Skip to main content
main-content

28.04.2016 | Original Article | Ausgabe 1/2017

Heart and Vessels 1/2017

Characterization of gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism: gut microbiota could be a diagnostic marker of coronary artery disease

Zeitschrift:
Heart and Vessels > Ausgabe 1/2017
Autoren:
Takuo Emoto, Tomoya Yamashita, Toshio Kobayashi, Naoto Sasaki, Yushi Hirota, Tomohiro Hayashi, Anna So, Kazuyuki Kasahara, Keiko Yodoi, Takuya Matsumoto, Taiji Mizoguchi, Wataru Ogawa, Ken-ichi Hirata
Wichtige Hinweise
Clinical Trial Registration Information: URL: http://​www.​umin.​ac.​jp/​ctr/​. Unique identifier: UMIN000012049.

Abstract

The association between atherosclerosis and gut microbiota has been attracting increased attention. We previously demonstrated a possible link between gut microbiota and coronary artery disease. Our aim of this study was to clarify the gut microbiota profiles in coronary artery disease patients using data mining analysis of terminal restriction fragment length polymorphism (T-RFLP). This study included 39 coronary artery disease (CAD) patients and 30 age- and sex- matched no-CAD controls (Ctrls) with coronary risk factors. Bacterial DNA was extracted from their fecal samples and analyzed by T-RFLP and data mining analysis using the classification and regression algorithm. Five additional CAD patients were newly recruited to confirm the reliability of this analysis. Data mining analysis could divide the composition of gut microbiota into 2 characteristic nodes. The CAD group was classified into 4 CAD pattern nodes (35/39 = 90 %), while the Ctrl group was classified into 3 Ctrl pattern nodes (28/30 = 93 %). Five additional CAD samples were applied to the same dividing model, which could validate the accuracy to predict the risk of CAD by data mining analysis. We could demonstrate that operational taxonomic unit 853 (OTU853), OTU657, and OTU990 were determined important both by the data mining method and by the usual statistical comparison. We classified the gut microbiota profiles in coronary artery disease patients using data mining analysis of T-RFLP data and demonstrated the possibility that gut microbiota is a diagnostic marker of suffering from CAD.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Heart and Vessels 1/2017Zur Ausgabe

Neu im Fachgebiet Kardiologie

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Kardiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise