Skip to main content
Erschienen in: Die Radiologie 1/2021

18.12.2020 | Magnetresonanztomografie | Leitthema

„Chemical exchange saturation transfer“ (CEST)

Magnetresonanztomographie in der onkologischen Diagnostik

verfasst von: N. von Knebel Doeberitz, S. Maksimovic, L. Loi, Dr. med. Dipl.-Phys. D. Paech

Erschienen in: Die Radiologie | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Zusammenfassung

Hintergrund

Die Kontrasterzeugung mittels „chemical exchange saturation transfer“ (CEST) ist ein zuletzt rasant an Bedeutung gewinnendes Forschungsfeld in der Magnetresonanztomographie (MRT), das großes Potenzial für die klinische Anwendung besitzt.

Methode

Dieses Review behandelt die methodischen Grundlagen und fasst die klinischen Erfahrungswerte der bis dato durchgeführten onkologischen CEST-Bildgebungsstudien zusammen.

Ergebnisse und Schlussfolgerung

Durch die selektive Anregung von Metabolit-gebundenen Protonen und den nachfolgenden Magnetisierungstransfer auf freies Wasser können mittels CEST-MRT niedrig konzentrierte Metaboliten wie Peptide oder Glukose detektiert werden. Durch diese Technik können zusätzliche Informationen über den Metabolismus und das Mikromilieu von Geweben, ohne den Bedarf an konventionellen Kontrastmitteln oder radioaktiven Tracern, gewonnen werden. Insbesondere im neuroonkologischen Kontext konnte gezeigt werden, dass mittels CEST-MRT eine verbesserte Einschätzung der Malignität von Tumoren möglich ist und dass die Proteinkontraste Hinweise auf das frühe Ansprechen von Tumoren vor und in der ersten Verlaufskontrolle nach Therapie liefern könnten.

Kernaussagen

Die CEST-MRT ermöglicht die indirekte Detektion von Metaboliten ohne radioaktive Tracer oder Kontrastmittel. Klinische Erfahrungswerte liegen insbesondere in der neuroonkologischen Bildgebung vor. Hier könnte die CEST-MRT eine verbesserte Einschätzung der Prognose und des Therapieansprechens ermöglichen.
Literatur
1.
Zurück zum Zitat Wick W et al (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 18(11):1529–1537PubMedPubMedCentral Wick W et al (2016) Long-term analysis of the NOA-04 randomized phase III trial of sequential radiochemotherapy of anaplastic glioma with PCV or temozolomide. Neuro Oncol 18(11):1529–1537PubMedPubMedCentral
2.
Zurück zum Zitat Paz MF et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10(15):4933–4938PubMed Paz MF et al (2004) CpG island hypermethylation of the DNA repair enzyme methyltransferase predicts response to temozolomide in primary gliomas. Clin Cancer Res 10(15):4933–4938PubMed
3.
Zurück zum Zitat Brandes AA et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10(3):361–367PubMedPubMedCentral Brandes AA et al (2008) Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: pitfalls in neurooncology. Neuro Oncol 10(3):361–367PubMedPubMedCentral
5.
Zurück zum Zitat Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378(9805):1804–1811PubMed Morrow M, Waters J, Morris E (2011) MRI for breast cancer screening, diagnosis, and treatment. Lancet 378(9805):1804–1811PubMed
6.
Zurück zum Zitat Stabile A et al (2020) Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 17(1):41–61PubMed Stabile A et al (2020) Multiparametric MRI for prostate cancer diagnosis: current status and future directions. Nat Rev Urol 17(1):41–61PubMed
7.
Zurück zum Zitat MacMahon H et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284(1):228–243PubMed MacMahon H et al (2017) Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner society 2017. Radiology 284(1):228–243PubMed
8.
Zurück zum Zitat Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120(22):3433–3445PubMed Farwell MD, Pryma DA, Mankoff DA (2014) PET/CT imaging in cancer: current applications and future directions. Cancer 120(22):3433–3445PubMed
9.
10.
Zurück zum Zitat Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol 5(4):403–416PubMed Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol 5(4):403–416PubMed
11.
Zurück zum Zitat Morzycki A, Bhatia A, Murphy KJ (2017) Adverse reactions to contrast material: a Canadian update. Can Assoc Radiol J 68(2):187–193PubMed Morzycki A, Bhatia A, Murphy KJ (2017) Adverse reactions to contrast material: a Canadian update. Can Assoc Radiol J 68(2):187–193PubMed
12.
Zurück zum Zitat Olchowy C et al (2017) The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—a systematic review. PLoS ONE 12(2):e171704PubMedPubMedCentral Olchowy C et al (2017) The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity—a systematic review. PLoS ONE 12(2):e171704PubMedPubMedCentral
13.
Zurück zum Zitat van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948PubMedPubMedCentral van Zijl PC, Yadav NN (2011) Chemical exchange saturation transfer (CEST): what is in a name and what isn’t? Magn Reson Med 65(4):927–948PubMedPubMedCentral
15.
16.
Zurück zum Zitat Paech D, Schlemmer H‑P (2020) Clinical MR biomarkers. In: Schober O, Kiessling F, Debus J (Hrsg) Molecular imaging in oncology. Springer, Cham, S 719–745 Paech D, Schlemmer H‑P (2020) Clinical MR biomarkers. In: Schober O, Kiessling F, Debus J (Hrsg) Molecular imaging in oncology. Springer, Cham, S 719–745
17.
Zurück zum Zitat Paech D, Radbruch A (2020) CEST, pH, and glucose imaging as markers for hypoxia and malignant transformation. In: Pope WB (Hrsg) Glioma imaging: physiologic, metabolic, and molecular approaches. Springer, Cham, S 161–172 Paech D, Radbruch A (2020) CEST, pH, and glucose imaging as markers for hypoxia and malignant transformation. In: Pope WB (Hrsg) Glioma imaging: physiologic, metabolic, and molecular approaches. Springer, Cham, S 161–172
18.
Zurück zum Zitat Forsén S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39(11):2892–2901 Forsén S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39(11):2892–2901
19.
Zurück zum Zitat Zaiss M et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188PubMed Zaiss M et al (2015) Relaxation-compensated CEST-MRI of the human brain at 7T: Unbiased insight into NOE and amide signal changes in human glioblastoma. Neuroimage 112:180–188PubMed
20.
Zurück zum Zitat Windschuh J et al (2015) Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. Nmr Biomed 28(5):529–537PubMed Windschuh J et al (2015) Correction of B1-inhomogeneities for relaxation-compensated CEST imaging at 7 T. Nmr Biomed 28(5):529–537PubMed
21.
Zurück zum Zitat Hong X et al (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16(6):856–867PubMed Hong X et al (2014) Quantitative multiparametric MRI assessment of glioma response to radiotherapy in a rat model. Neuro Oncol 16(6):856–867PubMed
22.
Zurück zum Zitat Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47(1):11–27PubMed Jones KM, Pollard AC, Pagel MD (2018) Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging 47(1):11–27PubMed
23.
Zurück zum Zitat Scheidegger R, Wong ET, Alsop DC (2014) Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99:256–268PubMedPubMedCentral Scheidegger R, Wong ET, Alsop DC (2014) Contributors to contrast between glioma and brain tissue in chemical exchange saturation transfer sensitive imaging at 3 Tesla. Neuroimage 99:256–268PubMedPubMedCentral
24.
Zurück zum Zitat Paech D et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS ONE 9(8):e104181PubMedPubMedCentral Paech D et al (2014) Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients. PLoS ONE 9(8):e104181PubMedPubMedCentral
25.
Zurück zum Zitat Zaiss M et al (2017) Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med 77(1):196–208PubMed Zaiss M et al (2017) Downfield-NOE-suppressed amide-CEST-MRI at 7 Tesla provides a unique contrast in human glioblastoma. Magn Reson Med 77(1):196–208PubMed
26.
Zurück zum Zitat Paech D et al (2015) Nuclear Overhauser Enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology. PLoS ONE 10(3):e121220PubMedPubMedCentral Paech D et al (2015) Nuclear Overhauser Enhancement imaging of glioblastoma at 7 Tesla: region specific correlation with apparent diffusion coefficient and histology. PLoS ONE 10(3):e121220PubMedPubMedCentral
27.
Zurück zum Zitat Schuenke P et al (2017) Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data. Magn Reson Med 77(2):571–580PubMed Schuenke P et al (2017) Simultaneous mapping of water shift and B1 (WASABI)-Application to field-Inhomogeneity correction of CEST MRI data. Magn Reson Med 77(2):571–580PubMed
28.
Zurück zum Zitat Goerke S et al (2019) Relaxation-compensated APT and rNOE CEST-MRI of human brain tumors at 3 T. Magn Reson Med 82(2):622–632PubMed Goerke S et al (2019) Relaxation-compensated APT and rNOE CEST-MRI of human brain tumors at 3 T. Magn Reson Med 82(2):622–632PubMed
30.
Zurück zum Zitat Zhou J et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126PubMed Zhou J et al (2003) Amide proton transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 50(6):1120–1126PubMed
31.
Zurück zum Zitat Jones CK et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56(3):585–592PubMed Jones CK et al (2006) Amide proton transfer imaging of human brain tumors at 3T. Magn Reson Med 56(3):585–592PubMed
32.
Zurück zum Zitat Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972PubMed Wen PY et al (2010) Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 28(11):1963–1972PubMed
33.
Zurück zum Zitat Togao O et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448PubMed Togao O et al (2014) Amide proton transfer imaging of adult diffuse gliomas: correlation with histopathological grades. Neuro Oncol 16(3):441–448PubMed
34.
Zurück zum Zitat Bai Y et al (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842PubMed Bai Y et al (2017) Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget 8(4):5834–5842PubMed
35.
Zurück zum Zitat Sakata A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neurooncol 122(2):339–348PubMed Sakata A et al (2015) Grading glial tumors with amide proton transfer MR imaging: different analytical approaches. J Neurooncol 122(2):339–348PubMed
36.
Zurück zum Zitat Choi YS et al (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 27(8):3181–3189PubMedPubMedCentral Choi YS et al (2017) Amide proton transfer imaging to discriminate between low- and high-grade gliomas: added value to apparent diffusion coefficient and relative cerebral blood volume. Eur Radiol 27(8):3181–3189PubMedPubMedCentral
37.
Zurück zum Zitat Dreher C et al (2019) Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imaging 49(3):777–785PubMed Dreher C et al (2019) Chemical exchange saturation transfer (CEST) signal intensity at 7T MRI of WHO IV° gliomas is dependent on the anatomic location. J Magn Reson Imaging 49(3):777–785PubMed
38.
Zurück zum Zitat Togao O et al (2017) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 27(2):578–588PubMed Togao O et al (2017) Grading diffuse gliomas without intense contrast enhancement by amide proton transfer MR imaging: comparisons with diffusion- and perfusion-weighted imaging. Eur Radiol 27(2):578–588PubMed
39.
Zurück zum Zitat Heo HY et al (2016) Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 44(1):41–50PubMed Heo HY et al (2016) Whole-brain amide proton transfer (APT) and nuclear overhauser enhancement (NOE) imaging in glioma patients using low-power steady-state pulsed chemical exchange saturation transfer (CEST) imaging at 7T. J Magn Reson Imaging 44(1):41–50PubMed
40.
Zurück zum Zitat Jones CK et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124PubMed Jones CK et al (2013) Nuclear Overhauser enhancement (NOE) imaging in the human brain at 7T. Neuroimage 77:114–124PubMed
41.
Zurück zum Zitat Jiang S et al (2017) Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn Reson Med 78(3):1100–1109PubMedPubMedCentral Jiang S et al (2017) Predicting IDH mutation status in grade II gliomas using amide proton transfer-weighted (APTw) MRI. Magn Reson Med 78(3):1100–1109PubMedPubMedCentral
42.
Zurück zum Zitat Elkhaled A et al (2012) Magnetic resonance of 2‑hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med 4(116):116–ra5 Elkhaled A et al (2012) Magnetic resonance of 2‑hydroxyglutarate in IDH1-mutated low-grade gliomas. Sci Transl Med 4(116):116–ra5
43.
Zurück zum Zitat Jalbert LE et al (2017) Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep 7:44792PubMedPubMedCentral Jalbert LE et al (2017) Metabolic profiling of IDH mutation and malignant progression in infiltrating glioma. Sci Rep 7:44792PubMedPubMedCentral
44.
Zurück zum Zitat Sagiyama K et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 111(12):4542–4547PubMedPubMedCentral Sagiyama K et al (2014) In vivo chemical exchange saturation transfer imaging allows early detection of a therapeutic response in glioblastoma. Proc Natl Acad Sci U S A 111(12):4542–4547PubMedPubMedCentral
45.
Zurück zum Zitat Zhou J et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134PubMed Zhou J et al (2011) Differentiation between glioma and radiation necrosis using molecular magnetic resonance imaging of endogenous proteins and peptides. Nat Med 17(1):130–134PubMed
46.
Zurück zum Zitat Park KJ et al (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26(12):4390–4403PubMed Park KJ et al (2016) Added value of amide proton transfer imaging to conventional and perfusion MR imaging for evaluating the treatment response of newly diagnosed glioblastoma. Eur Radiol 26(12):4390–4403PubMed
47.
Zurück zum Zitat Park JE et al (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology 278(2):514–523PubMed Park JE et al (2016) Pre- and posttreatment glioma: comparison of amide proton transfer imaging with MR spectroscopy for biomarkers of tumor proliferation. Radiology 278(2):514–523PubMed
48.
Zurück zum Zitat Paech D et al (2019) Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients. Eur Radiol 29(9):4957–4967PubMed Paech D et al (2019) Relaxation-compensated amide proton transfer (APT) MRI signal intensity is associated with survival and progression in high-grade glioma patients. Eur Radiol 29(9):4957–4967PubMed
49.
Zurück zum Zitat Mehrabian H et al (2018) Evaluation of glioblastoma response to therapy with chemical exchange saturation transfer. Int J Radiat Oncol Biol Phys 101(3):713–723PubMed Mehrabian H et al (2018) Evaluation of glioblastoma response to therapy with chemical exchange saturation transfer. Int J Radiat Oncol Biol Phys 101(3):713–723PubMed
50.
Zurück zum Zitat Meissner JE et al (2019) Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn Reson Imaging 50(4):1268–1277PubMed Meissner JE et al (2019) Early response assessment of glioma patients to definitive chemoradiotherapy using chemical exchange saturation transfer imaging at 7 T. J Magn Reson Imaging 50(4):1268–1277PubMed
51.
Zurück zum Zitat Regnery S et al (2018) Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget 9(47):28772–28783PubMedPubMedCentral Regnery S et al (2018) Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget 9(47):28772–28783PubMedPubMedCentral
52.
Zurück zum Zitat Jia G et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33(3):647–654PubMedPubMedCentral Jia G et al (2011) Amide proton transfer MR imaging of prostate cancer: a preliminary study. J Magn Reson Imaging 33(3):647–654PubMedPubMedCentral
53.
Zurück zum Zitat Takayama Y et al (2016) Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores. Magma 29(4):671–679PubMed Takayama Y et al (2016) Amide proton transfer (APT) magnetic resonance imaging of prostate cancer: comparison with Gleason scores. Magma 29(4):671–679PubMed
54.
Zurück zum Zitat Ohno Y et al (2018) Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: comparison with diffusion-weighted imaging and FDG-PET/CT. J Magn Reson Imaging 47(4):1013–1021PubMed Ohno Y et al (2018) Amide proton transfer-weighted imaging to differentiate malignant from benign pulmonary lesions: comparison with diffusion-weighted imaging and FDG-PET/CT. J Magn Reson Imaging 47(4):1013–1021PubMed
55.
Zurück zum Zitat Choi SH (2018) Can amide proton transfer MRI distinguish benign and malignant head and neck tumors? Radiology 288(3):791–792PubMed Choi SH (2018) Can amide proton transfer MRI distinguish benign and malignant head and neck tumors? Radiology 288(3):791–792PubMed
56.
Zurück zum Zitat Zhang S et al (2018) CEST-Dixon for human breast lesion characterization at 3 T: a preliminary study. Magn Reson Med 80(3):895–903PubMedPubMedCentral Zhang S et al (2018) CEST-Dixon for human breast lesion characterization at 3 T: a preliminary study. Magn Reson Med 80(3):895–903PubMedPubMedCentral
57.
Zurück zum Zitat Schmitt B et al (2011) A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results. Rofo 183(11):1030–1036PubMed Schmitt B et al (2011) A new contrast in MR mammography by means of chemical exchange saturation transfer (CEST) imaging at 3 Tesla: preliminary results. Rofo 183(11):1030–1036PubMed
58.
Zurück zum Zitat Dula AN et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70(1):216–224PubMed Dula AN et al (2013) Amide proton transfer imaging of the breast at 3 T: establishing reproducibility and possible feasibility assessing chemotherapy response. Magn Reson Med 70(1):216–224PubMed
59.
Zurück zum Zitat Zaric O et al (2019) 7T CEST MRI: A potential imaging tool for the assessment of tumor grade and cell proliferation in breast cancer. Magn Reson Imaging 59:77–87PubMed Zaric O et al (2019) 7T CEST MRI: A potential imaging tool for the assessment of tumor grade and cell proliferation in breast cancer. Magn Reson Imaging 59:77–87PubMed
60.
Zurück zum Zitat Krikken E et al (2018) Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res 20(1):51PubMedPubMedCentral Krikken E et al (2018) Amide chemical exchange saturation transfer at 7 T: a possible biomarker for detecting early response to neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res 20(1):51PubMedPubMedCentral
61.
Zurück zum Zitat Krikken E et al (2019) Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI. Nmr Biomed 32(8):e4110PubMedPubMedCentral Krikken E et al (2019) Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI. Nmr Biomed 32(8):e4110PubMedPubMedCentral
63.
Zurück zum Zitat Xu X et al (2015) Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography 1(2):105–114PubMedPubMedCentral Xu X et al (2015) Dynamic glucose-enhanced (DGE) MRI: translation to human scanning and first results in glioma patients. Tomography 1(2):105–114PubMedPubMedCentral
64.
Zurück zum Zitat Chan KW et al (2012) Natural D‑glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773PubMedPubMedCentral Chan KW et al (2012) Natural D‑glucose as a biodegradable MRI contrast agent for detecting cancer. Magn Reson Med 68(6):1764–1773PubMedPubMedCentral
65.
Zurück zum Zitat Walker-Samuel S et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072PubMedPubMedCentral Walker-Samuel S et al (2013) In vivo imaging of glucose uptake and metabolism in tumors. Nat Med 19(8):1067–1072PubMedPubMedCentral
66.
Zurück zum Zitat Herz K et al (2019) T1ρ-based dynamic glucose-enhanced (DGEρ) MRI at 3 T: method development and early clinical experience in the human brain. Magn Reson Med 82(5):1832–1847PubMed Herz K et al (2019) T1ρ-based dynamic glucose-enhanced (DGEρ) MRI at 3 T: method development and early clinical experience in the human brain. Magn Reson Med 82(5):1832–1847PubMed
67.
68.
Zurück zum Zitat Paech D et al (2017) T1ρ-weighted dynamic glucose-enhanced MR imaging in the human brain. Radiology 285(3):914–922PubMed Paech D et al (2017) T1ρ-weighted dynamic glucose-enhanced MR imaging in the human brain. Radiology 285(3):914–922PubMed
69.
Zurück zum Zitat Rivlin M et al (2013) Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 3:3045PubMedPubMedCentral Rivlin M et al (2013) Molecular imaging of tumors and metastases using chemical exchange saturation transfer (CEST) MRI. Sci Rep 3:3045PubMedPubMedCentral
70.
Zurück zum Zitat Wang J et al (2016) Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci Rep 6:30618PubMedPubMedCentral Wang J et al (2016) Magnetic resonance imaging of glucose uptake and metabolism in patients with head and neck cancer. Sci Rep 6:30618PubMedPubMedCentral
71.
Zurück zum Zitat Jin T et al (2018) Chemical exchange–sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med 80(2):488–495PubMedPubMedCentral Jin T et al (2018) Chemical exchange–sensitive spin-lock (CESL) MRI of glucose and analogs in brain tumors. Magn Reson Med 80(2):488–495PubMedPubMedCentral
72.
Zurück zum Zitat Jin T, Kim SG (2014) Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl–and amine–water proton exchange studies. NMR Biomed 27(11):1313–1324PubMedPubMedCentral Jin T, Kim SG (2014) Advantages of chemical exchange-sensitive spin-lock (CESL) over chemical exchange saturation transfer (CEST) for hydroxyl–and amine–water proton exchange studies. NMR Biomed 27(11):1313–1324PubMedPubMedCentral
73.
Zurück zum Zitat Schuenke P et al (2017) Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med 78(1):215–225PubMed Schuenke P et al (2017) Adiabatically prepared spin-lock approach for T1ρ-based dynamic glucose enhanced MRI at ultrahigh fields. Magn Reson Med 78(1):215–225PubMed
Metadaten
Titel
„Chemical exchange saturation transfer“ (CEST)
Magnetresonanztomographie in der onkologischen Diagnostik
verfasst von
N. von Knebel Doeberitz
S. Maksimovic
L. Loi
Dr. med. Dipl.-Phys. D. Paech
Publikationsdatum
18.12.2020
Verlag
Springer Medizin
Erschienen in
Die Radiologie / Ausgabe 1/2021
Print ISSN: 2731-7048
Elektronische ISSN: 2731-7056
DOI
https://doi.org/10.1007/s00117-020-00786-z

Weitere Artikel der Ausgabe 1/2021

Die Radiologie 1/2021 Zur Ausgabe

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Mitteilungen des Berufsverbandes der Deutschen Radiologen

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.