Skip to main content
Erschienen in: Neuroradiology 1/2019

12.12.2018 | Functional Neuroradiology

Characterization of normal-appearing white matter in multiple sclerosis using quantitative susceptibility mapping in conjunction with diffusion tensor imaging

verfasst von: Fang F. Yu, Florence L. Chiang, Nicholas Stephens, Susie Y. Huang, Berkin Bilgic, Bundhit Tantiwongkosi, Rebecca Romero

Erschienen in: Neuroradiology | Ausgabe 1/2019

Einloggen, um Zugang zu erhalten

Abstract

Purpose

Quantitative susceptibility mapping (QSM) is influenced by iron as well as myelin, which makes interpretation of pathologic changes challenging. Concurrent acquisition of MR sequences that are sensitive to axonal/myelin integrity, such as diffusion tensor imaging (DTI), may provide context for interpreting quantitative susceptibility (QS) signal. The purpose of our study was to investigate alterations in normal-appearing white matter (NAWM) in multiple sclerosis (MS) using QSM in conjunction with DTI.

Methods

Twenty relapsing–remitting MS patients and 20 age-matched healthy controls (HC) were recruited for this prospective study. QS, radial diffusivity (RD), fractional anisotropy (FA), and R2* maps within the whole brain as well as individual tracts were generated for comparison between NAWM and HC white matter (HCWM).

Results

MS lesions demonstrated significant differences in QS, FA, RD, and R2* compared to HCWM (p < 0.03). These metrics did not show a significant difference between whole-brain NAWM and HCWM. Among NAWM tracts, the cingulate gyri demonstrated significantly decreased QS compared to HCWM (p = 0.004). The forceps major showed significant differences in FA and RD without corresponding changes in QS (p < 0.01).

Conclusion

We found discordant changes in QSM and DTI metrics within the cingulate gyri and forceps major. This may potentially reflect the influence of paramagnetic substrates such as iron, which could be decreased along these NAWM tracts. Our results point to the potential role of QSM as a unique biomarker, although additional validation studies are needed.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefPubMedPubMedCentral Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O'Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain J Neurol 128:2705–2712CrossRef Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, Schmidbauer M, Parisi JE, Lassmann H (2005) Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain J Neurol 128:2705–2712CrossRef
3.
Zurück zum Zitat Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395CrossRefPubMed Evangelou N, Esiri MM, Smith S, Palace J, Matthews PM (2000) Quantitative pathological evidence for axonal loss in normal appearing white matter in multiple sclerosis. Ann Neurol 47:391–395CrossRefPubMed
4.
Zurück zum Zitat Guo AC, Jewells VL, Provenzale JM (2001) Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging. Am J Neuroradiol 22:1893–1900PubMedPubMedCentral Guo AC, Jewells VL, Provenzale JM (2001) Analysis of normal-appearing white matter in multiple sclerosis: comparison of diffusion tensor MR imaging and magnetization transfer imaging. Am J Neuroradiol 22:1893–1900PubMedPubMedCentral
5.
Zurück zum Zitat Traboulsee A, Dehmeshki J, Peters KR, Griffin CM, Brex PA, Silver N, Ciccarrelli O, Chard DT, Barker GJ, Thompson AJ, Miller DH (2003) Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler J 9:566–573CrossRef Traboulsee A, Dehmeshki J, Peters KR, Griffin CM, Brex PA, Silver N, Ciccarrelli O, Chard DT, Barker GJ, Thompson AJ, Miller DH (2003) Disability in multiple sclerosis is related to normal appearing brain tissue MTR histogram abnormalities. Mult Scler J 9:566–573CrossRef
6.
Zurück zum Zitat Kolasinski J, Stagg CJ, Chance SA, DeLuca GC, Esiri MM, Chang EH, Palace JA, McNab JA, Jenkinson M, Miller KL, Johansen-Berg H (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain J Neurol 135:2938–2951CrossRef Kolasinski J, Stagg CJ, Chance SA, DeLuca GC, Esiri MM, Chang EH, Palace JA, McNab JA, Jenkinson M, Miller KL, Johansen-Berg H (2012) A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology. Brain J Neurol 135:2938–2951CrossRef
7.
Zurück zum Zitat Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. NeuroImage 56:930–938CrossRefPubMed Liu C, Li W, Johnson GA, Wu B (2011) High-field (9.4 T) MRI of brain dysmyelination by quantitative mapping of magnetic susceptibility. NeuroImage 56:930–938CrossRefPubMed
8.
Zurück zum Zitat Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D (2015) Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magn Reson Med 74:564–570CrossRefPubMed Wisnieff C, Ramanan S, Olesik J, Gauthier S, Wang Y, Pitt D (2015) Quantitative susceptibility mapping (QSM) of white matter multiple sclerosis lesions: interpreting positive susceptibility and the presence of iron. Magn Reson Med 74:564–570CrossRefPubMed
9.
Zurück zum Zitat Chen W, Gauthier SA, Gupta A, Comunale J, Liu T, Wang S, Pei M, Pitt D, Wang Y (2014) Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271:183–192CrossRefPubMed Chen W, Gauthier SA, Gupta A, Comunale J, Liu T, Wang S, Pei M, Pitt D, Wang Y (2014) Quantitative susceptibility mapping of multiple sclerosis lesions at various ages. Radiology 271:183–192CrossRefPubMed
10.
Zurück zum Zitat Zhang Y, Gauthier SA, Gupta A, Comunale J, Chia-Yi Chiang G, Zhou D, Chen W, Giambrone AE, Zhu W, Wang Y (2016) Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging 44:426–432CrossRefPubMedPubMedCentral Zhang Y, Gauthier SA, Gupta A, Comunale J, Chia-Yi Chiang G, Zhou D, Chen W, Giambrone AE, Zhu W, Wang Y (2016) Longitudinal change in magnetic susceptibility of new enhanced multiple sclerosis (MS) lesions measured on serial quantitative susceptibility mapping (QSM). J Magn Reson Imaging 44:426–432CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Schweser F, Sommer K, Deistung A, Reichenbach JR (2012) Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. NeuroImage 62:2083–2100CrossRefPubMed Schweser F, Sommer K, Deistung A, Reichenbach JR (2012) Quantitative susceptibility mapping for investigating subtle susceptibility variations in the human brain. NeuroImage 62:2083–2100CrossRefPubMed
12.
Zurück zum Zitat Li W, Wang N, Yu F, Han H, Cao W, Romero R, Tantiwongkosi B, Duong TQ, Liu C (2015) A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage 108:111–122CrossRefPubMed Li W, Wang N, Yu F, Han H, Cao W, Romero R, Tantiwongkosi B, Duong TQ, Liu C (2015) A method for estimating and removing streaking artifacts in quantitative susceptibility mapping. NeuroImage 108:111–122CrossRefPubMed
13.
Zurück zum Zitat Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y (2009) Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61:196–204CrossRefPubMed Liu T, Spincemaille P, de Rochefort L, Kressler B, Wang Y (2009) Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med 61:196–204CrossRefPubMed
14.
Zurück zum Zitat Duyn JH, Schenck J (2016) Contributions to magnetic susceptibility of brain tissue. NMR Biomed 30 Duyn JH, Schenck J (2016) Contributions to magnetic susceptibility of brain tissue. NMR Biomed 30
15.
Zurück zum Zitat Li W, Wu B, Liu C (2011) Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage 55:1645–1656CrossRefPubMed Li W, Wu B, Liu C (2011) Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition. NeuroImage 55:1645–1656CrossRefPubMed
16.
Zurück zum Zitat Stüber C, Morawski M, Schäfer A et al (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93(Part 1):95–106CrossRefPubMed Stüber C, Morawski M, Schäfer A et al (2014) Myelin and iron concentration in the human brain: a quantitative study of MRI contrast. Neuroimage 93(Part 1):95–106CrossRefPubMed
17.
Zurück zum Zitat Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436CrossRefPubMed Song S-K, Sun S-W, Ramsbottom MJ, Chang C, Russell J, Cross AH (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage 17:1429–1436CrossRefPubMed
18.
Zurück zum Zitat Rudko DA, Solovey I, Gati JS, Kremenchutzky M, Menon RS (2014) Multiple sclerosis: improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology 272:851–864CrossRefPubMed Rudko DA, Solovey I, Gati JS, Kremenchutzky M, Menon RS (2014) Multiple sclerosis: improved identification of disease-relevant changes in gray and white matter by using susceptibility-based MR imaging. Radiology 272:851–864CrossRefPubMed
19.
Zurück zum Zitat Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage 65:299–314CrossRefPubMed Deistung A, Schäfer A, Schweser F, Biedermann U, Turner R, Reichenbach JR (2013) Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage 65:299–314CrossRefPubMed
20.
Zurück zum Zitat Wu B, Li W, Guidon A, Liu C (2012) Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67:137–147CrossRefPubMed Wu B, Li W, Guidon A, Liu C (2012) Whole brain susceptibility mapping using compressed sensing. Magn Reson Med 67:137–147CrossRefPubMed
21.
Zurück zum Zitat Li W, Avram AV, Wu B, Xiao X, Liu C (2014) Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR Biomed 27:219–227CrossRefPubMed Li W, Avram AV, Wu B, Xiao X, Liu C (2014) Integrated Laplacian-based phase unwrapping and background phase removal for quantitative susceptibility mapping. NMR Biomed 27:219–227CrossRefPubMed
22.
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage 9:179–194CrossRefPubMed
23.
Zurück zum Zitat Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 1991 14:11–22CrossRef Fischl B, van der Kouwe A, Destrieux C et al (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 1991 14:11–22CrossRef
24.
Zurück zum Zitat Yendiki A, Panneck P, Srinivasan P et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinformatics 5:23CrossRef Yendiki A, Panneck P, Srinivasan P et al (2011) Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Front Neuroinformatics 5:23CrossRef
25.
Zurück zum Zitat Schmidt P (2017) Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging Schmidt P (2017) Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging
26.
Zurück zum Zitat Straub S, Schneider TM, Emmerich J, Freitag MT, Ziener CH, Schlemmer HP, Ladd ME, Laun FB (2017) Suitable reference tissues for quantitative susceptibility mapping of the brain. Magn Reson Med 78:204–214CrossRefPubMed Straub S, Schneider TM, Emmerich J, Freitag MT, Ziener CH, Schlemmer HP, Ladd ME, Laun FB (2017) Suitable reference tissues for quantitative susceptibility mapping of the brain. Magn Reson Med 78:204–214CrossRefPubMed
27.
Zurück zum Zitat Langkammer C, Schweser F, Krebs N et al (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 62:1593–1599CrossRefPubMed Langkammer C, Schweser F, Krebs N et al (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 62:1593–1599CrossRefPubMed
28.
Zurück zum Zitat Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10:459–468CrossRefPubMed Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10:459–468CrossRefPubMed
29.
Zurück zum Zitat Sbardella E, Tona F, Petsas N et al (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:e671730 Sbardella E, Tona F, Petsas N et al (2013) DTI measurements in multiple sclerosis: evaluation of brain damage and clinical implications. Mult Scler Int 2013:e671730
30.
Zurück zum Zitat Paling D, Tozer D, Wheeler-Kingshott C, Kapoor R, Miller DH, Golay X (2012) Reduced R2’ in multiple sclerosis normal appearing white matter and lesions may reflect decreased myelin and iron content. J Neurol Neurosurg Psychiatry 83:785–792CrossRefPubMed Paling D, Tozer D, Wheeler-Kingshott C, Kapoor R, Miller DH, Golay X (2012) Reduced R2’ in multiple sclerosis normal appearing white matter and lesions may reflect decreased myelin and iron content. J Neurol Neurosurg Psychiatry 83:785–792CrossRefPubMed
31.
Zurück zum Zitat Zhang Y, Gauthier SA, Gupta A, Chen W, Comunale J, Chiang GCY, Zhou D, Askin G, Zhu W, Pitt D, Wang Y (2016) Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and Iron accumulation. Am J Neuroradiol 37:1629–1635CrossRefPubMedPubMedCentral Zhang Y, Gauthier SA, Gupta A, Chen W, Comunale J, Chiang GCY, Zhou D, Askin G, Zhu W, Pitt D, Wang Y (2016) Quantitative susceptibility mapping and R2* measured changes during white matter lesion development in multiple sclerosis: myelin breakdown, myelin debris degradation and removal, and Iron accumulation. Am J Neuroradiol 37:1629–1635CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Liu C, Li W, Wu B, Jiang Y, Johnson GA (2012) 3D fiber tractography with susceptibility tensor imaging. NeuroImage 59:1290–1298CrossRefPubMed Liu C, Li W, Wu B, Jiang Y, Johnson GA (2012) 3D fiber tractography with susceptibility tensor imaging. NeuroImage 59:1290–1298CrossRefPubMed
33.
Zurück zum Zitat Groeschel S, Hagberg GE, Schultz T, Balla DZ, Klose U, Hauser TK, Nägele T, Bieri O, Prasloski T, MacKay AL, Krägeloh-Mann I, Scheffler K (2016) Assessing white matter microstructure in brain regions with different myelin architecture using MRI. PLoS One 11 Groeschel S, Hagberg GE, Schultz T, Balla DZ, Klose U, Hauser TK, Nägele T, Bieri O, Prasloski T, MacKay AL, Krägeloh-Mann I, Scheffler K (2016) Assessing white matter microstructure in brain regions with different myelin architecture using MRI. PLoS One 11
34.
Zurück zum Zitat Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773CrossRefPubMedPubMedCentral Moll NM, Rietsch AM, Thomas S, Ransohoff AJ, Lee JC, Fox R, Chang A, Ransohoff RM, Fisher E (2011) Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. Ann Neurol 70:764–773CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Tillema JM, Leach J, Pirko I (2012) Non-lesional white matter changes in pediatric multiple sclerosis and monophasic demyelinating disorders. Mult Scler Houndmills Basingstoke Engl 18:1754–1759CrossRef Tillema JM, Leach J, Pirko I (2012) Non-lesional white matter changes in pediatric multiple sclerosis and monophasic demyelinating disorders. Mult Scler Houndmills Basingstoke Engl 18:1754–1759CrossRef
36.
Zurück zum Zitat Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311CrossRefPubMed Filippi M, Cercignani M, Inglese M, Horsfield MA, Comi G (2001) Diffusion tensor magnetic resonance imaging in multiple sclerosis. Neurology 56:304–311CrossRefPubMed
37.
Zurück zum Zitat Roosendaal SD, Geurts JJG, Vrenken H et al (2009) Regional DTI differences in multiple sclerosis patients. NeuroImage 44:1397–1403CrossRefPubMed Roosendaal SD, Geurts JJG, Vrenken H et al (2009) Regional DTI differences in multiple sclerosis patients. NeuroImage 44:1397–1403CrossRefPubMed
38.
Zurück zum Zitat Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861CrossRefPubMedPubMedCentral Hametner S, Wimmer I, Haider L, Pfeifenbring S, Brück W, Lassmann H (2013) Iron and neurodegeneration in the multiple sclerosis brain. Ann Neurol 74:848–861CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Bergsland N, Schweser F, Dwyer MG, Weinstock-Guttman B, Benedict RHB, Zivadinov R (2018) Thalamic white matter in multiple sclerosis: a combined diffusion-tensor imaging and quantitative susceptibility mapping study. Hum Brain Mapp 39:4007–4017CrossRefPubMedPubMedCentral Bergsland N, Schweser F, Dwyer MG, Weinstock-Guttman B, Benedict RHB, Zivadinov R (2018) Thalamic white matter in multiple sclerosis: a combined diffusion-tensor imaging and quantitative susceptibility mapping study. Hum Brain Mapp 39:4007–4017CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa RI, Wehr MC, Wieland F, Ishibashi S, Nave KA (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475CrossRefPubMed Saher G, Brügger B, Lappe-Siefke C, Möbius W, Tozawa RI, Wehr MC, Wieland F, Ishibashi S, Nave KA (2005) High cholesterol level is essential for myelin membrane growth. Nat Neurosci 8:468–475CrossRefPubMed
41.
Zurück zum Zitat Schonberg DL, McTigue DM (2009) Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation. Exp Neurol 218:64–74CrossRefPubMedPubMedCentral Schonberg DL, McTigue DM (2009) Iron is essential for oligodendrocyte genesis following intraspinal macrophage activation. Exp Neurol 218:64–74CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Geisseler O, Pflugshaupt T, Bezzola L et al (2015) Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients’ fluency performance in a lateralised manner. Neuroimage Clin 10:89–95CrossRefPubMedPubMedCentral Geisseler O, Pflugshaupt T, Bezzola L et al (2015) Cortical thinning in the anterior cingulate cortex predicts multiple sclerosis patients’ fluency performance in a lateralised manner. Neuroimage Clin 10:89–95CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Maddock RJ, Garrett AS, Buonocore MH (2001) Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104:667–676CrossRefPubMed Maddock RJ, Garrett AS, Buonocore MH (2001) Remembering familiar people: the posterior cingulate cortex and autobiographical memory retrieval. Neuroscience 104:667–676CrossRefPubMed
44.
Zurück zum Zitat Chen W, Zhang Y, Mu K, Pan C, Gauthier SA, Zhu W, Wang Y (2017) Quantifying the susceptibility variation of normal-appearing white matter in multiple sclerosis by quantitative susceptibility mapping. Am J Roentgenol 209:889–894CrossRef Chen W, Zhang Y, Mu K, Pan C, Gauthier SA, Zhu W, Wang Y (2017) Quantifying the susceptibility variation of normal-appearing white matter in multiple sclerosis by quantitative susceptibility mapping. Am J Roentgenol 209:889–894CrossRef
45.
Zurück zum Zitat Wheeler-Kingshott CAM, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61:1255–1260CrossRefPubMed Wheeler-Kingshott CAM, Cercignani M (2009) About “axial” and “radial” diffusivities. Magn Reson Med 61:1255–1260CrossRefPubMed
46.
Zurück zum Zitat Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016CrossRefPubMed Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC (2012) NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. NeuroImage 61:1000–1016CrossRefPubMed
47.
Zurück zum Zitat Mezer A, Yeatman JD, Stikov N, Kay KN, Cho NJ, Dougherty RF, Perry ML, Parvizi J, Hua LH, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med 19:1667–1672CrossRefPubMedPubMedCentral Mezer A, Yeatman JD, Stikov N, Kay KN, Cho NJ, Dougherty RF, Perry ML, Parvizi J, Hua LH, Butts-Pauly K, Wandell BA (2013) Quantifying the local tissue volume and composition in individual brains with magnetic resonance imaging. Nat Med 19:1667–1672CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Huang SY, Tobyne SM, Nummenmaa A, Witzel T, Wald LL, McNab JA, Klawiter EC (2016) Characterization of axonal disease in patients with multiple sclerosis using high-gradient-diffusion MR imaging. Radiology 280:244–251CrossRefPubMed Huang SY, Tobyne SM, Nummenmaa A, Witzel T, Wald LL, McNab JA, Klawiter EC (2016) Characterization of axonal disease in patients with multiple sclerosis using high-gradient-diffusion MR imaging. Radiology 280:244–251CrossRefPubMed
Metadaten
Titel
Characterization of normal-appearing white matter in multiple sclerosis using quantitative susceptibility mapping in conjunction with diffusion tensor imaging
verfasst von
Fang F. Yu
Florence L. Chiang
Nicholas Stephens
Susie Y. Huang
Berkin Bilgic
Bundhit Tantiwongkosi
Rebecca Romero
Publikationsdatum
12.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Neuroradiology / Ausgabe 1/2019
Print ISSN: 0028-3940
Elektronische ISSN: 1432-1920
DOI
https://doi.org/10.1007/s00234-018-2137-7

Weitere Artikel der Ausgabe 1/2019

Neuroradiology 1/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.