P. Urban, J. Varga, S. Feterik, and J. Vesela. 2015. Intestinal ischemia-reperfusion injury mediates expression of inflammatory cytokines in rats. General Physiology and Biophysics 34: 95–99.CrossRef
18.
Zurück zum Zitat Gu, L., Y. Tao, C. Chen, Y. Ye, X. Xiong, and Y. Sun. 2018. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. International Urology and Nephrology 50: 2027–2035.CrossRef Gu, L., Y. Tao, C. Chen, Y. Ye, X. Xiong, and Y. Sun. 2018. Initiation of the inflammatory response after renal ischemia/reperfusion injury during renal transplantation. International Urology and Nephrology 50: 2027–2035.CrossRef
19.
Zurück zum Zitat Afkham, A., S. Eghbal-Fard, H. Heydarlou, R. Azizi, L. Aghebati-Maleki, and M. Yousefi. 2019. Toll-like receptors signaling network in pre-eclampsia: An updated review. Journal of Cellular Physiology 234: 2229–2240.CrossRef Afkham, A., S. Eghbal-Fard, H. Heydarlou, R. Azizi, L. Aghebati-Maleki, and M. Yousefi. 2019. Toll-like receptors signaling network in pre-eclampsia: An updated review. Journal of Cellular Physiology 234: 2229–2240.CrossRef
20.
Zurück zum Zitat Mohan, S., and D. Gupta. 2018. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomedicine & Pharmacotherapy 108: 1866–1878.CrossRef Mohan, S., and D. Gupta. 2018. Crosstalk of toll-like receptors signaling and Nrf2 pathway for regulation of inflammation. Biomedicine & Pharmacotherapy 108: 1866–1878.CrossRef
21.
Zurück zum Zitat Bahrami, A., N. Parsamanesh, S.L. Atkin, M. Banach, and A. Sahebkar. 2018. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacological Research 135: 230–238.CrossRef Bahrami, A., N. Parsamanesh, S.L. Atkin, M. Banach, and A. Sahebkar. 2018. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacological Research 135: 230–238.CrossRef
22.
Zurück zum Zitat Rao, J., S. Yue, Y. Fu, J. Zhu, X. Wang, R.W. Busuttil, J.W. Kupiec-Weglinski, L. Lu, and Y. Zhai. 2014. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury. American Journal of Transplantation 14: 1552–1561.CrossRef Rao, J., S. Yue, Y. Fu, J. Zhu, X. Wang, R.W. Busuttil, J.W. Kupiec-Weglinski, L. Lu, and Y. Zhai. 2014. ATF6 mediates a pro-inflammatory synergy between ER stress and TLR activation in the pathogenesis of liver ischemia-reperfusion injury. American Journal of Transplantation 14: 1552–1561.CrossRef
23.
Zurück zum Zitat Tsung, A., R.A. Hoffman, K. Izuishi, N.D. Critchlow, A. Nakao, M.H. Chan, M.T. Lotze, D.A. Geller, and T.R. Billiar. 2005. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. Journal of Immunology 175: 7661–7668.CrossRef Tsung, A., R.A. Hoffman, K. Izuishi, N.D. Critchlow, A. Nakao, M.H. Chan, M.T. Lotze, D.A. Geller, and T.R. Billiar. 2005. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. Journal of Immunology 175: 7661–7668.CrossRef
24.
Zurück zum Zitat Chen, H., R.Q. Zhang, X.G. Wei, X.M. Ren, and X.Q. Gao. 2016. Mechanism of TLR-4/NF-kappaB pathway in myocardial ischemia reperfusion injury of mouse. Asian Pacific Journal of Tropical Medicine 9: 503–507.CrossRef Chen, H., R.Q. Zhang, X.G. Wei, X.M. Ren, and X.Q. Gao. 2016. Mechanism of TLR-4/NF-kappaB pathway in myocardial ischemia reperfusion injury of mouse. Asian Pacific Journal of Tropical Medicine 9: 503–507.CrossRef
25.
Zurück zum Zitat Perry, B.C., D. Soltys, A.H. Toledo, and L.H. Toledo-Pereyra. 2011. Tumor necrosis factor-alpha in liver ischemia/reperfusion injury. Journal of Investigative Surgery 24: 178–188.CrossRef Perry, B.C., D. Soltys, A.H. Toledo, and L.H. Toledo-Pereyra. 2011. Tumor necrosis factor-alpha in liver ischemia/reperfusion injury. Journal of Investigative Surgery 24: 178–188.CrossRef
26.
Zurück zum Zitat Jaeschke, H., and B.L. Woolbright. 2013. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock 39: 380–388 Shock 2013;40:75–76.CrossRef Jaeschke, H., and B.L. Woolbright. 2013. Role of heme oxygenase 1 in TNF/TNF receptor-mediated apoptosis after hepatic ischemia/reperfusion in rats. Shock 39: 380–388 Shock 2013;40:75–76.CrossRef
27.
Zurück zum Zitat Spencer, N.Y., W. Zhou, Q. Li, Y. Zhang, M. Luo, Z. Yan, T.J. Lynch, D. Abbott, B. Banfi, and J.F. Engelhardt. 2013. Hepatocytes produce TNF-alpha following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner. American Journal of Physiology. Gastrointestinal and Liver Physiology 305: G84–G94.CrossRef Spencer, N.Y., W. Zhou, Q. Li, Y. Zhang, M. Luo, Z. Yan, T.J. Lynch, D. Abbott, B. Banfi, and J.F. Engelhardt. 2013. Hepatocytes produce TNF-alpha following hypoxia-reoxygenation and liver ischemia-reperfusion in a NADPH oxidase- and c-Src-dependent manner. American Journal of Physiology. Gastrointestinal and Liver Physiology 305: G84–G94.CrossRef
28.
Zurück zum Zitat Sharma, A.K., D.P. Mulloy, L.T. Le, and V.E. Laubach. 2014. NADPH oxidase mediates synergistic effects of IL-17 and TNF-alpha on CXCL1 expression by epithelial cells after lung ischemia-reperfusion. American Journal of Physiology. Lung Cellular and Molecular Physiology 306: L69–L79.CrossRef Sharma, A.K., D.P. Mulloy, L.T. Le, and V.E. Laubach. 2014. NADPH oxidase mediates synergistic effects of IL-17 and TNF-alpha on CXCL1 expression by epithelial cells after lung ischemia-reperfusion. American Journal of Physiology. Lung Cellular and Molecular Physiology 306: L69–L79.CrossRef
29.
Zurück zum Zitat Loi, P., Q. Yuan, D. Torres, S. Delbauve, M.A. Laute, M.C. Lalmand, M. Petein, et al. 2013. Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated liver ischemia-reperfusion injury. Hepatology 57: 351–361.CrossRef Loi, P., Q. Yuan, D. Torres, S. Delbauve, M.A. Laute, M.C. Lalmand, M. Petein, et al. 2013. Interferon regulatory factor 3 deficiency leads to interleukin-17-mediated liver ischemia-reperfusion injury. Hepatology 57: 351–361.CrossRef
30.
Zurück zum Zitat Wu, C., Y. Xia, P. Wang, L. Lu, and F. Zhang. 2011. Triptolide protects mice from ischemia/reperfusion injury by inhibition of IL-17 production. International Immunopharmacology 11: 1564–1572.CrossRef Wu, C., Y. Xia, P. Wang, L. Lu, and F. Zhang. 2011. Triptolide protects mice from ischemia/reperfusion injury by inhibition of IL-17 production. International Immunopharmacology 11: 1564–1572.CrossRef
Metadaten
Titel
Characteristics of Changes in Inflammatory Cytokines as a Function of Hepatic Ischemia-Reperfusion Injury Stage in Mice
verfasst von
Shi-peng Li
Fei-fei Wang
Wen-kui Zhang
Ming-ze Bian
Shen-yan Zhang
Han Yan
Yuan Fang
Hai-ming Zhang
Publikationsdatum
07.09.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01078-y

Weitere Artikel der Ausgabe 6/2019

Inflammation 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.