Skip to main content
Erschienen in: Breast Cancer Research 6/2011

Open Access 01.12.2011 | Research article

CHEK2 contribution to hereditary breast cancer in non-BRCAfamilies

verfasst von: Alexis Desrichard, Yannick Bidet, Nancy Uhrhammer, Yves-Jean Bignon

Erschienen in: Breast Cancer Research | Ausgabe 6/2011

Abstract

Background

Mutations in the BRCA1 and BRCA2 genes are responsible for only a part of hereditary breast cancer (HBC). The origins of "non-BRCA" HBC in families may be attributed in part to rare mutations in genes conferring moderate risk, such as CHEK2, which encodes for an upstream regulator of BRCA1. Previous studies have demonstrated an association between CHEK2 founder mutations and non-BRCA HBC. However, very few data on the entire coding sequence of this gene are available.

Methods

We investigated the contribution of CHEK2 mutations to non-BRCA HBC by direct sequencing of its whole coding sequence in 507 non-BRCA HBC cases and 513 controls.

Results

We observed 16 mutations in cases and 4 in controls, including 9 missense variants of uncertain consequence. Using both in silico tools and an in vitro kinase activity test, the majority of the variants were found likely to be deleterious for protein function. One variant present in both cases and controls was proposed to be neutral. Removing this variant from the pool of potentially deleterious variants gave a mutation frequency of 1.48% for cases and 0.29% for controls (P = 0.0040). The odds ratio of breast cancer in the presence of a deleterious CHEK2 mutation was 5.18.

Conclusions

Our work indicates that a variety of deleterious CHEK2 alleles make an appreciable contribution to breast cancer susceptibility, and their identification could help in the clinical management of patients carrying a CHEK2 mutation.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​bcr3062) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AD contributed to the sequencing of CHEK2, designed and performed the kinase activity, participated in the in silico analyses and drafted the manuscript. YB provided expert technical advice, and helped to draft the manuscript. NU designed the study, participated in the sequencing of CHEK2 and provided expertise for the in silico analyses. YJB supervised the study and helped to draft the manuscript. All authors read and approved the final manuscript.
Abkürzungen
HBC
hereditary breast cancer
FHA
Forkhead-associated
WT
wild type.

Introduction

Breast cancer is one of the main causes of cancer-related deaths among women worldwide, with 5% to 10% of cases being due to hereditary risk. However, mutations in the two major genes, BRCA1 and BRCA2, are found in only 15% to 20% of hereditary breast cancer (HBC) families [1]. Several studies have reported evidence that germline mutations in other susceptibility genes, such as ATM, PABL2, BRIP1 and CHEK2, might be the predisposing factor in some HBC families [25]. In addition, the lower penetrance of these mutations suggests that they might act in concert with other hereditary factors [610].
CHEK2 is the human homolog of Rad53 (Saccharomyces cerevisiae) and Cds1 (Schizosaccharomyces pombe). This family of kinases is characterized by several domains: a SQ/TQ cluster domain, a Forkhead-associated (FHA) domain and a Ser/Thr kinase domain [11]. In response to DNA double-strand breaks or replicative stress, CHEK2 is activated by the kinases ATM and ATR [12]. These proteins catalyze the phosphorylation of threonine 68 of CHEK2, causing its transient dimerization via the FHA domain. This leads to CHEK2 trans-autophosphorylation and its full activation [13]. Activated CHEK2 monomers phosphorylate, in turn, numerous downstream substrates, including the P53 tumor suppressor, CDC25 family proteins and serine 988 of BRCA1, activating cell-cycle checkpoints and increasing DNA repair efficiency [1417]. These interactions suggest that CHEK2 may also play a role in breast cancer [14].
Germline CHEK2 mutations are associated with breast cancer in different populations. For example, heterozygosity for the well-studied c.1100delC mutation, present in 1.4% of the Finnish population and in 0.2% of the Polish population, confers a relative risk for developing breast tumors of about 2 for women and 10 for men [18, 19] Likewise, the variant Ile157Thr, present in 5.3% of the Finnish population and in 4.8% of the Polish population, confers a relative risk of breast cancer of 1.5 [20, 21].
However, very few groups have studied the entire CHEK2 gene in HBC [2225]. It is essential to establish a causal link between sequence variants and CHEK2 function. Little is known about the impact of missense mutations on protein function, although substitutions in the FHA domain and the kinase domain have been shown to abolish activity [22, 26, 27]. In this study, we screened the whole CHEK2 coding sequence for mutations in non-BRCA HBC families and a control population without any family history of breast cancer. Point mutations were evaluated by in silico analyses and an in vitro kinase activity test.

Materials and methods

Subjects

We recruited 507 cases with HBC risk through the oncogenetic consultation department at the Centre Jean Perrin (Clermont-Ferrand, France). This group consisted of 258 families with 3 breast cancers in the same familial branch with at least 2 cases related in the first degree, 237 families with 2 cases of breast cancer in the same branch with at least 1 breast cancer diagnosed before age 40 years or with bilateral breast cancer, and 12 families with 2 cases of breast cancer and at least 1 male breast cancer. One affected patient per HBC family was screened for variants in CHEK2. Cases with HBC linked to BRCA1 or BRCA2 mutations were excluded by direct sequencing of both genes and by multiplex ligation-dependent probe amplification of BRCA1. A control group recruited from the same region of France consisted of 513 female volunteers in good health and without any personal or family history of breast or gynecologic cancers at the time of the recruitment. All subjects signed informed consent agreements that were approved by the CCPPRB Regional Ethics Committee (Auvergne, France). To assess the relationship between CHEK2 variants and breast cancer risk, logistic regression was used to obtain odds ratios (as estimates of relative risk) and 95% confidence intervals [28].

DNA extraction and sequencing

To identify variants in the CHEK2 gene, exons 2 to 14 were analyzed (exon 1 is noncoding, and exon 15, representing 89 bp of coding sequence, could not be analyzed for all the patients, owing to the presence of repeated sequences) in both patients and controls for the genomic sequence [GenBank:NG_008150.1] and for the cDNA sequence [GenBank:NM_007194.3] [29] DNA was extracted from 10 ml of peripheral blood collected on heparin/lithium using a Genomix blood DNA extraction kit according to the manufacturer's instructions (Talent srl, Trieste, Italy). Samples were resuspended with Tris-ethylenediaminetetraacetic acid (EDTA) (TE) (10 mM Tris, 1 mM EDTA, pH 8.0). Exons 2 to 10, including intron-exon boundaries, were amplified by using standard PCR techniques (conditions and primers available on request). Because of the multiple copies of CHEK2 pseudogenes, we used a nested PCR strategy, described previously by Sodha et al. [10], to specifically amplify exons 10 to 14 [30]. Sequence reactions were performed on PCR products purified by ExoSAP-IT (Affymetrix, Inc, Santa Clara, CA, USA) using BigDye v3 reagents (Applied Biosystems/Life Technologies, Foster City, CA, USA) (primers available on request), purified in Sephadex G-50 fine (G5080; Sigma-Aldrich, St Louis, MO, USA) and analyzed using a 3130xl capillary electrophoresis system (Applied Biosystems/Life Technologies). Alignment to the reference sequences was performed using SeqMan NGen software (DNASTAR, Inc, Madison, WI, USA).

Bioinformatics studies

For each missense variant, prediction of the impact of the mutation on the protein was assessed by calculating the SIFT (Sorting Intolerant From Tolerant), Align-GVGD and PolyPhen-2 (Polymorphism Phenotyping v2) software tool scores [3134]. Align-GVGD predictions and SIFT score were computed using the ortholog alignment of exons 2 to 14 of CHEK2 derived by using Alamut software (Interactive Biosoftware, Rouen, France) [32]. Included were human (Homo sapiens) [GenBank:NP_009125.1], chimpanzee (Pan troglodytes) [GenBank:XP_001172759.1], macaque (Macaca) [GenBank:XP_001101658.1], rat (Rattus norvegicus) [GenBank:NP_446129.1], mouse (Mus musculus) [GenBank:NP_057890.1], dog (Canis lupus familiaris) [GenBank:XP_543464.2], cow (Bos taurus) [GenBank:NP_001029703.1], chicken (Gallus gallus) [GenBank:XP_001232074.1], frog (Xenopus tropicalis) [GenBank:NP_001119996.1] and pufferfish (Tetraodon nigroviridis) [UniProtKB/TrEMBL:Q4TI84], all extracted from the Ensembl Compara database [35]. PolyPhen-2 score was calculated online using default settings and accession numbers [UniProtKB/Swiss-Prot:O96017] [36, 37]. The potential impact on splicing was studied using SpliceSiteFinder, MaxEntScan and GeneSplicer prediction software [3840].

Plasmid constructs

The pDream2.1 cloning vector (GenScript USA Inc, Piscataway, NJ, USA) carrying the full-length human CHEK2 coding sequence tagged with an N-terminal FLAG extension under the control of the LacZ promoter for expression in prokaryotes was verified to contain the wild-type (WT) sequence. The Stratagene QuickChange II Site-Directed Mutagenesis Kit (Agilent Technologies, Inc, Santa Clara, CA, USA) was used to generate mutant constructs Ser39Phe, Pro85Arg, Arg117Gly, Arg145Trp, Glu161Del, Arg180His, Lys224Glu, Lys244Arg, Met367fsX15, Tyr390Ser and Thr476Met, with the corresponding primers (available on request) in accordance with the manufacturer's recommendations. All constructs were confirmed by sequencing of the entire coding region of the gene (primers available on request).

Expression and extraction of recombinant CHEK2 protein

Escherichia coli strain BL21 was transformed with pDream plasmids(GenScript USA Inc) encoding WT or mutated Flag-CHEK2. Cultures were grown at 37°C in Luria Broth media containing 100 μg/ml ampicillin until absorbance at 600 nm reached 0.6 before isopropyl β-D-1-thiogalactopyranoside was added to a final concentration of 0.5 mM and incubated for 3 hours. Extraction of total bacterial proteins was performed as described previously [26].

Kinase activity of CHEK2 recombinant proteins

Omnia kinase assay buffer (18 μl; Invitrogen/Life Technologies, Carlsbad, CA, USA) containing 10 μM Sox substrate peptide, 1 mM ATP, 0.2 mM dithiothreitol and 2 μl of 10 × Omnia buffer was incubated for 5 minutes at room temperature and aliquoted to a 96-well plate to ensure equal amounts of the chemosensor. For each assay reaction, 1.5 μg of total bacterial protein from induced cultures containing WT or mutated Flag-CHEK2 or from untransformed E. coli, were then added and mixed gently. CHEK2 protein was added at the moment of the fluorescence acquisition, allowing us to follow the kinetics of substrate phosphorylation. CHEK2 kinase activity was monitored with excitation at 360 nm and emission at 485 nm. Fluorescence was detected using an Infinite 200 PRO plate reader (Tecan Group Ltd, Männedorf, Switzerland) for 60 minutes at room temperature. For each mutation, an average of six wells and three independent experiments were conducted. Each curve was normalized by linear regression using the slope of the corresponding nontransformed bacterial protein extract curve. Thus the slope of the resulting curves represents the ability of CHEK2 recombinant protein to phosphorylate the substrate (see Additional file 1).

Results

CHEK2mutations contribute to hereditary breast cancer

To evaluate the contribution of CHEK2 mutations to HBC, we sequenced the coding sequence of the gene, including intron-exon boundaries. We observed 13 different variants in 16 of 507 cases and 4 different variants in 4 of 513 controls (Table 1). In the case population, there were eight different novel missense mutations and one previously described in osteosarcomas [41], as well as one nonsense mutation, one novel frame shift mutation, one splice donor mutation and three patients (0.59%) with the c.1100delC (Met367fsX13) mutation (Figure 1). No mutation hotspots were observed (Figure 1). Mutations among controls included three missense mutations and one affecting a splice donor site. To the best of our knowledge, we are the first to report all mutations found in the control population. The missense mutation Lys244Arg was found in both cases and controls. The mutation frequency was higher for the cases (16 of 1,014 vs 4 of 1,026; P = 0.0065) (Table 2). The OR of CHEK2 mutation carriers was 4.15 (95% CI = 1.38 to 12.50), suggesting that CHEK2 contributes to hereditary risk of breast cancer.
Table 1
CHEK2 mutations identified in French women with hereditary breast cancer and a control group of unaffected women
Mutation
Amino acid change
Exon
Protein domain
Splicing effect
Align-GVGD class
SIFT median sequence conservation score
SIFT prediction
PolyPhen-2 prediction
Proposed diagnosis
Case population (n = 13)
         
190G > A [49] (two cases)
Glu64Lys
2
SQ/TQ
-
C15
2.23
Tolerated
Benign
Probably benign
190G > T
Glu64X
2
SQ/TQ
-
-
 
-
-
Probably deleterious
254C > G [23, 41]
Pro85Arg
2
-
-
C0
2.15
Tolerated
Probably damaging
Probably deleterious
349A > G [23]
Arg117Gly
3
FHA
-
C65
2.07
Deleterious
Probably damaging
Probably deleterious
670A > G
Lys224Glu
5
Kinase
-
C0
2.05
Tolerated
Benign
Probably benign
731A > G
Lys244Arg
6
Kinase
-
C0
2.04
Tolerated
Benign
Probably benign
751A > T [23]
Ile251Phe
6
Kinase
-
C0
2.04
Tolerated
Probably damaging
Probably deleterious
846+4_846+7del
-
7
-
Possibly skip exon 7
-
-
-
-
Probably deleterious
1100del (three cases)
Thr367MetfsX15
11
Kinase
-
-
-
-
-
Probably deleterious
1169A > C
Tyr390Ser
11
Kinase
-
C0
2.04
Deleterious
Probably damaging
Probably deleterious
1281C > A
Phe427Leu
12
Kinase
-
C0
2.04
Deleterious
Probably damaging
Probably deleterious
1427C > T [23]
Thr476Met
13
Kinase
-
C0
2.05
Deleterious
Probably damaging
Probably deleterious
Control population (n = 4)
         
116C > T
Ser39Phe
2
SQ/TQ
-
C65
3.10
Deleterious
Benign
Probably deleterious
251A > G
Glu84Gly
2
-
-
C65
2.17
Tolerated
Probably damaging
Probably deleterious
731A > G
Lys244Arg
6
Kinase
-
C0
2.04
Tolerated
Benign
Probably benign
792+1dup
-
6
-
Probably skip exon 6
-
-
-
-
Probably deleterious
Additional mutations tested for kinase function [27]
     
410G > A
Arg137Gln
3
FHA
-
C0
2.22
Tolerated
Benign
Probably benign
433C > T
Arg145Trp
3
FHA
-
C65
2.05
Tolerated
Probably damaging
Probably deleterious
481_483del
Glu161del
4
FHA
-
-
-
-
-
Probably deleterious
539G > A
Arg180His
4
FHA
-
C0
2.04
Tolerated
Probably damaging
Probably deleterious
Align-GVGD, SIFT (Sorting Intolerant From Tolerant) and PolyPhen-2 (Polymorphism Phenotyping v2) software tool scores and splicing effect were calculated. The possible impact of the different mutations on CHEK2 function is proposed. FHA = Forkhead-associated domain.
Table 2
CHEK2 mutations were more frequent in cases than in controls
CHEK2mutation type
Controls
(n= 1,026)a
Allelic frequency in controls
Cases
(n= 1,014)a
Allelic frequency in cases
P value
OR
95% CI
Any CHEK2 mutation
4
0.39%
16
1.58%
0.0065
4.15
(1.38 to 12.50)
CHEK2 deleterious mutations
3
0.29%
15
1.48%
0.0042
5.18
(1.49 to 18.00)
an indicates the number of alleles.

Bioinformatics study

Canonical splice donor and acceptor sites were evaluated using SpliceSiteFinder, MaxEntScan and GeneSplicer. All three programs provided consistent information that the two mutations affecting splice donor sites abrogate splicing of the exons concerned (Table 1). We thus considered these mutations to be deleterious. Because the effect of an amino substitution can be difficult to assess, a combination of three different in silico analyses (Align-GVGD class, SIFT prediction and PolyPhen-2 prediction) was used. For each missense variation, we compiled these three scores to propose a diagnosis. Missense variants were considered probably deleterious if at least one deleterious score was obtained and probably benign if three benign scores were obtained. Class above C35 was considered the threshold for deleterious variants in Align-GVGD.
Substitutions with a SIFT score less than 0.05 are predicted to be deleterious. A SIFT median sequence conservation score cutoff of 3.25 was used to measure the diversity of the sequences used for prediction, and a score greater than 3.25 could indicate that the prediction was based on closely related sequences. This would result in a low confidence score if the variant were considered deleterious. No SIFT median sequence conservation score reached this cutoff, indicating that the aligned sequences were diverse enough for confident prediction of substitutions that should affect protein function. One mutation, Lys244Arg, present in both cases and controls, was not considered to be potentially deleterious on the basis of the results of any of the algorithms used, suggesting it is a rare but benign variant. All other missense variants were considered potentially damaging on the basis of at least one measure.

Effect of CHEK2mutations on kinase activity

To evaluate whether missense variants inhibit the function of the CHEK2 protein, an in vitro kinase activity test based on a CHEK2-specific substrate peptide carrying a C-terminal SOX was developed [42]. Overexpression of recombinant CHEK2 at high levels in bacteria is associated with CHEK2 autophosphorylation and activation in the absence of DNA damage [13]. This property was used to obtain recombinant activated CHEK2. Upon the phosphorylation of the SOX-specific substrate by CHEK2, the presence of the chemosensor SOX results in an increase in fluorescence at 485 nm. Activity was detected for the WT protein but not for proteins extracted from nontransformed bacteria or recombinant CHEK2 protein carrying c.1100delC (Figure 2). Only missense variants were tested for kinase activity. c.190G > T (Glu64X), c.825_826del, c.846+4_+7del and c.792+1dup were considered deleterious without further analysis. Four mutations tested for kinase activity in vitro by Sodha et al. [27] were included to validate the assay.
Three different classes of kinase activity were observed: WT-like, intermediate and null (Figure 2). Mutations Ser39Phe, Arg145Trp and Arg137Gln exhibited WT-like kinase activity, suggesting that these mutations do not affect the ability of recombinant CHEK2 to recognize, bind and phosphorylate its substrate (Figure 2). The mutants Pro85Arg, Arg180His and Lys244Arg had significantly lower, but not null, kinase activity (Figure 2), which placed them in the intermediate class. The mutations Glu161Del, Lys224Glu, Thr476Met and Tyr380Ser did not have any kinase activity. Nine of the eleven mutations showed kinase activity consistent with the in silico analysis, demonstrating the good but incomplete correlation of those two approaches (Table 3).
Table 3
Relationship between in silico and in vitro results
Mutation
Domain
In silicoconclusion
In vitroconclusion
Concordance
Ser39Phe
SQ/TQ
Probably deleterious
WT-like
No
Pro85Arg
Unknown function
Probably deleterious
Intermediate
Yes
Arg137Gln
FHA
Probably benign
WT-like
Yes
Arg145Trp
FHA
Probably deleterious
Intermediate
Yes
Glu161Del
FHA
Probably deleterious
Null
Yes
Arg180His
FHA
Probably deleterious
Intermediate
Yes
Lys 224Glu
Kinase core
Probably benign
Null
No
Lys244Arg
Kinase core
Probably benign
WT-like
Yes
Met367fsX13
Kinase core
Probably deleterious
Null
Yes
Tyr390Ser
Kinase core
Probably deleterious
Null
Yes
Thr476Met
Kinase core
Probably deleterious
Null
Yes
Both in silico and in vitro analyses suggested that the variant Lys244Arg, present in cases and controls, can be considered benign. This variant was thus removed from the pool of potentially deleterious CHEK2 variants that contribute to HBC. As a result, the mutation frequency was reduced to 1.48% for cases and 0.29% for controls (Table 2). This difference remained significant (P = 0.0042), and the OR associated with the presence of a deleterious mutation was increased to 5.18 (95% CI: 1.49 to 18.00).

Discussion

We found strong evidence of an association between CHEK2 variants and HBC, with an OR of 5.18. Of 16 different mutations, 9 were unreferenced variants. This demonstrates that, in populations without founder mutations, an aggregate of rare variants makes CHEK2 an appreciable breast cancer risk gene.
The functional consequences of missense variants can be difficult to establish, and in estimating associated risks it is important to separate deleterious from neutral variants. We were unfortunately unable to complement the functional data presented here with a study of the cosegregation of these variants with cancer, because only the index case was available for analysis in the majority of families.
Missense variant Ser39Phe was predicted as probably deleterious by two of the three scores (SIFT and Align-GVGD), but exhibited WT-like kinase activity. This discordance may suggest that not all deleterious changes in the CHEK2 protein can be revealed by the in vitro kinase activity test, most notably for changes outside the catalytic domain. Changes affecting interactions with upstream activators such as ATM, for example, may not be detectable by our measure. In contrast, Lys224Glu was predicted to be a tolerable change by the three scores, but exhibited null kinase activity, demonstrating the complementarity of those two approaches.
Further functional tests, such as expression in eukaryotic cells, followed by measures of activation by DNA strand breaks, protein stability and interaction with cellular partners may be necessary to appreciate all effects of these mutations, especially for those where the in silico and in vitro conclusions differ. We thus retain this variant as potentially deleterious, unlike Lys244Arg, which was characterized as benign by all measures.
The association between the CHEK2 gene and breast cancer risk has been supported mainly by case-control studies of founder mutations such as 1100delC, I157T (frequent in northern and eastern Europe) or the Polish founder mutation IVS2+1 G > A (c.444+1G > A) [19, 20, 24, 43, 44]. In our population, only one of these founder mutations was observed, accounting for one-third of deleterious mutations. Analysis of the entire coding sequence was necessary to capture the majority of the different mutations present. This might be the case for other populations where the frequency of the CHEK2 founder mutations is low.
In Table 4, to give an overview of CHEK2 contribution to breast cancer, we summarize the results of 36 different case-control studies from different countries where the presence of variants was assessed by allele-specific sequencing or DNA sequencing of the entire gene. The ORs of breast cancer from the different studies of c.1100delC are similar, regardless of the selection of cases, with a combined OR of 2.77. We also found comparable results for the other protein-truncating mutation c.444+1G > A, which is less frequent but has an OR similar to that for c.1100delC. No positive association with HBC was observed, possible due to the very low frequency of the variant in both cases and controls. The frequent variant I157T was associated with lower ORs than null mutations. Although this variant has been associated with breast cancer risk in early-onset or unselected cases, in our study it did not exhibit a significant association with HBC. Although the frequency of these deleterious mutations was different among populations, the ORs associated with breast cancer were consistent for the two null mutations and lower for the missense mutation. These data were collected using allele-specific sequencing, suggesting that testing for CHEK2 founder mutations is cost-effective in some populations because the variants are sufficiently common and the test is relatively inexpensive. Consequently, however, these techniques exclude mutations present elsewhere in the gene.
Table 4
Odds ratio for breast cancer among women with CHEK2 variants
Variants
References
Geographic populations
Case populations
Mutation frequency in controls (n/total)
Mutation frequency in cases (n/total)
OR (95% (CI)
c.1100delC
 
Mixed populations
All studies
0.33% (559/166,596)
0.90% (861/94,076)
2.77 (2.49 to 3.08)**
 
[19, 22, 25, 45, 47, 5059]
AJ, AUS, B, CDN, CZ, DK, E, FIN, G, IRL, KP, NL, S, UK, USA
UBC
0.31% (2,502/80,168)
0.80% (464/58,290)
2.56 (2.19 to 2.99)**
 
[3, 19, 22, 24, 25, 50, 54, 6064]
B, CDN, CZ, D, FIN, NL, S, UK, USA
HBC
0.39% (111/28,402)
1.27% (215/17,000)
3.29 (2.61 to 4.14)**
 
[23, 54, 65]
D, USA, AUS, CDN
EOBC
0.14% (14/9,846)
0.46% (21/4,588)
2.77 (1.23 to 6.26)**
 
[18, 53, 60, 66, 67]
AJ, DK, G, FIN, NL, RUS, UK, USA
BBC
0.43% (130/29,936)
1.35% (142/10,496)
3.17 (2.49 to 4.03)**
c.444+1G > A
(IVS2+1G > A)
 
Mixed populations
All studies
0.19% (82/42,266)
0.66% (217/33,142)
3.45 (2.67 to 4.46)**
 
[68, 69]
PL
EOBC
0.19% (49/25,426)
0.59% (91/15,338)
3.10 (2.19 to 4.39)**
 
[24, 43]
D, BY
HBC
0.12% (3/2,586)
0.26% (4/1,536)
2.25 (0.5 to 10.08) (NS)
 
[43, 59, 70]
D, BY, PL
UBC
0.20% (28/14,254)
0.61% (113/18,604)
3.12 (2.06 to 4.72)**
I157T
 
Mixed populations
All studies
2.14% (1,031/48,268)
3.11% (1062/34,128)
1.56 (1.43 to 1.70)**
 
[22, 23, 65, 68]
PL, USA, AUS, CDN
EOBC
1.46% (270/18,432)
1.99% (215/10,780)
1.59 (1.32 to 1.91)**
 
[20, 22, 24, 43, 71]
D, BY, FIN, NL, USA
HBC
1.77% (116/6,544)
1.51% (47/3,118)
0.89 (0.60 to 1.20) (NS)
 
[20, 22, 25, 43, 44, 59, 70]
By, CZ, D, FIN, PL, USA
UBC
2.04% (644/31,600)
2.95% (807/27,346)
1.48 (1.33 to 1.65)**
Whole-gene studies
[22]
USA
UBC
0.57% (24/4,210)
0.50% (4/800)
0.88 (0.3 to 2.55) (NS)
 
[24]
D
HBC
0.50% (18/3,630)
3.00% (31/1,032)
6.38 (3.54 to 11.5)**
 
[25]
CZ
HBC
1.39% (19/1,366)
2.01% (27/1,346)
1.46 (0.80 to 2.65) (NS)
  
F
HBC
0.39% (4/1,026)
1.58% (16/1,014)
4.15 (1.38 to 12.50)**
 
[23]
USA, CDN, AUS
EOBC
1.84% (40/2,178)
4.91% (6/2,484)
2.76 (1.65 to 4.60)**
BBC = bilateral breast cancer; EOBC = early-onset breast cancer; HBC = hereditary breast cancer not related to a BRCA mutation; UBC = unselected breast cancer; AJ = Ashkenazi Jewish; AUS = Australia; B = Belgium; BY = Belarus; CDN = Canada; CZ = Czech Republic; D = Germany; DK = Denmark; E = Spain; F = France; FIN = Finland; IRL = Ireland; KP = South Korea; NL = The Netherlands; PL = Poland; RUS = Russia; S = Sweden; UK = United Kingdom; USA = United States of America; NS = nonsignificant (P < 0.05); **P < 0.0001. Participant numbers may vary from original publications because of exclusion of study subgroups.
Because the c.1100delC allele does not seem to be present in southern Europeans or in most non-Caucasian populations [4547], other research groups have used full-gene sequencing to determine whether other variants contribute to breast cancer risk. There is a positive association between CHEK2 variants and HBC in the Australian, Canadian, North American, German and now French, but not Czech Republic, populations [2225]. This suggests that CHEK2 analysis in populations where the common founder mutations are rare requires screening of the entire sequence.
Narod's [48] recent review supports the view that testing non-BRCA HBC families for mutations in CHEK2 can provide useful information to evaluate the risk of breast cancer and suggests that the relatively high cost of sequencing makes only the targeted search of frequent mutations cost-effective. In certain populations, one or a few mutations do indeed capture the majority of CHEK2 variants associated with cancer risk. In most regions, however, this allele-specific approach is inadequate and a full-resequencing strategy should be considered. The rapidly falling cost of resequencing, as well as alternate techniques, should make this possible.

Conclusions

The usefulness of the information gained from genetic analysis of CHEK2 is currently a matter of debate. As we have discussed, the risk of breast cancer for a woman with a null mutation in this gene is increased two- to fivefold. Increased breast surveillance may be proposed for carriers, but when counseling a family with many breast cancer cases, only some of whom carry the CHEK2 mutation, it is unclear what advice may be given to noncarriers. Collecting research information on CHEK2 mutations, however, serves to advance our understanding of the contribution of this gene to hereditary cancer risk.

Web resources

The URLs for the accession numbers and data presented herein are as follows:
Entrez gene database: http://​www.​ncbi.​nlm.​nih.​gov/​gene (for CHEK2 sequencing)
UniProtKB/Swiss-Prot database: http://​www.​uniprot.​org/​uniprot

Acknowledgements

We thank Molecular Genetic Diagnosis team and Dr Bernard-Gallon's team for technical assistance. The Ligue Contre le Cancer d'Auvergne provided financial support. A. Desrichard was funded by grants from the Conseil Regional d'Auvergne and FEDER.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AD contributed to the sequencing of CHEK2, designed and performed the kinase activity, participated in the in silico analyses and drafted the manuscript. YB provided expert technical advice, and helped to draft the manuscript. NU designed the study, participated in the sequencing of CHEK2 and provided expertise for the in silico analyses. YJB supervised the study and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Panda S, Isbatan A, Adami GR: Modification of the ATM/ATR directed DNA damage response state with aging and long after hepatocyte senescence induction in vivo. Mech Ageing Dev. 2008, 129: 332-340. 10.1016/j.mad.2008.02.014.CrossRefPubMedPubMedCentral Panda S, Isbatan A, Adami GR: Modification of the ATM/ATR directed DNA damage response state with aging and long after hepatocyte senescence induction in vivo. Mech Ageing Dev. 2008, 129: 332-340. 10.1016/j.mad.2008.02.014.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR: PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007, 39: 165-167. 10.1038/ng1959.CrossRefPubMed Rahman N, Seal S, Thompson D, Kelly P, Renwick A, Elliott A, Reid S, Spanova K, Barfoot R, Chagtai T, Jayatilake H, McGuffog L, Hanks S, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR: PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat Genet. 2007, 39: 165-167. 10.1038/ng1959.CrossRefPubMed
3.
Zurück zum Zitat Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton D, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber B, Rahman N, Stratton MR, CHEK2-Breast Cancer Consortium: Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002, 31: 55-59. 10.1038/ng879.CrossRefPubMed Meijers-Heijboer H, van den Ouweland A, Klijn J, Wasielewski M, de Snoo A, Oldenburg R, Hollestelle A, Houben M, Crepin E, van Veghel-Plandsoen M, Elstrodt F, van Duijn C, Bartels C, Meijers C, Schutte M, McGuffog L, Thompson D, Easton D, Sodha N, Seal S, Barfoot R, Mangion J, Chang-Claude J, Eccles D, Eeles R, Evans DG, Houlston R, Murday V, Narod S, Peretz T, Peto J, Phelan C, Zhang HX, Szabo C, Devilee P, Goldgar D, Futreal PA, Nathanson KL, Weber B, Rahman N, Stratton MR, CHEK2-Breast Cancer Consortium: Low-penetrance susceptibility to breast cancer due to CHEK2*1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet. 2002, 31: 55-59. 10.1038/ng879.CrossRefPubMed
4.
Zurück zum Zitat Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N: ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006, 38: 873-875. 10.1038/ng1837.CrossRefPubMed Renwick A, Thompson D, Seal S, Kelly P, Chagtai T, Ahmed M, North B, Jayatilake H, Barfoot R, Spanova K, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N: ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet. 2006, 38: 873-875. 10.1038/ng1837.CrossRefPubMed
5.
Zurück zum Zitat Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N: Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006, 38: 1239-1241. 10.1038/ng1902.CrossRefPubMed Seal S, Thompson D, Renwick A, Elliott A, Kelly P, Barfoot R, Chagtai T, Jayatilake H, Ahmed M, Spanova K, North B, McGuffog L, Evans DG, Eccles D, Breast Cancer Susceptibility Collaboration (UK), Easton DF, Stratton MR, Rahman N: Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet. 2006, 38: 1239-1241. 10.1038/ng1902.CrossRefPubMed
6.
Zurück zum Zitat Antoniou AC, Pharoah PD, McMullan G, Day NE, Ponder BA, Easton D: Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol. 2001, 21: 1-18. 10.1002/gepi.1014.CrossRefPubMed Antoniou AC, Pharoah PD, McMullan G, Day NE, Ponder BA, Easton D: Evidence for further breast cancer susceptibility genes in addition to BRCA1 and BRCA2 in a population-based study. Genet Epidemiol. 2001, 21: 1-18. 10.1002/gepi.1014.CrossRefPubMed
8.
Zurück zum Zitat Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF: A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002, 86: 76-83. 10.1038/sj.bjc.6600008.CrossRefPubMedPubMedCentral Antoniou AC, Pharoah PD, McMullan G, Day NE, Stratton MR, Peto J, Ponder BJ, Easton DF: A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer. 2002, 86: 76-83. 10.1038/sj.bjc.6600008.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA: Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002, 31: 33-36. 10.1038/ng853.CrossRefPubMed Pharoah PD, Antoniou A, Bobrow M, Zimmern RL, Easton DF, Ponder BA: Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet. 2002, 31: 33-36. 10.1038/ng853.CrossRefPubMed
10.
Zurück zum Zitat Sodha N, Houlston RS, Bullock S, Yuille MA, Chu C, Turner G, Eeles RA: Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome. Hum Mutat. 2002, 20: 460-462. 10.1002/humu.10136.CrossRefPubMed Sodha N, Houlston RS, Bullock S, Yuille MA, Chu C, Turner G, Eeles RA: Increasing evidence that germline mutations in CHEK2 do not cause Li-Fraumeni syndrome. Hum Mutat. 2002, 20: 460-462. 10.1002/humu.10136.CrossRefPubMed
11.
Zurück zum Zitat Bartek J, Falck J, Lukas J: Chk2 kinase: a busy messenger. Nat Rev Mol Cell Biol. 2001, 2: 877-886. 10.1038/35103059.CrossRefPubMed Bartek J, Falck J, Lukas J: Chk2 kinase: a busy messenger. Nat Rev Mol Cell Biol. 2001, 2: 877-886. 10.1038/35103059.CrossRefPubMed
12.
Zurück zum Zitat Matsuoka S, Huang M, Elledge SJ: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998, 282: 1893-1897.CrossRefPubMed Matsuoka S, Huang M, Elledge SJ: Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science. 1998, 282: 1893-1897.CrossRefPubMed
13.
Zurück zum Zitat Ahn JY, Li X, Davis HL, Canman CE: Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the Forkhead-associated domain. J Biol Chem. 2002, 277: 19389-19395. 10.1074/jbc.M200822200.CrossRefPubMed Ahn JY, Li X, Davis HL, Canman CE: Phosphorylation of threonine 68 promotes oligomerization and autophosphorylation of the Chk2 protein kinase via the Forkhead-associated domain. J Biol Chem. 2002, 277: 19389-19395. 10.1074/jbc.M200822200.CrossRefPubMed
14.
Zurück zum Zitat Lee JS, Collins KM, Brown AL, Lee CH, Chung JH: hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000, 404: 201-204. 10.1038/35004614.CrossRefPubMed Lee JS, Collins KM, Brown AL, Lee CH, Chung JH: hCds1-mediated phosphorylation of BRCA1 regulates the DNA damage response. Nature. 2000, 404: 201-204. 10.1038/35004614.CrossRefPubMed
15.
Zurück zum Zitat Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001, 410: 842-847. 10.1038/35071124.CrossRefPubMed Falck J, Mailand N, Syljuåsen RG, Bartek J, Lukas J: The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature. 2001, 410: 842-847. 10.1038/35071124.CrossRefPubMed
16.
Zurück zum Zitat Falck J, Petrini JH, Williams BR, Lukas J, Bartek J: The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet. 2002, 30: 290-294. 10.1038/ng845.CrossRefPubMed Falck J, Petrini JH, Williams BR, Lukas J, Bartek J: The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat Genet. 2002, 30: 290-294. 10.1038/ng845.CrossRefPubMed
17.
Zurück zum Zitat Bartek J, Lukas J: Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003, 3: 421-429. 10.1016/S1535-6108(03)00110-7.CrossRefPubMed Bartek J, Lukas J: Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003, 3: 421-429. 10.1016/S1535-6108(03)00110-7.CrossRefPubMed
18.
Zurück zum Zitat Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA: Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999, 286: 2528-2531. 10.1126/science.286.5449.2528.CrossRefPubMed Bell DW, Varley JM, Szydlo TE, Kang DH, Wahrer DC, Shannon KE, Lubratovich M, Verselis SJ, Isselbacher KJ, Fraumeni JF, Birch JM, Li FP, Garber JE, Haber DA: Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science. 1999, 286: 2528-2531. 10.1126/science.286.5449.2528.CrossRefPubMed
19.
Zurück zum Zitat Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O, Tamminen A, Kononen J, Aittomäki K, Heikkilä P, Holli K, Blomqvist C, Bartek J, Kallioniemi OP, Nevanlinna H: A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002, 71: 432-438. 10.1086/341943.CrossRefPubMedPubMedCentral Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O, Tamminen A, Kononen J, Aittomäki K, Heikkilä P, Holli K, Blomqvist C, Bartek J, Kallioniemi OP, Nevanlinna H: A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet. 2002, 71: 432-438. 10.1086/341943.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Kilpivaara O, Vahteristo P, Falck J, Syrjäkoski K, Eerola H, Easton D, Bartkova J, Lukas J, Heikkilä P, Aittomäki K, Holli K, Blomqvist C, Kallioniemi OP, Bartek J, Nevanlinna H: CHEK2 variant I157T may be associated with increased breast cancer risk. Int J Cancer. 2004, 111: 543-547. 10.1002/ijc.20299.CrossRefPubMed Kilpivaara O, Vahteristo P, Falck J, Syrjäkoski K, Eerola H, Easton D, Bartkova J, Lukas J, Heikkilä P, Aittomäki K, Holli K, Blomqvist C, Kallioniemi OP, Bartek J, Nevanlinna H: CHEK2 variant I157T may be associated with increased breast cancer risk. Int J Cancer. 2004, 111: 543-547. 10.1002/ijc.20299.CrossRefPubMed
21.
Zurück zum Zitat Staalesen V, Falck J, Geisler S, Bartkova J, Børresen-Dale AL, Lukas J, Lillehaug JR, Bartek J, Lønning PE: Alternative splicing and mutation status of CHEK2 in stage III breast cancer. Oncogene. 2004, 23: 8535-8544. 10.1038/sj.onc.1207928.CrossRefPubMed Staalesen V, Falck J, Geisler S, Bartkova J, Børresen-Dale AL, Lukas J, Lillehaug JR, Bartek J, Lønning PE: Alternative splicing and mutation status of CHEK2 in stage III breast cancer. Oncogene. 2004, 23: 8535-8544. 10.1038/sj.onc.1207928.CrossRefPubMed
22.
Zurück zum Zitat Bell DW, Kim SH, Godwin AK, Schiripo TA, Harris PL, Haserlat SM, Wahrer DC, Haiman CA, Daly MB, Niendorf KB, Smith MR, Sgroi DC, Garber JE, Olopade OI, Le Marchand L, Henderson BE, Altshuler D, Haber DA, Freedman ML: Genetic and functional analysis of CHEK2 (CHK2) variants in multiethnic cohorts. Int J Cancer. 2007, 121: 2661-2667. 10.1002/ijc.23026.CrossRefPubMedPubMedCentral Bell DW, Kim SH, Godwin AK, Schiripo TA, Harris PL, Haserlat SM, Wahrer DC, Haiman CA, Daly MB, Niendorf KB, Smith MR, Sgroi DC, Garber JE, Olopade OI, Le Marchand L, Henderson BE, Altshuler D, Haber DA, Freedman ML: Genetic and functional analysis of CHEK2 (CHK2) variants in multiethnic cohorts. Int J Cancer. 2007, 121: 2661-2667. 10.1002/ijc.23026.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Le Calvez-Kelm F, Lesueur F, Damiola F, Vallée M, Voegele C, Babikyan D, Durand G, Forey N, McKay-Chopin S, Robinot N, Nguyen-Dumont T, Thomas A, Byrnes GB, Breast Cancer Family Registry, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV: Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 2011, 13: R6-10.1186/bcr2810.CrossRefPubMedPubMedCentral Le Calvez-Kelm F, Lesueur F, Damiola F, Vallée M, Voegele C, Babikyan D, Durand G, Forey N, McKay-Chopin S, Robinot N, Nguyen-Dumont T, Thomas A, Byrnes GB, Breast Cancer Family Registry, Hopper JL, Southey MC, Andrulis IL, John EM, Tavtigian SV: Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study. Breast Cancer Res. 2011, 13: R6-10.1186/bcr2810.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Dufault MR, Betz B, Wappenschmidt B, Hofmann W, Bandick K, Golla A, Pietschmann A, Nestle-Krämling C, Rhiem K, Hüttner C, von Lindern C, Dall P, Kiechle M, Untch M, Jonat W, Meindl A, Scherneck S, Niederacher D, Schmutzler RK, Arnold N: Limited relevance of the CHEK2 gene in hereditary breast cancer. Int J Cancer. 2004, 110: 320-325. 10.1002/ijc.20073.CrossRefPubMed Dufault MR, Betz B, Wappenschmidt B, Hofmann W, Bandick K, Golla A, Pietschmann A, Nestle-Krämling C, Rhiem K, Hüttner C, von Lindern C, Dall P, Kiechle M, Untch M, Jonat W, Meindl A, Scherneck S, Niederacher D, Schmutzler RK, Arnold N: Limited relevance of the CHEK2 gene in hereditary breast cancer. Int J Cancer. 2004, 110: 320-325. 10.1002/ijc.20073.CrossRefPubMed
25.
Zurück zum Zitat Kleibl Z, Novotny J, Bezdickova D, Malik R, Kleiblova P, Foretova L, Petruzelka L, Ilencikova D, Cinek P, Pohlreich P: The CHEK2 c.1100delC germline mutation rarely contributes to breast cancer development in the Czech Republic. Breast Cancer Res Treat. 2005, 90: 165-167. 10.1007/s10549-004-4023-8.CrossRefPubMed Kleibl Z, Novotny J, Bezdickova D, Malik R, Kleiblova P, Foretova L, Petruzelka L, Ilencikova D, Cinek P, Pohlreich P: The CHEK2 c.1100delC germline mutation rarely contributes to breast cancer development in the Czech Republic. Breast Cancer Res Treat. 2005, 90: 165-167. 10.1007/s10549-004-4023-8.CrossRefPubMed
26.
Zurück zum Zitat Schwarz JK, Lovly CM, Piwnica-Worms H: Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol Cancer Res. 2003, 1: 598-609.PubMed Schwarz JK, Lovly CM, Piwnica-Worms H: Regulation of the Chk2 protein kinase by oligomerization-mediated cis- and trans-phosphorylation. Mol Cancer Res. 2003, 1: 598-609.PubMed
27.
Zurück zum Zitat Sodha N, Mantoni TS, Tavtigian SV, Eeles R, Garrett MD: Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation. Cancer Res. 2006, 66: 8966-8970. 10.1158/0008-5472.CAN-06-1990.CrossRefPubMed Sodha N, Mantoni TS, Tavtigian SV, Eeles R, Garrett MD: Rare germ line CHEK2 variants identified in breast cancer families encode proteins that show impaired activation. Cancer Res. 2006, 66: 8966-8970. 10.1158/0008-5472.CAN-06-1990.CrossRefPubMed
28.
Zurück zum Zitat Delort L, Kwiatkowski F, Chalabi N, Satih S, Bignon YJ, Bernard-Gallon DJ: Risk factors for early age at breast cancer onset: the "COSA program" population-based study. Anticancer Res. 2007, 27: 1087-1094.PubMed Delort L, Kwiatkowski F, Chalabi N, Satih S, Bignon YJ, Bernard-Gallon DJ: Risk factors for early age at breast cancer onset: the "COSA program" population-based study. Anticancer Res. 2007, 27: 1087-1094.PubMed
30.
Zurück zum Zitat Sodha N, Houlston RS, Williams R, Yuille MA, Mangion J, Eeles RA: A robust method for detecting CHK2/RAD53 mutations in genomic DNA. Hum Mutat. 2002, 19: 173-177. 10.1002/humu.10031.CrossRefPubMed Sodha N, Houlston RS, Williams R, Yuille MA, Mangion J, Eeles RA: A robust method for detecting CHK2/RAD53 mutations in genomic DNA. Hum Mutat. 2002, 19: 173-177. 10.1002/humu.10031.CrossRefPubMed
31.
Zurück zum Zitat Sunyaev S, Ramensky V, Bork P: Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet. 2000, 16: 198-200. 10.1016/S0168-9525(00)01988-0.CrossRefPubMed Sunyaev S, Ramensky V, Bork P: Towards a structural basis of human non-synonymous single nucleotide polymorphisms. Trends Genet. 2000, 16: 198-200. 10.1016/S0168-9525(00)01988-0.CrossRefPubMed
32.
Zurück zum Zitat Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A: Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006, 43: 295-305.CrossRefPubMed Tavtigian SV, Deffenbaugh AM, Yin L, Judkins T, Scholl T, Samollow PB, de Silva D, Zharkikh A, Thomas A: Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. J Med Genet. 2006, 43: 295-305.CrossRefPubMed
33.
Zurück zum Zitat Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006, 34: 1317-1325. 10.1093/nar/gkj518.CrossRefPubMedPubMedCentral Mathe E, Olivier M, Kato S, Ishioka C, Hainaut P, Tavtigian SV: Computational approaches for predicting the biological effect of p53 missense mutations: a comparison of three sequence analysis based methods. Nucleic Acids Res. 2006, 34: 1317-1325. 10.1093/nar/gkj518.CrossRefPubMedPubMedCentral
34.
37.
Zurück zum Zitat Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods. 2010, 7: 248-249. 10.1038/nmeth0410-248.CrossRefPubMedPubMedCentral Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR: A method and server for predicting damaging missense mutations. Nat Methods. 2010, 7: 248-249. 10.1038/nmeth0410-248.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Pertea M, Lin X, Salzberg SL: GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 2001, 29: 1185-1190. 10.1093/nar/29.5.1185.CrossRefPubMedPubMedCentral Pertea M, Lin X, Salzberg SL: GeneSplicer: a new computational method for splice site prediction. Nucleic Acids Res. 2001, 29: 1185-1190. 10.1093/nar/29.5.1185.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004, 11: 377-394. 10.1089/1066527041410418.CrossRefPubMed Yeo G, Burge CB: Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. J Comput Biol. 2004, 11: 377-394. 10.1089/1066527041410418.CrossRefPubMed
40.
Zurück zum Zitat Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37: e67-10.1093/nar/gkp215.CrossRefPubMedPubMedCentral Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C: Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37: e67-10.1093/nar/gkp215.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Miller CW, Ikezoe T, Krug U, Hofmann WK, Tavor S, Vegesna V, Tsukasaki K, Takeuchi S, Koeffler HP: Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosomes Cancer. 2002, 33: 17-21. 10.1002/gcc.1207.CrossRefPubMed Miller CW, Ikezoe T, Krug U, Hofmann WK, Tavor S, Vegesna V, Tsukasaki K, Takeuchi S, Koeffler HP: Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosomes Cancer. 2002, 33: 17-21. 10.1002/gcc.1207.CrossRefPubMed
42.
Zurück zum Zitat Shults MD, Janes KA, Lauffenburger DA, Imperiali B: A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat Methods. 2005, 2: 277-283. 10.1038/nmeth747.CrossRefPubMed Shults MD, Janes KA, Lauffenburger DA, Imperiali B: A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nat Methods. 2005, 2: 277-283. 10.1038/nmeth747.CrossRefPubMed
43.
Zurück zum Zitat Bogdanova N, Enssen-Dubrowinskaja N, Feshchenko S, Lazjuk GI, Rogov YI, Dammann O, Bremer M, Karstens JH, Sohn C, Dörk T: Association of two mutations in the CHEK2 gene with breast cancer. Int J Cancer. 2005, 116: 263-266. 10.1002/ijc.21022.CrossRefPubMed Bogdanova N, Enssen-Dubrowinskaja N, Feshchenko S, Lazjuk GI, Rogov YI, Dammann O, Bremer M, Karstens JH, Sohn C, Dörk T: Association of two mutations in the CHEK2 gene with breast cancer. Int J Cancer. 2005, 116: 263-266. 10.1002/ijc.21022.CrossRefPubMed
44.
Zurück zum Zitat Cybulski C, Górski B, Huzarski T, Masojć B, Mierzejewski M, Debniak T, Teodorczyk U, Byrski T, Gronwald J, Matyjasik J, Zlowocka E, Lenner M, Grabowska E, Nej K, Castaneda J, Medrek K, Szymańska A, Szymańska J, Kurzawski G, Suchy J, Oszurek O, Witek A, Narod SA, Lubiński J: CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004, 75: 1131-1135. 10.1086/426403.CrossRefPubMedPubMedCentral Cybulski C, Górski B, Huzarski T, Masojć B, Mierzejewski M, Debniak T, Teodorczyk U, Byrski T, Gronwald J, Matyjasik J, Zlowocka E, Lenner M, Grabowska E, Nej K, Castaneda J, Medrek K, Szymańska A, Szymańska J, Kurzawski G, Suchy J, Oszurek O, Witek A, Narod SA, Lubiński J: CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet. 2004, 75: 1131-1135. 10.1086/426403.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Osorio A, Rodríguez-López R, Díez O, de la Hoya M, Ignacio Martínez J, Vega A, Esteban-Cardeñosa E, Alonso C, Caldés T, Benítez J: The breast cancer low-penetrance allele 1100delC in the CHEK2 gene is not present in Spanish familial breast cancer population. Int J Cancer. 2004, 108: 54-56. 10.1002/ijc.11414.CrossRefPubMed Osorio A, Rodríguez-López R, Díez O, de la Hoya M, Ignacio Martínez J, Vega A, Esteban-Cardeñosa E, Alonso C, Caldés T, Benítez J: The breast cancer low-penetrance allele 1100delC in the CHEK2 gene is not present in Spanish familial breast cancer population. Int J Cancer. 2004, 108: 54-56. 10.1002/ijc.11414.CrossRefPubMed
46.
Zurück zum Zitat Lee AS, Ang P: CHEK2*1100delC screening of Asian women with a family history of breast cancer is unwarranted. J Clin Oncol. 2008, 26: 2419-2420.CrossRefPubMed Lee AS, Ang P: CHEK2*1100delC screening of Asian women with a family history of breast cancer is unwarranted. J Clin Oncol. 2008, 26: 2419-2420.CrossRefPubMed
47.
Zurück zum Zitat Zhang S, Phelan CM, Zhang P, Rousseau F, Ghadirian P, Robidoux A, Foulkes W, Hamel N, McCready D, Trudeau M, Lynch H, Horsman D, De Matsuda ML, Aziz Z, Gomes M, Costa MM, Liede A, Poll A, Sun P, Narod SA: Frequency of the CHEK2 1100delC mutation among women with breast cancer: an international study. Cancer Res. 2008, 68: 2154-2157. 10.1158/0008-5472.CAN-07-5187.CrossRefPubMed Zhang S, Phelan CM, Zhang P, Rousseau F, Ghadirian P, Robidoux A, Foulkes W, Hamel N, McCready D, Trudeau M, Lynch H, Horsman D, De Matsuda ML, Aziz Z, Gomes M, Costa MM, Liede A, Poll A, Sun P, Narod SA: Frequency of the CHEK2 1100delC mutation among women with breast cancer: an international study. Cancer Res. 2008, 68: 2154-2157. 10.1158/0008-5472.CAN-07-5187.CrossRefPubMed
48.
Zurück zum Zitat Narod SA: Testing for CHEK2 in the cancer genetics clinic: ready for prime time?. Clin Genet. 2010, 78: 1-7.CrossRefPubMed Narod SA: Testing for CHEK2 in the cancer genetics clinic: ready for prime time?. Clin Genet. 2010, 78: 1-7.CrossRefPubMed
49.
Zurück zum Zitat Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, Smith DI, Cheville JC, Blute ML, Jacobsen SJ, Schaid DJ, Tindall DJ, Thibodeau SN, Liu W: Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003, 72: 270-280. 10.1086/346094.CrossRefPubMedPubMedCentral Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK, Qian C, Marks AF, Slager SL, Peterson BJ, Smith DI, Cheville JC, Blute ML, Jacobsen SJ, Schaid DJ, Tindall DJ, Thibodeau SN, Liu W: Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet. 2003, 72: 270-280. 10.1086/346094.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Baeyens A, Claes K, Willems P, De Ruyck K, Thierens H, Vral A: Chromosomal radiosensitivity of breast cancer with a CHEK2 mutation. Cancer Genet Cytogenet. 2005, 163: 106-112. 10.1016/j.cancergencyto.2005.04.017.CrossRefPubMed Baeyens A, Claes K, Willems P, De Ruyck K, Thierens H, Vral A: Chromosomal radiosensitivity of breast cancer with a CHEK2 mutation. Cancer Genet Cytogenet. 2005, 163: 106-112. 10.1016/j.cancergencyto.2005.04.017.CrossRefPubMed
51.
Zurück zum Zitat de Bock GH, Schutte M, Krol-Warmerdam EM, Seynaeve C, Blom J, Brekelmans CT, Meijers-Heijboer H, van Asperen CJ, Cornelisse CJ, Devilee P, Tollenaar RA, Klijn JG: Tumour characteristics and prognosis of breast cancer patients carrying the germline CHEK2*1100delC variant. J Med Genet. 2004, 41: 731-735. 10.1136/jmg.2004.019737.CrossRefPubMedPubMedCentral de Bock GH, Schutte M, Krol-Warmerdam EM, Seynaeve C, Blom J, Brekelmans CT, Meijers-Heijboer H, van Asperen CJ, Cornelisse CJ, Devilee P, Tollenaar RA, Klijn JG: Tumour characteristics and prognosis of breast cancer patients carrying the germline CHEK2*1100delC variant. J Med Genet. 2004, 41: 731-735. 10.1136/jmg.2004.019737.CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Mateus Pereira LH, Sigurdson AJ, Doody MM, Pineda MA, Alexander BH, Greene MH, Struewing JP: CHEK2:1100delC and female breast cancer in the United States. Int J Cancer. 2004, 112: 541-543. 10.1002/ijc.20439.CrossRefPubMed Mateus Pereira LH, Sigurdson AJ, Doody MM, Pineda MA, Alexander BH, Greene MH, Struewing JP: CHEK2:1100delC and female breast cancer in the United States. Int J Cancer. 2004, 112: 541-543. 10.1002/ijc.20439.CrossRefPubMed
53.
Zurück zum Zitat Offit K, Pierce H, Kirchhoff T, Kolachana P, Rapaport B, Gregersen P, Johnson S, Yossepowitch O, Huang H, Satagopan J, Robson M, Scheuer L, Nafa K, Ellis N: Frequency of CHEK2*1100delC in New York breast cancer cases and controls. BMC Med Genet. 2003, 4: 1-CrossRefPubMedPubMedCentral Offit K, Pierce H, Kirchhoff T, Kolachana P, Rapaport B, Gregersen P, Johnson S, Yossepowitch O, Huang H, Satagopan J, Robson M, Scheuer L, Nafa K, Ellis N: Frequency of CHEK2*1100delC in New York breast cancer cases and controls. BMC Med Genet. 2003, 4: 1-CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Rashid MU, Jakubowska A, Justenhoven C, Harth V, Pesch B, Baisch C, Pierl CB, Brüning T, Ko Y, Benner A, Wichmann HE, Brauch H, Hamann U, GENICA Network: German populations with infrequent CHEK2*1100delC and minor associations with early-onset and familial breast cancer. Eur J Cancer. 2005, 41: 2896-2903. 10.1016/j.ejca.2005.04.049.CrossRefPubMed Rashid MU, Jakubowska A, Justenhoven C, Harth V, Pesch B, Baisch C, Pierl CB, Brüning T, Ko Y, Benner A, Wichmann HE, Brauch H, Hamann U, GENICA Network: German populations with infrequent CHEK2*1100delC and minor associations with early-onset and familial breast cancer. Eur J Cancer. 2005, 41: 2896-2903. 10.1016/j.ejca.2005.04.049.CrossRefPubMed
55.
Zurück zum Zitat CHEK2 Breast Cancer Case-Control Consortium: CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004, 74: 1175-1182.CrossRef CHEK2 Breast Cancer Case-Control Consortium: CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet. 2004, 74: 1175-1182.CrossRef
56.
Zurück zum Zitat Weischer M, Bojesen SE, Tybjærg-Hansen A, Axelsson CK, Nordestgaard BG: Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007, 25: 57-63.CrossRefPubMed Weischer M, Bojesen SE, Tybjærg-Hansen A, Axelsson CK, Nordestgaard BG: Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol. 2007, 25: 57-63.CrossRefPubMed
57.
Zurück zum Zitat Choi DH, Cho DY, Lee MH, Park HS, Ahn SH, Son BH, Haffty BG: The CHEK2 1100delC mutation is not present in Korean patients with breast cancer cases tested for BRCA1 and BRCA2 mutation. Breast Cancer Res Treat. 2008, 112: 569-573. 10.1007/s10549-007-9878-z.CrossRefPubMed Choi DH, Cho DY, Lee MH, Park HS, Ahn SH, Son BH, Haffty BG: The CHEK2 1100delC mutation is not present in Korean patients with breast cancer cases tested for BRCA1 and BRCA2 mutation. Breast Cancer Res Treat. 2008, 112: 569-573. 10.1007/s10549-007-9878-z.CrossRefPubMed
58.
Zurück zum Zitat McInerney NM, Miller N, Rowan A, Colleran G, Barclay E, Curran C, Kerin MJ, Tomlinson IP, Sawyer E: Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat. 2010, 121: 203-210. 10.1007/s10549-009-0540-9.CrossRefPubMed McInerney NM, Miller N, Rowan A, Colleran G, Barclay E, Curran C, Kerin MJ, Tomlinson IP, Sawyer E: Evaluation of variants in the CHEK2, BRIP1 and PALB2 genes in an Irish breast cancer cohort. Breast Cancer Res Treat. 2010, 121: 203-210. 10.1007/s10549-009-0540-9.CrossRefPubMed
59.
Zurück zum Zitat Scharrer U, Skrzypczak-Zielinska M, Wituszynska W, Mierzejewski M, Krause K, Cybulski C, Froster UG: A simple method of investigating mutations in CHEK2 by DHPLC: a study of the German populations of Saxony, Saxony-Anhalt, and Thuringia. Cancer Genet Cytogenet. 2010, 199: 48-52. 10.1016/j.cancergencyto.2009.11.015.CrossRefPubMed Scharrer U, Skrzypczak-Zielinska M, Wituszynska W, Mierzejewski M, Krause K, Cybulski C, Froster UG: A simple method of investigating mutations in CHEK2 by DHPLC: a study of the German populations of Saxony, Saxony-Anhalt, and Thuringia. Cancer Genet Cytogenet. 2010, 199: 48-52. 10.1016/j.cancergencyto.2009.11.015.CrossRefPubMed
60.
Zurück zum Zitat Bernstein JL, Teraoka SN, John EM, Andrulis IL, Knight JA, Lapinski R, Olson ER, Wolitzer AL, Seminara D, Whittemore AS, Concannon P: The CHEK2*1100delC allelic variant and risk of breast cancer: screening results from the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2006, 15: 348-352. 10.1158/1055-9965.EPI-05-0557.CrossRefPubMed Bernstein JL, Teraoka SN, John EM, Andrulis IL, Knight JA, Lapinski R, Olson ER, Wolitzer AL, Seminara D, Whittemore AS, Concannon P: The CHEK2*1100delC allelic variant and risk of breast cancer: screening results from the Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev. 2006, 15: 348-352. 10.1158/1055-9965.EPI-05-0557.CrossRefPubMed
61.
Zurück zum Zitat De Jong MM, Van der Graaf WTA, Nolte IM, Te Meerman GJ, Oosterwijk JC, Van der Steege G, Boezen M, Schaapveld M, Kleibeuker JH, De Vries EGE: Increased CHEK2 1100delC genotype frequency (also) in unselected breast cancer patients [abstract 9536]. J Clin Oncol. 2004, 22 (14 Supplement): 844s- De Jong MM, Van der Graaf WTA, Nolte IM, Te Meerman GJ, Oosterwijk JC, Van der Steege G, Boezen M, Schaapveld M, Kleibeuker JH, De Vries EGE: Increased CHEK2 1100delC genotype frequency (also) in unselected breast cancer patients [abstract 9536]. J Clin Oncol. 2004, 22 (14 Supplement): 844s-
62.
Zurück zum Zitat Meijers-Heijboer H, Wijnen J, Vasen H, Wasielewski M, Wagner A, Hollestelle A, Elstrodt F, van den Bos R, de Snoo A, Fat GT, Brekelmans C, Jagmohan S, Franken P, Verkuijlen P, van den Ouweland A, Chapman P, Tops C, Möslein G, Burn J, Lynch H, Klijn J, Fodde R, Schutte M: The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet. 2003, 72: 1308-1314. 10.1086/375121.CrossRefPubMedPubMedCentral Meijers-Heijboer H, Wijnen J, Vasen H, Wasielewski M, Wagner A, Hollestelle A, Elstrodt F, van den Bos R, de Snoo A, Fat GT, Brekelmans C, Jagmohan S, Franken P, Verkuijlen P, van den Ouweland A, Chapman P, Tops C, Möslein G, Burn J, Lynch H, Klijn J, Fodde R, Schutte M: The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet. 2003, 72: 1308-1314. 10.1086/375121.CrossRefPubMedPubMedCentral
63.
Zurück zum Zitat Sodha N, Bullock S, Taylor R, Mitchell G, Guertl-Lackner B, Williams RD, Bevan S, Bishop K, McGuire S, Houlston RS, Eeles RA: CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours. Br J Cancer. 2002, 87: 1445-1448. 10.1038/sj.bjc.6600637.CrossRefPubMedPubMedCentral Sodha N, Bullock S, Taylor R, Mitchell G, Guertl-Lackner B, Williams RD, Bevan S, Bishop K, McGuire S, Houlston RS, Eeles RA: CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours. Br J Cancer. 2002, 87: 1445-1448. 10.1038/sj.bjc.6600637.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Margolin S, Eiberg H, Lindblom A, Bisgaard ML: CHEK2 1100delC is prevalent in Swedish early onset familial breast cancer. BMC Cancer. 2007, 7: 163-10.1186/1471-2407-7-163.CrossRefPubMedPubMedCentral Margolin S, Eiberg H, Lindblom A, Bisgaard ML: CHEK2 1100delC is prevalent in Swedish early onset familial breast cancer. BMC Cancer. 2007, 7: 163-10.1186/1471-2407-7-163.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Friedrichsen DM, Malone KE, Doody DR, Daling JR, Ostrander EA: Frequency of CHEK2 mutations in a population based, case-control study of breast cancer in young women. Breast Cancer Res. 2004, 6: R629-R635. 10.1186/bcr933.CrossRefPubMedPubMedCentral Friedrichsen DM, Malone KE, Doody DR, Daling JR, Ostrander EA: Frequency of CHEK2 mutations in a population based, case-control study of breast cancer in young women. Breast Cancer Res. 2004, 6: R629-R635. 10.1186/bcr933.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Fletcher O, Johnson N, dos Santos Silva I, Kilpivaara O, Aittomäki K, Blomqvist C, Nevanlinna H, Wasielewski M, Meijers-Heijerboer H, Broeks A, Schmidt MK, Van't Veer LJ, Bremer M, Dörk T, Chekmariova EV, Sokolenko AP, Imyanitov EN, Hamann U, Rashid MU, Brauch H, Justenhoven C, Ashworth A, Peto J: Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2*1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev. 2009, 18: 230-234. 10.1158/1055-9965.EPI-08-0416.CrossRefPubMedPubMedCentral Fletcher O, Johnson N, dos Santos Silva I, Kilpivaara O, Aittomäki K, Blomqvist C, Nevanlinna H, Wasielewski M, Meijers-Heijerboer H, Broeks A, Schmidt MK, Van't Veer LJ, Bremer M, Dörk T, Chekmariova EV, Sokolenko AP, Imyanitov EN, Hamann U, Rashid MU, Brauch H, Justenhoven C, Ashworth A, Peto J: Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2*1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev. 2009, 18: 230-234. 10.1158/1055-9965.EPI-08-0416.CrossRefPubMedPubMedCentral
67.
Zurück zum Zitat Mellemkjaer L, Dahl C, Olsen JH, Bertelsen L, Guldberg P, Christensen J, Børresen-Dale AL, Stovall M, Langholz B, Bernstein L, Lynch CF, Malone KE, Haile RW, Andersson M, Thomas DC, Concannon P, Capanu M, Boice JD, WECARE Study Collaborative Group, Bernstein JL: Risk for contralateral breast cancer among carriers of the CHEK2*1100delC mutation in the WECARE Study. Br J Cancer. 2008, 98: 728-733. 10.1038/sj.bjc.6604228.CrossRefPubMedPubMedCentral Mellemkjaer L, Dahl C, Olsen JH, Bertelsen L, Guldberg P, Christensen J, Børresen-Dale AL, Stovall M, Langholz B, Bernstein L, Lynch CF, Malone KE, Haile RW, Andersson M, Thomas DC, Concannon P, Capanu M, Boice JD, WECARE Study Collaborative Group, Bernstein JL: Risk for contralateral breast cancer among carriers of the CHEK2*1100delC mutation in the WECARE Study. Br J Cancer. 2008, 98: 728-733. 10.1038/sj.bjc.6604228.CrossRefPubMedPubMedCentral
68.
Zurück zum Zitat Cybulski C, Górski B, Huzarski T, Byrski T, Gronwald J, Debniak T, Wokolorczyk D, Jakubowska A, Kowalska E, Oszurek O, Narod SA, Lubinski J: CHEK2-positive breast cancers in young Polish women. Clin Cancer Res. 2006, 12: 4832-4835. 10.1158/1078-0432.CCR-06-0158.CrossRefPubMed Cybulski C, Górski B, Huzarski T, Byrski T, Gronwald J, Debniak T, Wokolorczyk D, Jakubowska A, Kowalska E, Oszurek O, Narod SA, Lubinski J: CHEK2-positive breast cancers in young Polish women. Clin Cancer Res. 2006, 12: 4832-4835. 10.1158/1078-0432.CCR-06-0158.CrossRefPubMed
69.
Zurück zum Zitat Cybulski C, Huzarski T, Byrski T, Gronwald J, Debniak T, Jakubowska A, Górski B, Wokołorczyk D, Masojć B, Narod SA, Lubiński J: Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet. 2009, 75: 72-78. 10.1111/j.1399-0004.2008.01111.x.CrossRefPubMed Cybulski C, Huzarski T, Byrski T, Gronwald J, Debniak T, Jakubowska A, Górski B, Wokołorczyk D, Masojć B, Narod SA, Lubiński J: Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet. 2009, 75: 72-78. 10.1111/j.1399-0004.2008.01111.x.CrossRefPubMed
70.
Zurück zum Zitat Cybulski C, Górski B, Huzarski T, Byrski T, Gronwald J, Debniak T, Wokołorczyk D, Jakubowska A, Serrano-Fernández P, Dörk T, Narod SA, Lubiński J: Effect of CHEK2 missense variant I157T on the risk of breast cancer in carriers of other CHEK2 or BRCA1 mutations. J Med Genet. 2009, 46: 132-135.CrossRefPubMed Cybulski C, Górski B, Huzarski T, Byrski T, Gronwald J, Debniak T, Wokołorczyk D, Jakubowska A, Serrano-Fernández P, Dörk T, Narod SA, Lubiński J: Effect of CHEK2 missense variant I157T on the risk of breast cancer in carriers of other CHEK2 or BRCA1 mutations. J Med Genet. 2009, 46: 132-135.CrossRefPubMed
71.
Zurück zum Zitat Schutte M, Seal S, Barfoot R, Meijers-Heijboer H, Wasielewski M, Evans DG, Eccles D, Meijers C, Lohman F, Klijn J, van den Ouweland A, Futreal PA, Nathanson KL, Weber BL, Easton DF, Stratton MR, Rahman N, Breast Cancer Linkage Consortium: Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am J Hum Genet. 2003, 72: 1023-1028. 10.1086/373965.CrossRefPubMedPubMedCentral Schutte M, Seal S, Barfoot R, Meijers-Heijboer H, Wasielewski M, Evans DG, Eccles D, Meijers C, Lohman F, Klijn J, van den Ouweland A, Futreal PA, Nathanson KL, Weber BL, Easton DF, Stratton MR, Rahman N, Breast Cancer Linkage Consortium: Variants in CHEK2 other than 1100delC do not make a major contribution to breast cancer susceptibility. Am J Hum Genet. 2003, 72: 1023-1028. 10.1086/373965.CrossRefPubMedPubMedCentral
Metadaten
Titel
CHEK2 contribution to hereditary breast cancer in non-BRCAfamilies
verfasst von
Alexis Desrichard
Yannick Bidet
Nancy Uhrhammer
Yves-Jean Bignon
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
Breast Cancer Research / Ausgabe 6/2011
Elektronische ISSN: 1465-542X
DOI
https://doi.org/10.1186/bcr3062

Weitere Artikel der Ausgabe 6/2011

Breast Cancer Research 6/2011 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.