Skip to main content
Erschienen in: Journal of Translational Medicine 1/2018

Open Access 01.12.2018 | Review

Chronic diseases, inflammation, and spices: how are they linked?

verfasst von: Ajaikumar B. Kunnumakkara, Bethsebie L. Sailo, Kishore Banik, Choudhary Harsha, Sahdeo Prasad, Subash Chandra Gupta, Alok Chandra Bharti, Bharat B. Aggarwal

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2018

Abstract

Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Abkürzungen
1,25D3-MARRS
1,25D3-membrane-associated, rapid response steroid-binding protein
ALP
alkaline phosphatase
ALT
alanine aminotransaminase
AP-1
activator protein 1
ASK1
apoptosis signal-regulating kinase 1
AST
aspartate transaminase
ATP
adenosine triphosphate
amyloid beta
BDNF
brain-derived neurotrophic factor
CAM-1
cell adhesion molecule-1
CCL20
chemokine (C–C motif) ligand 20
CD1
cyclin D1
COX-2
cyclooxygenase-2
FBS
fasting blood sugar
FOXO
Forkhead box-O
GSH
glutathione
HbA1c
glycated haemoglobin
HDOG
8-hydroxydeoxyguanosine
HNE
4-hydroxy-2-nonenal
HMG-CoA
3-hydroxy-3-methyl-glutaryl-CoA reductase
HO-1
heme oxygenase-1
iCAM-1
intercellular cell adhesion molecule-1
IGF-1
insulin-like growth factor 1
IgG
immunoglobulin G
INF-γ
interferon-γ
iNOS
inducible nitric oxide synthase
IκB kinase β
I kappa B kinase beta
IκBα
inhibitory factor kappa B alpha
JAK2
Janus kinase 2
JNK
c-JUN N-terminal kinase
LDH
lactate dehydrogenase
LTB4
leukotriene B4
MAPK
mitogen-activated protein kinases
MCP-1
monocyte chemoattractant protein-1
MDA
malondialdehyde
MIP
macrophage inflammatory protein
MTT-III
metallothionein-III
NAG-1
nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1
NF-κB
nuclear factor kappa B
NFAT
nuclear factor of activated T-cells
NFATc1
nuclear factor of activated T cells cytoplasmic 1
NLRP3
nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing-3
NO
nitric oxide
NOS
nitric oxide synthases
Nrf2
nuclear factor erythroid 2–related factor 2
OPG
osteoprotegerin
PCNA
proliferating cell nuclear antigen
PGC-1α
peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PGE2
prostaglandin E2
PI3K
phosphatidylinositol-3 kinase
PK
protein kinase
PPAR
peroxisome proliferator-activated receptor
PSD93
postsynaptic density protein 93
PTEN
phosphatase and tensin homolog
RAGE
receptor for advanced glycation end products
RANKL
receptor activator of nuclear factor kappa-B ligand
ROCK
rho-associated protein kinase
SREBP-1
sterol regulatory element-binding protein-1
STAT
signal transducer and activator of transcription
TBARS
thiobarbituric acid reactive substance
TGF-β
transforming growth factor beta
TH2
T-helper 2
TLR4
Toll-like receptor 4
TNF-α
tumor necrosis factor-alpha
Tregs
regulatory T cells
TRPA1
transient receptor potential cation channel, subfamily A, member 1
TRPM8
transient receptor potential cation channel subfamily M member 8
TRPV1
transient receptor potential vanilloid type 1
VCAM
vascular cell adhesion molecule
α-SMA
alpha-smooth muscle actin

Background

Chronic diseases, also called as non-communicable diseases that include Alzheimer’s disease, arthritis, cancer, cardiovascular disease (CVD), diabetes and Parkinson’s disease, remain the primary root cause of death and disability worldwide [13]. The major risk factors associated with these diseases are unhealthy lifestyle including lack of physical activity, poor diet, stress, excessive tobacco and alcohol consumption, exposure to radiation, and infection with pathogenic microorganisms. It is now well established that these agents induce inflammation and dysregulate inflammatory pathways, which lead to the development of chronic diseases [13].
Inflammation, which means, “to set on fire” is a body’s natural response against harmful pathogen and stimuli that occurs in two stages namely, acute and chronic inflammation [4]. Acute inflammation is a part of innate immunity initiated by the immune cells that persists only for a short time. However, if the inflammation continues, the second stage of inflammation called chronic inflammation commences which instigates various kinds of chronic diseases, including arthritis, cancer, cardiovascular diseases, diabetes, and neurological diseases via dysregulation of various signaling pathways such as nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3) etc. [5]. Hence, targeting the inflammatory pathways has high potential in preventing and eradicating these deadly diseases [1]. However, most of the drugs developed till today for the treatment of chronic diseases are highly expensive and associated with adverse side effects [1]. Therefore, there is an urgent need to develop novel, safe, affordable, and highly efficacious agents for the management of these diseases.
Congregate evidence suggests that a diet rich in plant-based agents including spices has the ability to prevent most of the chronic diseases. The earliest evidence of the use of spices by humans dates back to 5000 B.C., and till today their biological activities have been extensively studied [6]. “Spice” originates from the Latin word, “species”, which means a commodity of special distinction or value [7]. Spices have been extensively used since ancient times as means of remedy, coloring agent, flavoring agent, and preservative. Subsequently, tremendous studies have shown that nutraceuticals derived from spices such as clove, coriander, garlic, ginger, onion, pepper, turmeric, etc., remarkably prevent and cure various chronic diseases by targeting inflammatory pathways [8]. This review emphasizes the association between inflammation and chronic diseases and the benefits of spices in warding off these global major health issues.

Molecular pathways linked to inflammation

Aforementioned, inflammation is essentially an immune response to infection or injury in the body that helps to maintain tissue homeostasis under stressful conditions [9]. Eventually, it was discovered that transcription factors such as NF-κB and STAT3, inflammatory enzymes such as cyclooxygenase-2 (COX-2), matrix metalloproteinase-9 (MMP-9), and inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukins (IL) such as IL-1, -6, -8, and chemokines are the main molecular mediators of this response. Amongst these mediators, ubiquitous transcription factor NF-κB is the key mediator of inflammation as it regulates large arrays of genes encoding cytokines, cytokine receptors, and cell adhesion molecules that are involved in triggering inflammation [10, 11]. In normal condition, NF-κB exists in the cytoplasm in the form of a heterotrimer that comprises of the subunit p50, p65, and inhibitory subunit IκBα. Upon activation by certain inflammatory stimuli, cytokines, carcinogens, free radicals, tumor promoters, UV-light, γ-rays, and x-rays, the subunits p50 and p65 translocate into the nucleus, bind to the promoters region of various genes, and activate more than 400 genes that are involved in inflammation and other chronic diseases [12] (Fig. 1). Activation of NF-κB is also known to instigate cancer cell proliferation, survival, invasion, angiogenesis, metastasis, chemoresistance, and radiation resistance.
NF-κB regulates the expression of inflammatory mediators such as COX-2, inducible nitric oxide synthase (iNOS), TNF-α, and interleukins [11]. Overexpression of the cytokine, TNF-α, the most potent pro-inflammatory cytokine so far discovered, can lead to various chronic diseases, including cancer, via the activation of NF-κB. Therefore, the blockers of TNF-α have high potential for the prevention and management of chronic diseases and the global market for TNF-α blockers is approximately $20 billion. However, most of these blockers that have been approved for the treatment of chronic diseases are very expensive and have numerous adverse side effects. Interleukins are a group of cytokines that are released by macrophages. Interleukins such as IL-1β, IL-6 and IL-8 also play pivotal roles in inducing inflammatory response [10]. Upregulation of COX-2, iNOS, and aberrant expression of TNF-α and IL-1, IL-6 and IL-8 have been reported to play important roles in oxidative stress that leads to inflammation [5].
IL-6 is a key NF-κB-dependent cytokine that induces the activation of STAT3. STAT3 is a cytoplasmic protein that acts as a transcriptional factor and induces several types of immune and inflammatory responses. The activation of STAT3 involves tyrosine phosphorylation, homodimerization, nuclear translocation where it binds to the DNA and regulates gene transcription [6, 13] (Fig. 1). Protein kinases such as Janus-activated kinase (JAK) 1, 2, and 3 were found to phosphorylate STAT3 and induce its nuclear translocation [6].
Besides these, other transcription factors such as activator protein-1 (AP-1), hypoxia-inducible factor-1α (HIF-1α), nuclear factor of activated T cells (NFAT) and nuclear factor erythroid 2–related factor 2 (Nrf2) are also modulated by inflammatory cytokines and play crucial function for mediating cellular stress responses [5]. The mitogen-activated protein kinase (MAPK) family consisting of three different stress-activated protein kinase pathways namely p38, JNK and ERK, has been found to modulate the level of IL-5 and other cytokines during inflammation. Therefore, MAPK pathway can also be used as a potential molecular target for the treatment of chronic inflammatory diseases [14] (Fig. 1).

Chronic diseases and inflammation

Chronic diseases are the leading cause of mortality in the world accounting for approximately 60% of all deaths. Aforementioned, various inflammatory biomarkers are altered in chronic diseases such as transcription factors (NF-κB, STAT3) and their downstream products such as inflammatory cytokines (TNF-α, IL-1, IL-6, IL-8) and pro-inflammatory enzymes such as COX-2, MMP-9, cell adhesion molecules (CAM), vascular endothelial growth factor (VEGF) etc. [1, 15].
Amongst the chronic diseases, cancer is one of the major diseases caused by chronic inflammation. In 2009, Colotta et al. proposed inflammation as the seventh hallmark of cancer [16]. Both inflammation and cancer are linked through intrinsic and extrinsic pathways i.e. oncogenes regulate the inflammatory microenvironment intrinsically, whilst the inflammatory microenvironment facilitates the development and progression of cancer extrinsically [17]. Specifically, the inflammatory response positively aids in tumor development and increases the risk of malignancy [18]. Approximately 15% of the cancer cases are caused by persistent infection and chronic inflammation [19]. It has been well established that NF-κB is constitutively activated in various cancers such as cancers of the breast, colon, liver, lung, pancreas etc. in response to carcinogens such as tobacco, alcohol, and exposure to radiation etc. Upregulation of NF-κB subsequently activates hundreds of pro-inflammatory gene products including TNF-α, IL-1, IL-6, chemokines, MMP-9, 5-LOX, VEGF, and COX-2 [20]. These pro-inflammatory cytokines play a vital role in inflammation-induced cancer cell proliferation, angiogenesis, invasion, metastasis, and suppression of apoptosis. In addition, even in cancers that are not instigated by inflammation, inflammatory cells enter the tumor stroma and consequently induce cancer development [21]. More importantly, an in vivo study has illustrated that NF-κB activation via the IκB kinase (IKK) complex acts as a molecular link between inflammation and cancer [22]. Moreover, NF-κB activation also leads to radioresistance and chemoresistance. These observations suggest that NF-κB plays an important role in inflammation and cancer. Therefore, anti-inflammatory agents that target NF-κB and its regulated products may have high efficacy in both the prevention and treatment of cancers.
Inflammatory cytokines IL-1 and IL-6 also modulate pro-oncogenic transcription factor STAT3, thereby increasing survival, proliferation, angiogenesis, invasion, and metastasis of cancer cells [23]. STAT3 was also known to be upregulated in many cancer patients, and the level of STAT3 was directly correlated with poor prognosis [1]. In case of oral cancer, oral submucous fibrosis or oral lichen planus are precancerous conditions implicated with immuno-inflammatory processes that may transform to cancer [24]. Besides, chronic inflammation in various organs or tissues leads to different types of cancers. For example, chronic obstructive pulmonary disease (COPD) leads to lung cancer, colitis leads to colon cancer, gastritis leads to stomach cancer, pancreatitis leads to pancreatic cancer, prostatitis leads to prostate cancer, etc. [2528].
Aforesaid, unresolved inflammation of the pancreas, pancreatitis leads to pancreatic cancer. It has been demonstrated that O-GlcNAc transferase (OGT)—mediated O-GlcNAcylation activated NF-κB signaling pathway and inflammation in pancreatic acinar cells, ultimately leading to the progression of acute pancreatitis [29]. T helper cell-mediated inflammation also has been found to be associated with pancreatic β-cell dysfunction and leads to chronic pancreatitis [30]. COPD is an epidemic chronic inflammatory disease of the lung [31, 32]. Interleukin-33 enhances the production of the inflammatory cytokine such as IL-6 and IL-8 in chronic airway inflammation, thus contributing to COPD development [33]. It has also been reported that inflammatory responses in COPD promote lung tumor initiation and progression [34]. Another inflammation induced chronic disease is rheumatoid arthritis (RA) which is an autoimmune disease characterized by the production of the pro-inflammatory cytokine IL-17 [35]. Studies suggested that pro-inflammatory cytokines such as IL-1β, IL-6 and TNF-α also play pathological roles in the development of RA [36]. In addition, it has been demonstrated that STAT3 also caused chronic inflammation and joint destruction in RA [36]. Hence, targeting inflammatory pathways can be used for the prevention and treatment of RA.
In Alzheimer’s disease (AD), which is the prevalent chronic neurodegenerative disease, inflammation has an essential role in the disease pathogenesis. Studies have indicated that microRNAs, astrocytes, microglia, and infiltrating immune cells from the peripheral region might affect the development of neuroinflammation and neurodegeneration in AD patients [37]. Accumulated evidence has depicted that deposition of extracellular amyloid beta (Aβ) in AD leads to upregulation of pro-inflammatory mediators IL-1β, IL-6 and TNF-α, by the activated immune cells, which promote additional inflammatory pathways via instigation of COX-2 and NF-κB [37].
Inflammatory bowel disease (IBD) is a group of inflammatory disorders of the digestive tract, which mainly includes Crohn’s disease and ulcerative colitis. Studies have shown that IBD patients have high susceptibility to develop colorectal cancer. Inflammatory mediators including cytokines (TNF-α, IL-1β, IL-6, IL-17, and IL-21), eicosanoids, and reactive oxygen metabolites play a vital role in causing the chronic inflammatory condition in IBD [13, 38]. In addition, activation of STAT3 signaling pathway is associated with colitis and colorectal cancer [39].
Allergic asthma is an airway inflammatory disease caused due to exposure to allergens causing bronchoconstriction. Asthma is characterized by an imbalance between the T helper type 1 (Th1) and T helper type 2 (Th2) responses and excessive production of reactive oxygen species (ROS) [40]. Th2 cells release several cytokines such as IL-4 and IL-13 that in turn produces immunoglobulin, IgE resulting in allergic response [41]. Numerous studies also indicate that attenuation of the Type 2 inflammatory pathway caused a clinically substantial reduction in asthma exacerbations. Thus, it is now evident that type 2 inflammation is an imperative mechanism of susceptibility to asthma exacerbation [42].
Diabetes mellitus (DM) is a predominant metabolic chronic disease that affects more than 170 million people globally. Type 1 DM is induced by the chronic inflammation of pancreatic islets, while type 2 DM is associated with insulin resistance resulting in elevated production of inflammatory markers such as C-reactive protein (CRP), IL-6, and TNF-α [43]. Patients with type 2 diabetes have a higher chance of developing atherosclerosis, which is a disease wherein plaque accumulates in arteries. Arachidonic acid derived eicosanoids such as prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) are the potential pro-inflammatory mediators in atherosclerosis and are regulated by NF-κB [43].
Collectively, it is apparent that dysregulation of inflammatory pathways is the underlying mechanism of various chronic diseases. Therefore, many drugs have been developed that target inflammatory pathways for the management of these diseases. However, most of these drugs developed so far are highly expensive and are not devoid of adverse side effects. Hence, there is an urgent need to develop safe, affordable, and efficacious drugs for the prevention and treatment of these chronic diseases. It has been well established that the population who consume spices are less susceptible to the development of chronic diseases. The components present in these spices have the ability to inhibit inflammatory pathways that lead to chronic inflammation, which contributes to the biological properties of these spices.

Spices and their active components

Mother nature has bestowed us with a profuse source of remedies to treat various kinds of ailments. Since time immemorial, phytochemicals, both in their natural as well as synthetic forms have been used for the treatment of various chronic diseases [12]. The root, leaf, bud, seed, bark, berry, stigma of a plant or flower used for the culinary purpose are generally called as spices. Spices not only add flavor and taste to food, but also exhibit tremendous health benefits [44]. Numerous results from preclinical and clinical studies over the past several decades have ascertained the efficacious role of spices and their active components in preventing and combating various diseases including arthritis, asthma, cancer, cardiovascular diseases, diabetes, and neurodegenerative diseases [45]. The most commonly used spices for culinary purpose that shows biological activities are black pepper, cardamom, cinnamon, clove, cumin, fenugreek, fennel, garlic, ginger, onion, rosemary, turmeric etc.
Turmeric (Curcuma longa) is the most commonly used spice in the world. Curcumin, the main component of turmeric (2–5%), obtained from rhizomes of this plant, is a yellow colored compound, which gives the golden color to turmeric, was first isolated by Vogel in 1842. In 1910, the structure of curcumin was determined as diferuloylmethane and later synthesized and cocrystallized with 5-LOX in 2003 [46]. This ‘golden spice’ is recognized for its anti-inflammatory, antimicrobial, insecticidal, antimutagenic, radioprotective, and anticancer properties. Over ten thousand studies have been reported in the literature about the biological activities of this compound including more than 120 clinical trials. Besides curcumin, the other active components of turmeric include demethoxycurcumin, bisdemethoxycurcumin, sesquiterpenes, diterpenes, triterpenoids, [47, 48]. Black pepper (Piper nigrum), another commonly used spice is widely known for its immunomodulatory, anti-oxidant, anti-asthmatic, anti-carcinogenic, anti-inflammatory and anti-ulcer properties [49]. Other than its main component piperine, black pepper also contains β-caryophyllene, limonene, δ-3-carene, α-pinene, β-pinene, α-phellandrene, myrcene, terpinolene, etc. [50]. Another extensively used spice, ginger (Zingiber officinale) is reported to have different biological properties such as antioxidant, anti-inflammatory and antiproliferative properties. 6-gingerol is the main component of this spice, which is responsible for its biological properties [51]. Other than gingerol, ginger also contains 6-paradol, 6-gingerdiol, gingerdione, shogoal, zingiberene, citral (neral and geranial), bisabolene, cineol, α-farnesene, β-phellandrene, zingerone etc. [52]. The most commonly used spice for cardiovascular diseases in the ancient system of medicine is garlic (Allium sativum). It also possesses anti-inflammatory, gastroprotective and anti-cancer properties due to the presence of phytochemicals such as diallyl sulfides, diallyl disulfides, ajoene, allicin, alliin, diallyl trisulfide, S-allylcysteine, methiin, isoalliin, cycloalliin, S-allylmercaptocysteine [53, 54]. Another spice that is widely used all over the world to enhance the spice level of dishes is red pepper (Capsicum). Apart from capsaicin, red pepper also contains β-carotene, zeaxanthin, lutein, caffeic acid and capsanthin [55]. The other commonly used spices and their active components include cardamom (1,8-cineole, α-terpinyl acetate, limonene, linalool, linalyl acetate, terpinolene and myrcene) [4, 56]; cinnamon (cinnamaldehyde, cinnamyl acetate, cineole, coumarin, ethyl cinnamate, linalool, humulene, β-caryophyllene, τ-cadinol) [57, 58]; clove (eugenol) [4]; fenugreek (diosgenin, yamogenin, choline, resins, trigonelline) [59]; black cumin (thymoquinone, cuminaldehyde, γ-terpinene, β-pinene, p-mentha-1, 3-diene-7-al, p-mentha-1, 4-dien-7-al, p-cymene) [60]; kokum (garcinol, xanthochymol, isoxanthochymol, 1,2-dihydroxypropane-1,2,3-tricarboxylic acid) [61]; rosemary [bornyl acetate, rosmarinic acid, carnosol, carnosic acid, camphor, limonene, camphene, borneol, cineole, α-pinene, (Z)-linalool oxide] [62]; saffron (crocetin and crocin) [63]; star anise (estragole, trans-anethole, limonene) etc. [64]. Hence, it is evident that spices contain a diverse range of active components that provide tremendous health benefits. Table 1 shows a list of spices, their common names, scientific names, and their active components. Figure 2 depicts the structures of active components of spices.
Table 1
Spices and their major components
Spice
Scientific name
Major components
References
Anise
Pimpinella anisum
Anethole, estragole, γ-hymachalen, para-anisaldehyde, methyl cavicol
[164]
Asafoetida
Ferula asafetida
Ferulic acid, umbel-liferone, asaresinotannols, farnesiferols A, B, C, glucose, galactose, l-arabinose, rhamnose, glucuronic acid, 2-butyl propenyl disulfide
[165]
Basil
Ocimum basilicum
Estragole, linalool, 1, 8-cineole, eugenol, methyl cinnamate, α-cubebene, α-farnesene, caryophyllene, β-ocimene
[166]
Bay leaves
Laurus nobilis
1,8-cineole, α-pinene, limonene, alpha-terpinyl acetate, terpinene-4-ol
[167, 168]
Black cumin
Nigella sativa
Thymoquinone, cuminaldehyde, γ-terpinene, β-pinene, p-cymene, p-mentha-1,3-diene-7-al, p-mentha-1,4-dien-7-al
[60, 169]
Black pepper
Piper nigrum
Piperine, β-caryophyllene, limonene, δ-3-carene, α-pinene, β-pinene, α-phellandrene, myrcene, terpinolene
[50]
Cardamom
Elettaria cardamomum
1,8-cineole, α-terpinyl acetate, limonene, linalool, terpinolene, myrcene, linalyl acetate
[56]
Celery seed
Trachyspermum ammi
2 Isopropyl-5-methyl-phenol, octadecanoic acid, lupeol acetate, hexadecanoic acid, (3β, 24S)-stigmast-5-en-3-ol, stigmasta-5,22-dien-3β-ol, lup-20(29)-en-3-yl acetate
[170]
Cinnamon
Cinnamomum zeylanicum
Cinnamaldehyde, cinnamyl acetate, cineole, eugenol, coumarin, linalool, humulene, ethyl cinnamate, β-caryophyllene, τ-cadinol
[58]
Clove
Syzygium aromaticm
Eugenol, eugenyl acetate, α-humulene, β-caryophyllene
[171]
Coriander
Corriandrum sativum
Petroselinic acid, linoleic acid, oleic acid, palmitic acid, stearic acid, vaccenic acid, myristic acid
[172]
Dill
Anethum graveolens
α-Phellandrene, limonene, dill ether, sabinene, α-pinene, n-tetracosane, neophytadiene, n-docosane, n-tricosane, n-nonadecane, n-eicosane, n-heneicosane, β-myrcene, α-tujene
[173]
Fennel
Foeniculum vulgare
Estragole, trans-anethole, fenchone, limonene, anisaldehyde, sabinene, β-myrcene, α-pinene, β-pinene, camphene
[174]
Fenugreek
Trigonella foenum-graecum
Diosgenin, yamogenin, gitogenin, tigogenin, neotigogens, carpaine, trigonelline, gentianine, 4-hydroxyisoleucine, fenugreekine, choline
[59]
Garlic
Allium sativum
Diallyl sulfides, diallyl disulfides, diallyl trisulfide, ajoene, allicin, alliin, methiin, S-allylcysteine, isoalliin, cycloalliin, S-allylmercaptocysteine
[51]
Ginger
Zingiber officinale
[6]-gingerol, [6]-paradol, shogoal, 6-gingerdiol, gingerdione, zingiberene, citral (neral and geranial), bisabolene, α-farnesene, β-phellandrene, cineole, zingerone
[52, 175]
Kokum
Garcinia indica
Garcinol, xanthochymol, isoxanthochymol, 1,2-dihydroxypropane-1,2,3-tricarboxylic acid
[61]
Mint
Mentha spp.
Carvone, limonene, 1, 8-cineole
[176]
Mustard
Sinapis alba
Allyl isothiocyanate, phenethyl isothiocyanate
[177]
Nutmeg
Myristica fragrans
Eugenol, methyleugenol, methylisoeugenol, elemicin, myristicin, safrole
[178]
Onion
Allium cepa
Quercetin, allyl propyl disulphide, protocatechuic acid, quercetin dimer, quercetin trimer, quercetin 4-o-β-glucoside, quercetin 3,4-o-β-diglucosides
[54, 179]
Parsley
Petroselinum crispum
Apiole, apigenin, p-1,3,8-menthatriene, β-phellandrene, myrcene, rutin, myristicin
[180]
Red pepper
Capsicum
Capsaicin, β-carotene, zeaxanthin, lutein, caffeic acid, capsanthin
[55]
Rosemary
Rosmarinus officinalis
Ursolic acid, carnosol, rosmarinic acid, carnosic acid, α-pinene, camphor, limonene, camphene, borneol, cineole, (Z)-linalool oxide, bornyl acetate
[62]
Saffron
Crocus sativus
Safranal, picrocrocin, crocetin, crocin
[181]
Sage
Salvia officinalis
1,8-cineole, camphor, α-thujone, β-thujone, viridiflorol, borneol
[182]
Sesame
Sesamum indicum
Sesamin, sesamolin, sesamol, sesamolinol, γ-tocopherol, phytic acid, linoleic acid, oleic acid, β-sitosterol, campesterol, stigmasterol, Δ5-avenasterol, palmitic acid, stearic acid
[183]
Star anise
Illicium verum
Estragole, aretrans-anethole, limonene, phenylpropanoids
[64]
Thyme
Thymus vulgaris
Thymol, carvacrol, p-cymene, gamma-terpinene, linalool, borneol, β-caryophyllene, carvacrol methyl ether, caryophyllene oxide
[184]
Turmeric
Curcuma longa
Curcumin (diferuloylmethane), demethoxycurcumin, bisdemethoxycurcumin
[48]
Vanilla
Vanilla planifolia
Vanillin, ethyl vanillin, vanillyl alcohol, vanillic acid, p-coumaric acid, ferulic acid, 4-hydroxybenzyl alcohol, 3, 4-dihydroxybenzaldehyde, 4-hydroxybenzoic acid, 4-hydroxybenzaldehyde, piperonal
[185]

Active components of spices, inflammatory pathways, and chronic diseases

Increasing lines of evidence have established the efficacy of the principal components of spices in preventing as well as alleviating different types of chronic diseases. The main components of spices and their curative potentials are discussed below:

1,8-Cineole

1,8-Cineole (Cin) is a monoterpene oxide found in variety of spices such as basil, cardamom, and sage [4]. Cin has been used to treat multiple inflammatory disorders such as bronchitis, sinusitis, chronic rhinitis, and asthma (Table 2). Cin has been shown to downregulate NOS-2, COX-2, and NF-κB, hence showing its potential as an anti-inflammatory agent [60]. Moreover, Cin also attenuated the colonic damage in trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats; decreased acute pulmonary inflammation in vivo; ameliorated acute pancreatitis in vivo via downregulation of cytokines, oxidative stress and NF-κB [38, 65, 66]. In AD, insoluble amyloid β deposits induced inflammation. However, it has been found that 1,8-cineole significantly lowered the expression of proinflammatory cytokines TNF-α, IL-1β and IL-6 in amyloid β toxicated PC12 cells [67]. In addition, numerous studies also showed its potential in preventing different chronic diseases such as asthma, colitis, COPD, pancreatitis, etc. by modulation of inflammatory pathways including TNF-α, COX-2, NF-κB, IL-1β, etc. [6669] (Table 2) (Fig. 3).
Table 2
Spice derived compounds and their mechanism of actions against different chronic diseases
Compound
Chronic diseases
Mechanism of action
References
1,8-cineole
Alzheimer’s disease
↓NOS-2, ↓COX-2, ↓NF-κB
[67]
Bronchial asthma
↓PGE2, ↓LTB4
[186]
Colitis
↓Myeloperoxidase
[38]
COPD
[69]
Pancreatitis
↓NF-κB
[66]
Ulceration
↓Myeloperoxidase
[38]
6-gingerol
Allergic rhinitis
↓T cell activity
[75]
Alzheimer’s disease
↑Nrf2
[72]
Colorectal cancer
↑NAG-1
[70]
Diabetes
↓VEGF
[71]
Osteoporosis
↓TNF-α
[187]
Steatohepatitis
↓NF-κB, ↓TNF-α, ↓IL-6
[73]
α-Pinene
Acute pancreatitis
↓TNF-α, ↓IL-1β, ↓IL-6
[78]
Arthritis
↓JNK, ↓iNOS, ↓MMP-1, ↓MMP-13
[188]
Rhinitis
↓IKK-β, ↓Caspase-1
[76]
Allicin
Ankylosing spondylitis
↓IL-6, ↓IL-8, ↓TNF-α
[189]
Alzheimer’s disease
↑Nrf2
[190]
Chronic kidney disease
↑Nrf2
[191]
Gastric cancer
↑G2/M arrest, ↑ER stress 
[192]
Glioblastoma multiforme
↓ERK
[193]
Hypercholesterolemia
↓TNF-α, ↓NF-κB
[194]
Recurrent aphthous ulcer
↓TNF-α
[195]
Type 1 diabetes
[196]
Ulcerative colitis
↓IL-6, ↓STAT3
[18]
Anethole
Breast cancer
↓NF-κB
[197]
Bronchial dysplasia
[198]
Capsaicin
Atherosclerosis
↑TRPV1
[199]
Alzheimer’s disease
↑Synapsin I; ↑PSD93
[112]
Bladder cancer
↓FOXO3a
[110]
Cholangiocarcinoma
↑PI3K/Akt/mTOR
[200]
Colon cancer
↑Caspase-8, -9, -3
[201]
Gastrointestinal disorders
[202]
Lung cancer
↓E2F
[114]
Cardiac hypertrophy and fibrosis
↑TRPV1
[199]
Pancreatitis
↓ERK, ↓c-Jun, ↓Hedgehog
[203]
Prostate cancer
↓p27
[113]
Carvacrol
Arthritis
↓Myeloperoxidase
[204]
Asthma
↓IL-4, ↓TGF-β, ↓IL-17
[205]
Atherosclerosis
↓MAPK
[206]
Colon cancer
↓iNOS, ↓IL-1β
[207]
COPD
↑IL-8
[31]
Gastric ulcers
↓Prostanoids
[208]
Intestinal mucositis
↑TRPA1 receptor
[209]
Pancreatitis
↓AST, ↓ALT, ↓LDH
[210]
Periodontitis
↓Myeloperoxidase
[211]
Cardamom
Colon cancer
↓COX-2, ↓iNOS
[212]
Forestomach cancer
↑GSH, ↓LDH
[213]
Carnosol
Brain damage by chronic stress
↑MDA
[214]
Colon cancer
[215]
Lymphoma
[215]
Cinnamon
Arthritis
↓IL-2,-4, ↓IFNγ
[120]
Alzheimer’s disease
↑p21rac
[121]
Colitis
↓COX-2
[216]
Diabetes
↓AP-1
[217]
Hyperglycemia
↑PPARγ
[218]
Inflammatory disorders
↓p38, ↓JNK, ↓ERK1/2, ↓STAT4
[219]
Melanoma
↓AP-1
[217]
Multiple sclerosis
↑Tregs
[119]
Parkinson’s disease
↓ Aβ polypeptide
[122]
Coriander
Alzheimer’s disease
↓Aβ42-induced ROS, ↓ERK
[220, 221]
Atherosclerosis
[222]
Colitis
[223]
Dermatitis
↓IgE, ↓TNF-α, ↓INFγ, ↓IL-1,-4,-13
[224]
Diabetes
↑Insulin release
[225]
Rheumatism
[226]
Crocin
Alzheimer’s disease
↓Aβ peptide 
[227]
Asthma
↓p-ERK, ↓p-JNK, ↓p-p38
[228]
Colitis
↓INFγ, ↓COX-2
[16]
Diabetes
↓TNF-α, ↓IL-1β
[229]
Liver cancer
↓NF-κB, ↓TNF-α, ↓IL-6, -10
[230]
Rheumatoid arthritis
↓iNOS, ↓TNF-α, ↓IL-1β, -6
[231]
Curcumin
Alzheimer’s disease
↑PI3K, ↑Akt
[87]
Asthma
↑Nrf2/HO-1
[89]
Atherosclerosis
↓IL-1β, -6, ↓TNF-α, ↑PPARγ
[232]
Cancer
↓Multiple pathways
[160, 161]
Chagas myocarditis
↓NFAT/COX-2/PGE2
[233]
COPD
↓p66Shc
[234]
Colitis
↓STAT3
[235]
Diabetes
↓NF-κB, ↓NO
[236]
Epilepsy
↓IL-1β, ↓IL-6, ↓TNF-α
[237]
Gastric ulcer
↓Acetylation of histone H3
[238]
Hepatitis
↓PGC-1α
[239]
Irritable bowel disease
↓p38 MAPK, ↓IL-1β, -10
[240]
Lupus nephritis
↓IgG1, ↓IgG2a
[241]
Oral lichen planus
[240]
Psoriasis
↓TNF-α, ↓IFN-γ, ↓IL-2, -12, -22,
[242]
Prostatitis
↓IL-8, ↓TNF-α
[88]
Ulcerative proctitis
[240]
Uveitis
[240]
Diallyl sulphide
Asthma
↑Nrf2
[79]
Colon cancer
[82]
Prostate cancer
↑Caspases-3,-9,-10, ↓Bcl-2
[84]
Osteoarthritis
↓MMP-1,-3,-13, ↓IL-1β
[81]
Skin cancer
↑Apoptosis
[83]
Diosgenin
Alzheimer’s disease
↑1,25D3-MARRS
[243]
Breast cancer
↓Vav2
[93]
Chronic myeloid leukemia
↓PI3K/Akt/mTOR
[94]
Diabetes
[244, 245]
Graves’ disease
↓IGF-1, ↓NF-κB, ↓cyclin D1, ↓PCNA
[246]
Hepatitis C
↓STAT3
[96]
Liver cancer
↑Caspase-3, -8,-9
[97]
Osteoarthritis
↓IL-1β
[95]
Osteoporosis
↓RANKL, ↑OPG
[247]
Prostate cancer
↓PI3K/Akt/mTOR
[98]
Eugenol
Asthma
↓NF-κB
[101]
Atherosclerosis
↓ALP, ↓LDH, ↓HMG-CoA
[248]
Breast cancer
↓E2F1/survivin
[103]
Cervical cancer
↓Bcl-2, ↓COX-2, ↓IL-1β
[102]
Depression
↑MTT-III
[249]
Diabetes
↓AST, ↓ALT, ↓LDH, ↓ALP
[100]
Gastric cancer
↓NF-κB
[104]
Hepatic steatosis and fibrosis
↓SREBP1
[250]
Hyperglycemia
↓Glycogen phosphorylase b
[251]
Skin cancer
↓NF-κB, ↓iNOS, ↓IL-6, ↓TNF-α, ↓PGE2
[252]
Garcinol
Allergy
↓STAT3
[106]
Breast cancer
↓Caspase-3, ↓NF-κB
[125]
Cardiovascular diseases
↓STAT3
[106]
Colon cancer
↓PK 1/2, PI3K/Akt/p70 ribosomal S6 kinase
[123]
Diabetes
↓STAT3
[106]
Head and neck cancer
↓STAT3, ↓NF-κB
[126]
Lung cancer
↓p38-MAPK
[127]
Oral squamous cell carcinoma
↓NF-κB
[116]
Pancreatic cancer
↓Wnt/β-catenin, ↓miR-200s
[128]
Prostate cancer
↑mTOR, ↑Akt
[253]
Limonene
Asthma
↓IL-5, -13, ↓MCP-1
[254]
Breast cancer
[255]
Colitis
↓NF-κB
[256]
Colorectal cancer
[255]
Skin cancer
↓Ras-ERK
[257]
Linalool
Diabetes
↓TGF-β1
[258]
Skin cancer
↓IL-6, ↓COX-2, ↓VEGF, ↓Bcl-2
[259]
Leukemia
↑p53, ↑p21, ↑p27, ↑p16, ↑p18
[260]
Cervical cancer
↑p53, ↑p21, ↑p27, ↑p16, ↑p18
[260]
Colon cancer
↑Hydroxy radical
[261]
Menthol
Pancreatic cancer
↓Focal-adhesion kinase
[262]
Depression
↑IL-1β,-6, ↑TNF-α
[263]
Skin cancer
↓NF-κB, ↓ERK, ↓p38
[264]
Napkin dermatitis
[265]
Neuropathic pain
↑TRPM8
[266]
Macelignan
Alzheimer’s disease
[267]
Asthma
↓IL-4, ↓GATA3
[268]
Type 1 allergy
↓Akt, ↓TNF-α, ↓MAPK, ↓c-Jun
[269]
Piperine
Alzheimer’s disease
[270]
Arthritis
↑IL-10
[151]
Asthma
↓IL-4, -5, ↓NF-κB
[150]
Breast cancer
↑p53, ↓MMP-9,-2, ↓c-Myc, ↓VEGF
[271]
Chronic gastritis
↓IL-1β, ↓IFN-γ, ↓IL-6, ↓iNOS
[272]
Colorectal cancer
[273]
Depression
↑BDNF
[274]
Endometritis
↓NF-κB, ↓MAPK
[148]
Fibrosarcoma
↓MMP-9
[275]
Gastric cancer
↓STAT3
[154]
Parkinson’s disease
↓IL-1β, ↓TNF-α
[276]
Triple negative breast cancer
↓Survivin, ↓p65
[277]
Ulcerative colitis
[278]
Quercetin
Arthritis
↓NF-κB, ↓1β, ↓MCP
[139]
Atherosclerosis
↑Akt
[147]
Atopic dermatitis
↓JAK-STAT
[142]
Breast cancer
↓Twist
[140]
Diabetes mellitus
[143]
Hepatitis
↑Nrf2
[138]
Inflammatory bowel disease
↑GSH
[141]
Periodontitis
↓IL-1β, ↓TNF-α, ↓RANKL, ↓iCAM-1
[279]
Psoriasis
[144]
Rosmarinic acid
Asthma
↓ERK, ↓JNK, ↓p38MAPK
[19]
Amyotrophic lateral sclerosis
↓HNE
[280]
Colitis
↓NF-κB, ↓STAT3
[281]
Colorectal cancer
↓IL-6/STAT3
[282]
Gastric cancer
↓IL-6/STAT3
[283]
Hepatocellular carcinoma
↓NF-κB
[284]
Leukemia
[285]
Neuropathic pain
↓COX-2, ↓PGE2, ↓IL-1β, ↓MMP-2
[286]
Osteoporosis
↓NFATc1
[287]
Pancreatitis
↓NF-κB
[288]
Psoriasis
↓IL-1β, ↓IL-6, -8, ↓CCL20, ↓TNF-α
[289]
Rhinoconjunctivitis
↓iCAM-1, ↓VCAM-1, ↓COX-2, ↓MIP-2
[290]
Sesamin
Asthma
↓IκB-α, ↓NF-κB
[291]
Atherosclerosis
↓MCP-1, ↓IL-1α, ↓IL-6, ↓CXCL-16
[292]
Breast cancer
↓VEGF, ↓MMP-9
[293]
Diabetes
↓FBS, ↓HbA1C, ↓TNF-α
[294]
Gall bladder carcinoma
↓NF-κB-IL-6-Stat3-Twist
[295]
Osteoarthritis
↑Nrf2
[296]
Prostate cancer
↓p38-MAPK, ↓NF-κB
[297]
Sulforaphane
Alzheimer disease
↑NLRP3
[298]
Atherosclerosis
[299]
Breast cancer
↓Bcl-2, ↑Caspase-3,-9
[158]
Cardiovascular diseases
↑Nrf2
[155]
Colorectal cancer
↑AP-1
[158]
Diabetes
↓RAGE
[157]
Lung cancer
↓Bcl-2, ↑Caspase-3, ↑Bax
[158]
Multiple sclerosis
↑Nrf2
[159]
Tocopherol
Atherosclerosis
↓IL-6,-10, ↓MCP-1, ↓TNF-α
[300]
Colitis
↓IL-6
[301]
Colon cancer
↓8-HDOG, ↓γ-H2AX
[302]
Lung cancer
↓8-HDOG, ↓γ-H2AX
[302]
Mammary hyperplasia
↓PCNA, ↓COX-2, ↑PPARγ, ↑Nrf2
[303]
Thymol
Asthma
↓NF-κB
[304]
Endometritis
↓TNF-α, ↑IL-1β, ↑iNOS, ↑COX-2
[305]
Gastric ulcer
↑ PGEs, ↑ATP K(+) channels
[306]
Mastitis
↓IκBα, ↓NF-κB, ↓ERK, ↓JNK
[307]
Thymoquinone
Allergic conjunctivitis
↓Eosinophils, ↓IgE, ↓histamine
[133]
Asthma
↓CD31, ↓α-SMA
[131]
Bladder cancer
↓NF-κB, ↓XIAP
[134]
Cholangiocarcinoma
↓PI3K/Akt, ↓NF-κB
[308]
Depression
↓TBARS, ↑GSH
[309]
Diabetes mellitus
↓p44/42, ↓p38-MAPKs
[310]
Gastric cancer
↓STAT3, ↓JAK2, ↓c-Src
[137]
Lung cancer
↓PCNA, ↓CD1, ↓MMP-2, ↓ERK1/2
[135]
Multiple myeloma
↓Ki-67, ↓VEGF, ↓Bcl-2, ↓p65
[311]
Myeloid leukemia
↓NF-κB, ↓CD1, ↓COX-2, ↓MMP-9
[312]
Osteoarthritis
↓IL-1β-induced MMP-1,-3,-13
[130]
Ovarian cancer
↑pH2AX, ↓NF-κB
[136]
Rheumatoid arthritis
↓ASK1
[132, 313]
Rhinosinusitis
[314]
Ursolic acid
Asthma
↓IL-5, -13
[315]
Colitis
↓NF-κB
[316]
Prostate cancer
↑Caspase-3,-9, ↓ROCK/PTEN
[317]
Rheumatoid arthritis
↓PGE2
[318]

6-Gingerol

6-Gingerol, the main active component of ginger, is shown to possess different biological activities such as anti-oxidative, anti-inflammatory and anti-proliferative properties [51]. Its therapeutic effect was observed against various chronic diseases such as AD, colorectal cancer and diabetes [7072] (Table 2) (Fig. 3). For example, 6-Gingerol can induce downregulation of inflammatory cytokines such as monocyte chemoattractant protein-1 (MCP-1), TNF-α, and IL-6, and NF-κB thereby, ameliorating steatohepatitis in vivo [73]. 6-gingerol also has a protective role against colitis in vivo through the activation of adenosine monophosphate-activated protein kinase (AMPK) pathway [74]. Studies have shown that this nutraceutical is a potential candidate for the treatment of diabetes. Diabetic rat treated with a ginger extract containing 5% of 6-gingerol significantly attenuated the expression of NF-κB and inhibited the activity of TNF-α and VEGF [71]. Moreover, 6-gingerol possesses anti-tumorigenic and pro-apoptotic properties. For instance, 6-gingerol promoted cell apoptosis in human colorectal cancer cells via the upregulation of nonsteroidal anti-inflammatory drug (NSAID)-activated gene-1 (NAG-1) [70]. Another study also demonstrated that 6-gingerol suppressed cytokine production for T cell activation and proliferation, hindering B cell and mast cell activation, thereby alleviating symptoms of allergic rhinitis (AR) [75].

α-Pinene

α-Pinene is a monoterpene, found mainly in eucalyptus oils and oils of aromatic plants such as rosemary. It is known to possess antimicrobial, apoptotic, antimetastatic, and antibiotic properties [76]. α-pinene is one promising agent for treatment of various inflammatory diseases as it has been found to suppress MAPKs and NF-κB pathway [77] (Fig. 3). The inflammation associated with acute pancreatitis is considerably reduced by treatment with α-pinene in vivo via the downregulation of TNF-α, IL-1β, and IL-6 [78]. Furthermore, treatment of AR mouse model with α-pinene significantly inhibited receptor-interacting protein 2 (RIP2), IκB kinase (IKK)-β, NF-κB, and caspase-1, thereby making α-pinene an anti-allergic agent against AR [76].

Diallyl sulphide (DAS)

Diallyl sulphide (DAS) is the major organo sulphur compound of garlic. It is a potential agent for treatment of airway inflammation such as asthma through its ability to regulate nuclear factor-E2-related factor 2/haemoxygenase-1 (Nrf2/HO-1) and NF-κB pathway [40]. Likewise, in vivo studies have also shown that DAS alleviated ovalbumin (OVA)-induced allergic asthma by inhibiting inflammatory factors such as ROS, NF-κB and 8-hydroxy-2′-deoxyguanosine, 8-iso-prostaglandin F2α, and increasing the activation of Nrf2 [79]. In case of osteoarthritis, DAS was reported to inhibit the expression of COX-2 potentially via NF-κB pathway [80]. In vivo study confirmed that DAS protected the cartilage in the development of osteoarthritis by inhibiting the expression of MMP-1, MMP-3, MMP-13, and IL-1β as well as enhancing the production of collagen II [81]. DAS has also been demonstrated to have anticancer properties against different cancers such as colon cancer, prostate cancer, skin cancer, etc. via modulation of inflammatory pathways [8284].

Curcumin

Curcumin, an active component of turmeric, is the most widely studied nutraceutical. It is known to possess anti-antioxidant, anti-bacterial, anti-cancer, , anti-fungal, anti-inflammatory and anti-viral activities. Thus, it is a potential agent against various chronic illnesses. It has been shown to modulate various inflammatory mediators including IL-6, TNF-α, PI3K/Akt, STAT3, IL-27, NF-κB, MAPK, etc. in various preclinical and clinical studies (Table 2) (Fig. 3). For example, inflammation of microglia cells prompts central nervous system (CNS) disorders. Interestingly, curcumin attenuates PI3K/Akt phosphorylation, NF-κB activation, and iNOS in lipopolysaccharide (LPS)-induced inflammatory responses in microglial cells [85]. This nutraceutical also effectively reduced the inflammatory responses in mastitis mice model via suppression of TLR4-mediated NF-κB signaling pathway [86]. Furthermore, curcumin was shown to ameliorate the insulin signaling in the brain of AD in vivo, thus showing its feasibility for treatment of AD [87]. Additionally, curcumin also alleviated chronic nonbacterial prostatitis by downregulating TNF-α, IL-6, and IL-8 in vivo [88]. Furthermore, it has been demonstrated that curcumin reduced asthmatic airway inflammation by activating Nrf2/HO-1 signaling pathway [89]. In case of human non-small cell lung cancer, this potent compound induced apoptosis via the upregulation of micro RNA, miR-192-5p and downregulation of PI3K/Akt signaling pathway [90]. Also, this compound was reported as a protectant against severe acute pancreatitis via attenuation of NF-κB in vivo [91]. This compound is known to inhibit cancer cell proliferation, survival, invasion, angiogenesis, metastases, chemoresistance, and radiation resistance in different types of cancers via modulation of different signaling pathways including NF-κB. Approximately, over 120 clinical trials have proven its potential to treat different chronic diseases without showing any adverse side effects. Curcumin has been shown to inhibit IBD, colitis, rhinitis, oral lichen planus, psoriasis, and prostatitis in various clinical trials. It has also been shown to inhibit cancer alone or in combination with standard chemotherapeutic agents in many clinical trials. So far, curcumin is the most extensively studied spice derived component for the treatment of different chronic diseases in both preclinical and clinical settings.

Diosgenin

Diosgenin is a bioactive compound obtained from the spice Trigonella foenum-graecum L. (fenugreek). Over the years, this spice has been known for its anti-carcinogenic, anti-diabetic, anti-oxidant, hypocholesterolemic and immunological properties. Because of its anti-inflammatory activities, diosgenin is a potential agent for various chronic diseases including AD, breast cancer, chronic myeloid leukemia, and osteoarthritis [9295] (Table 2) (Fig. 3). For instance, it has been shown to inhibit the expression of MMP-3, MMP-13, iNOS, and COX-2 on human osteoarthritis (OA) in vivo, thus, making diosgenin a suitable agent for OA therapy [95]. Additionally, diosgenin was found to exhibit anti-viral activity against hepatitis C in vitro; induce apoptosis in hepatocellular carcinoma and prostate cancer and inhibit migration of human breast cancer in vitro [93, 9698]. Diosgenin also enhanced ROS-dependent autophagy and cytotoxicity in chronic myeloid leukemia cells via inhibition of mammalian target of rapamycin (mTOR) signaling pathway [94]. This compound was also reported to prevent bone loss on retinoic acid-induced osteoporosis in vivo [99].

Capsaicin

Aforementioned, capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) is a principal component of the spice red pepper (Capsicum) [100, 101]. It is highly efficacious in ameliorating several chronic diseases such as asthma, diabetes, cancers of breast, cervical, stomach, etc. via the inhibition of STAT3, NF-κB, PGE2, IL-6, TNF-α, etc. [102107] (Table 2) (Fig. 3). Additionally, capsaicin also exhibits anticancer activity against cancer of the colon, lung, prostate, skin and tongue [46]. Studies revealed that capsaicin inhibits inflammatory cytokines such as IL-1β, IL-6, and TNF-α by upregulating Liver X receptor α (LXRα) [108]. Capsaicin can also reduce inflammation in salivary glands via inhibition of NF-κB pathway [109]. This efficient compound also effectively induced cell cycle arrest in bladder cancer cells via forehead box O3a (FOXO3a)-mediated pathway [110]. In vitro and in vivo studies also revealed that capsaicin ameliorated chronic diseases such as AD, skin inflammation, small cell lung cancer, etc. [111114].

Eugenol

Eugenol, the active principle from clove extract, is well known for its anti-inflammatory properties via modulation of inflammatory biomarkers such as TNF-α, IL-1, IL-6, COX-2, PGE2, NF-κB, etc. [115] (Table 2) (Fig. 3). In addition, it has been shown to inhibit various chronic diseases in preclinical studies (Table 2). For instance, eugenol was shown to restrict the progression of asthma in vivo by inhibition of NF-κB pathway [101]. This compound also inhibited cell proliferation in gastric cancer in vivo by suppressing NF-κB pathway [104]. Eugenol was found to enhance the efficacy of anti-cancer drug, gemcitabine and exert anti-inflammatory activity in human cervical cancer cells [102]. In addition, eugenol was shown to inhibit skin cancer via attenuation of c-Myc, H-ras and induction of p53 dependent apoptosis and induction of apoptosis in breast cancer cells via E2F1/survivin downregulation [103, 116]. Numerous investigations further revealed that eugenol exhibits anti-depressant as well as anti-diabetic activities [100, 117].

Cinnamaldehyde

Cinnamaldehyde (CM) is the active component of the spice cinnamon (Cinnamomum zeylanicum). This component is widely known for its anti-inflammatory, anti-microbial, anti-oxidant, anti-tumor, cholesterol lowering and immunomodulatory properties [57]. CM exerted its anti-inflammatory effect in gastric inflammation by inhibiting NF-κB activation [118]. Cinnamon can also reduce allergic encephalomyelitis in vivo via regulatory T cells [119]. Cinnamon bark has a prominent action in reducing inflammation in arthritis model in vivo via inhibiting cytokines such as IL-2, IL-4, and interferon γ (IFNγ), hence may be regarded as a potent anti-rheumatic agent [120]. Moreover, cinnamon is also effective for the treatment of neurodegenerative diseases such as AD [121, 122] (Table 2).

Garcinol

Garcinol is a polyisoprenylated benzophenone isolated from the plant Garcinia indica (Kokum) [106]. A functional investigation has revealed the anti-carcinogenic, anti-inflammatory and anti-oxidative properties of garcinol [123]. Studies showed that garcinol inhibited the proliferation of breast cancer cells in vitro [124]. Additionally, it also sensitized breast cancer cells to a chemotherapeutic agent, taxol via downregulation of NF-κB/Twist1 and caspase-3/iPLA(2) signaling pathways in a mouse 4T1 breast tumor model [125]. This active component also inhibited inflammation-associated colon carcinogenesis in vivo [123]. Furthermore, garcinol also mediated anti-tumor effect by inhibiting the constitutive activation of STAT3 and NF-κB in squamous cell carcinoma of the head and neck [126]. It has also been reported that garcinol exerted its anti-cancer activity by inducing downregulation of p38-MAPK signaling in lung cancer; NF-κB inhibition in oral cancer; modulation of epithelial–mesenchymal transition (EMT) and Wnt signaling in breast cancer [105, 127, 128].

Thymoquinone

Thymoquinone is isolated from black cumin (Nigella sativa). It has been shown to possess anti-inflammatory, anti-oxidant, and chemopreventive activities [129]. A recent report has depicted that this bioactive component inhibited IL-1β-induced inflammation via downregulating NF-κB and MAPKs signaling in human osteoarthritis chondrocytes [130]. It also prevented inflammation, neoangiogenesis, and vascular remodeling in asthma in vivo [131]. Thymoquinone also inhibited TNF-α-induced inflammation and cell adhesion in RA, thus making it a promising anti-inflammatory agent [132]. Studies also reported the ameliorative activity of thymoquinone against ovalbumin-induced allergic conjunctivitis in vivo [133]. Additionally, it was also found to be effective against cancer of the bladder, lung, ovarian, gastric, etc. Thymoquinone portrayed its anti-tumor function via inactivation of PI3K/Akt, ERK, NF-κB and STAT3 pathways [134137] (Table 2) (Fig. 3).

Quercetin

Quercetin is a dietary flavonoid obtained from onions. The anti-cancer, anti-inflammatory, and anti-oxidant properties of this phytochemical are demonstrated by numerous studies. Quercetin is effective against various chronic diseases including arthritis, breast cancer, dermatitis, diabetes, IBD, hepatitis, psoriasis, etc. due to its ability to inhibit the dysregulated inflammatory pathways involved in these chronic diseases (Table 2) [138144]. The anti-inflammatory properties of quercetin is attributed to its ability to downregulate NF-κB and MAPK pathways and enhance PI3K/Akt and Nrf2 pathways [145147] (Table 2) (Fig. 3).

Piperine

Piperine is the principal plant alkaloid isolated from black pepper (Piper nigrum) and long pepper (Piper longum). Piperine has several biological properties including analgesic, anti-convulsant, anti-tumor and anti-inflammatory activities [148]. Several studies have shown that piperine could attenuate the inflammatory response associated with chronic diseases such as AD, asthma, arthritis, chronic gastritis, endometritis, Parkinson’s disease, etc. [149151] (Table 2). The anti-inflammatory activity of piperine in these chronic diseases is achieved via downregulation of inflammatory pathways such as NF-κB, MAPK, AP-1, COX-2, NOS-2, IL-1β, TNF-α, PGE2, STAT3, etc. [148, 149, 151154] (Table 2) (Fig. 3).

Sulforaphane

Sulforaphane is an isothiocyanate (sulphur containing compounds) distributed amongst cruciferous vegetables including mustard. Studies have shown that sulphoraphane possesses anti-cancer and cardioprotective activities [155]. It elicits protection against cardiovascular diseases via activation of Nrf2 [155]. Studies also reported that sulforaphane represents a promising agent for treatment of chronic diseases such as AD, bladder cancer, colorectal cancer, diabetes, and  lung cancer [156158] (Table 2). Another study has also suggested that sulforaphane inhibit pro-inflammatory signaling through inhibition of NF-κB pathway [159] (Fig. 3).
Besides these active components, other compounds found in spices includes allicin (garlic), anethole (fennel), carnosol (rosemary); linalool (coriander), crocin (saffron), sesamin (sesame seed), ursolic acid (basil), carvone (mint), myristicin (nutmeg), etc. These potent ingredients of diverse spices have been found to aid in preventing and alleviating various chronic diseases (Fig. 4), mostly by downregulating signaling pathways such as NF-κB, STAT3 and ERK/MAPK pathways [129, 146, 148, 159163].

Conclusion

Overall, it is evident from these studies that the allure of spices is attributed not only to their aroma, but also more importantly, to their wellness power. The spice-derived compounds can interact with multiple targets and alter the dysregulated inflammatory pathways and mediators associated with chronic diseases. Hence, with the fatal side effects and inflating cost of modern therapeutics, spices and their active components hold a huge guarantee for the development of affordable, novel and safe drugs against chronic diseases. However, in-depth scientific investigations are required to completely determine the potential of the spice-derived nutraceuticals and open new avenues for the better management of patients with chronic diseases.

Authors’ contributions

ABK and BLS collected the relevant literatures and drafted the manuscript. HC and KB contributed in the preparation of the tables and figures. SP, SCG and ACB edited the manuscript. BBA conceived the idea and framework of the review and made the final proof reading. All authors read and approved the final manuscript.

Acknowledgements

We are thankful to IIT Guwahati for providing the facilities for this work.

Competing interests

The authors declare that they have no competing interests.

Availability of data and material

Not applicable.
Not applicable.
Not applicable.

Funding

The work was supported by Department of Biotechnology, Government of India—BT/556/NE/U-Excel/2016 awarded to Dr. Ajaikumar B. Kunnumakkara and DST-INSPIRE-IF140215 (Department of Science and Technology, Government of India) awarded to Bethsebie L. Sailo. Kishore Banik acknowledges the UGC for providing the fellowship. The study was supported by research grants (DST – PURSE Phase II/RC/2016/944; from DBT – 6242-P34/RGCB/PMD/DBT/ALCB/2015; ICMR – 5/13/38/2014 NCDIII-Eoffice73143; and intramural grants from University of Delhi) to Prof. Alok C. Bharti.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med. 2012;54(Suppl):S29–37.PubMed Prasad S, Sung B, Aggarwal BB. Age-associated chronic diseases require age-old medicine: role of chronic inflammation. Prev Med. 2012;54(Suppl):S29–37.PubMed
2.
Zurück zum Zitat Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol. 2014;29:23–8.PubMed Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol. 2014;29:23–8.PubMed
3.
Zurück zum Zitat Nasef NA, Mehta S, Ferguson LR. Susceptibility to chronic inflammation: an update. Arch Toxicol. 2017;91(3):1131–41.PubMed Nasef NA, Mehta S, Ferguson LR. Susceptibility to chronic inflammation: an update. Arch Toxicol. 2017;91(3):1131–41.PubMed
4.
Zurück zum Zitat Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009;234(8):825–49. Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009;234(8):825–49.
5.
Zurück zum Zitat Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.PubMedPubMedCentral Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49(11):1603–16.PubMedPubMedCentral
6.
Zurück zum Zitat Sung B, Prasad S, Yadav VR, Aggarwal BB. Cancer cell signaling pathwaystargeted by spice-derived nutraceuticals. Nutr Cancer. 2012;64(2):173–97.PubMed Sung B, Prasad S, Yadav VR, Aggarwal BB. Cancer cell signaling pathwaystargeted by spice-derived nutraceuticals. Nutr Cancer. 2012;64(2):173–97.PubMed
7.
Zurück zum Zitat Van der Veen M, Morales J. The Roman and Islamic spice trade: newarchaeological evidence. J Ethnopharmacol. 2015;167:54–63.PubMed Van der Veen M, Morales J. The Roman and Islamic spice trade: newarchaeological evidence. J Ethnopharmacol. 2015;167:54–63.PubMed
8.
Zurück zum Zitat Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol. 2011;44(2):142–59.PubMedPubMedCentral Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol. 2011;44(2):142–59.PubMedPubMedCentral
9.
Zurück zum Zitat Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.PubMed Medzhitov R. Inflammation 2010: new adventures of an old flame. Cell. 2010;140(6):771–6.PubMed
10.
Zurück zum Zitat Aggarwal BB. Inflammation, a silent killer in cancer is not so silent! Curr Opin Pharmacol. 2009;9(4):347–50.PubMed Aggarwal BB. Inflammation, a silent killer in cancer is not so silent! Curr Opin Pharmacol. 2009;9(4):347–50.PubMed
11.
Zurück zum Zitat Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, Tanaka T. Dietary Crocin Inhibits Colitis and Colitis-Associated Colorectal Carcinogenesis in Male ICR Mice. Evid Based Complement Alternat Med. 2012;2012:820415.PubMedPubMedCentral Kawabata K, Tung NH, Shoyama Y, Sugie S, Mori T, Tanaka T. Dietary Crocin Inhibits Colitis and Colitis-Associated Colorectal Carcinogenesis in Male ICR Mice. Evid Based Complement Alternat Med. 2012;2012:820415.PubMedPubMedCentral
12.
Zurück zum Zitat Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel). 2010;2(10):2428–66. Yadav VR, Prasad S, Sung B, Kannappan R, Aggarwal BB. Targeting inflammatory pathways by triterpenoids for prevention and treatment of cancer. Toxins (Basel). 2010;2(10):2428–66.
13.
Zurück zum Zitat Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM. Allicin alleviates dextran sodium sulfate− (DSS−) induced ulcerative colitis in BALB/c mice. Oxid Med Cell Longev. 2015;2015:605208.PubMedPubMedCentral Pandurangan AK, Ismail S, Saadatdoust Z, Esa NM. Allicin alleviates dextran sodium sulfate− (DSS−) induced ulcerative colitis in BALB/c mice. Oxid Med Cell Longev. 2015;2015:605208.PubMedPubMedCentral
14.
Zurück zum Zitat Liang Z, Xu Y, Wen X, Nie H, Hu T, Yang X, Chu X, Yang J, Deng X, He J. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules. 2016;21(6):769.PubMedCentral Liang Z, Xu Y, Wen X, Nie H, Hu T, Yang X, Chu X, Yang J, Deng X, He J. Rosmarinic acid attenuates airway inflammation and hyperresponsiveness in a murine model of asthma. Molecules. 2016;21(6):769.PubMedCentral
15.
Zurück zum Zitat Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R. Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy Drug Targets. 2013;12(5):349–61.PubMed Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R. Anti-inflammatory treatments for chronic diseases: a review. Inflamm Allergy Drug Targets. 2013;12(5):349–61.PubMed
16.
Zurück zum Zitat Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.PubMed Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30(7):1073–81.PubMed
17.
Zurück zum Zitat Raposo TP, Beirão BC, Pang LY, Queiroga FL, Argyle DJ. Inflammation and cancer: till death tears them apart. Vet J. 2015;205(2):161–74.PubMed Raposo TP, Beirão BC, Pang LY, Queiroga FL, Argyle DJ. Inflammation and cancer: till death tears them apart. Vet J. 2015;205(2):161–74.PubMed
18.
Zurück zum Zitat Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79(3–4):123–30.PubMed Rakoff-Nahoum S. Why cancer and inflammation? Yale J Biol Med. 2006;79(3–4):123–30.PubMed
19.
Zurück zum Zitat Mangino G, Chiantore MV, Iuliano M, Fiorucci G, Romeo G. Inflammatory microenvironment and human papillomavirus-induced carcinogenesis. Cytokine Growth Factor Rev. 2016;30:103–11.PubMed Mangino G, Chiantore MV, Iuliano M, Fiorucci G, Romeo G. Inflammatory microenvironment and human papillomavirus-induced carcinogenesis. Cytokine Growth Factor Rev. 2016;30:103–11.PubMed
20.
Zurück zum Zitat Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.PubMed Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochem Pharmacol. 2006;72(11):1605–21.PubMed
21.
Zurück zum Zitat Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res. 2015;128:173–96.PubMed Wang K, Karin M. Tumor-elicited inflammation and colorectal cancer. Adv Cancer Res. 2015;128:173–96.PubMed
22.
Zurück zum Zitat Karin M. The IkappaB kinase—a bridge between inflammation and cancer. Cell Res. 2008;18(3):334–42.PubMed Karin M. The IkappaB kinase—a bridge between inflammation and cancer. Cell Res. 2008;18(3):334–42.PubMed
23.
Zurück zum Zitat Dmitrieva OS, Shilovskiy IP, Khaitov MR, Grivennikov SI. Interleukins 1 and 6 as main mediators of inflammation and cancer. Biochemistry (Mosc). 2016;81(2):80–90. Dmitrieva OS, Shilovskiy IP, Khaitov MR, Grivennikov SI. Interleukins 1 and 6 as main mediators of inflammation and cancer. Biochemistry (Mosc). 2016;81(2):80–90.
24.
Zurück zum Zitat Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol. 2013;49(9):887–92.PubMed Feller L, Altini M, Lemmer J. Inflammation in the context of oral cancer. Oral Oncol. 2013;49(9):887–92.PubMed
25.
Zurück zum Zitat Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, Miwa H, Lim KJ, Das KM. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol. 2014;20(18):5461–73.PubMedPubMedCentral Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, Miwa H, Lim KJ, Das KM. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol. 2014;20(18):5461–73.PubMedPubMedCentral
26.
Zurück zum Zitat Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, Ozaki H, Murata T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014;74(11):3011–9.PubMed Iwanaga K, Nakamura T, Maeda S, Aritake K, Hori M, Urade Y, Ozaki H, Murata T. Mast cell-derived prostaglandin D2 inhibits colitis and colitis-associated colon cancer in mice. Cancer Res. 2014;74(11):3011–9.PubMed
27.
Zurück zum Zitat Hung SC, Lai SW, Tsai PY, Chen PC, Wu HC, Lin WH, Sung FC. Synergistic interaction of benign prostatic hyperplasia and prostatitis on prostate cancer risk. Br J Cancer. 2013;108(9):1778–83.PubMedPubMedCentral Hung SC, Lai SW, Tsai PY, Chen PC, Wu HC, Lin WH, Sung FC. Synergistic interaction of benign prostatic hyperplasia and prostatitis on prostate cancer risk. Br J Cancer. 2013;108(9):1778–83.PubMedPubMedCentral
28.
Zurück zum Zitat Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45.PubMed Houghton AM. Mechanistic links between COPD and lung cancer. Nat Rev Cancer. 2013;13(4):233–45.PubMed
29.
Zurück zum Zitat Zhang D, Cai Y, Chen M, Gao L, Shen Y, Huang Z. OGT-mediated O-GlcNAcylation promotes NF-κB activation and inflammation in acute pancreatitis. Inflamm Res. 2015;64(12):943–52.PubMed Zhang D, Cai Y, Chen M, Gao L, Shen Y, Huang Z. OGT-mediated O-GlcNAcylation promotes NF-κB activation and inflammation in acute pancreatitis. Inflamm Res. 2015;64(12):943–52.PubMed
30.
Zurück zum Zitat Talukdar R, Sasikala M, Pavan Kumar P, Rao GV, Pradeep R, Reddy DN. T-helper cell-mediated islet inflammation contributes to β-Cell dysfunction in chronic pancreatitis. Pancreas. 2016;45(3):434–42.PubMed Talukdar R, Sasikala M, Pavan Kumar P, Rao GV, Pradeep R, Reddy DN. T-helper cell-mediated islet inflammation contributes to β-Cell dysfunction in chronic pancreatitis. Pancreas. 2016;45(3):434–42.PubMed
31.
Zurück zum Zitat Mahtaj LG, Feizpour A, Kianmehr M, Soukhtanloo M, Boskabady MH. The effect of carvacrol on systemic inflammation in guinea pigs model of COPD induced by cigarette smoke exposure. Pharmacol Rep. 2015;67(1):140–5.PubMed Mahtaj LG, Feizpour A, Kianmehr M, Soukhtanloo M, Boskabady MH. The effect of carvacrol on systemic inflammation in guinea pigs model of COPD induced by cigarette smoke exposure. Pharmacol Rep. 2015;67(1):140–5.PubMed
32.
Zurück zum Zitat Barbu C, Iordache M, Man MG. Inflammation in COPD: pathogenesis, local and systemic effects. Rom J Morphol Embryol. 2011;52(1):21–7.PubMed Barbu C, Iordache M, Man MG. Inflammation in COPD: pathogenesis, local and systemic effects. Rom J Morphol Embryol. 2011;52(1):21–7.PubMed
33.
Zurück zum Zitat Shang J, Zhao J, Wu X, Xu Y, Xie J, Zhao J. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochem Cell Biol. 2015;93(4):359–66.PubMed Shang J, Zhao J, Wu X, Xu Y, Xie J, Zhao J. Interleukin-33 promotes inflammatory cytokine production in chronic airway inflammation. Biochem Cell Biol. 2015;93(4):359–66.PubMed
34.
Zurück zum Zitat Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation andimmunity is the common link. Br J Pharmacol. 2016;173(4):635–48.PubMed Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation andimmunity is the common link. Br J Pharmacol. 2016;173(4):635–48.PubMed
35.
Zurück zum Zitat Roeleveld DM, van Nieuwenhuijze AE, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs. 2013;27(5):439–52.PubMed Roeleveld DM, van Nieuwenhuijze AE, van den Berg WB, Koenders MI. The Th17 pathway as a therapeutic target in rheumatoid arthritis and other autoimmune and inflammatory disorders. BioDrugs. 2013;27(5):439–52.PubMed
36.
Zurück zum Zitat Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1β and TNFα-initiated IL-6-STAT3 pathway iscritical in mediating inflammatory cytokines and RANKL expression in inflammatoryarthritis. Int Immunol. 2011;23(11):701–12.PubMed Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1β and TNFα-initiated IL-6-STAT3 pathway iscritical in mediating inflammatory cytokines and RANKL expression in inflammatoryarthritis. Int Immunol. 2011;23(11):701–12.PubMed
37.
Zurück zum Zitat Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res. 2015;38(12):2106–19.PubMed Shadfar S, Hwang CJ, Lim MS, Choi DY, Hong JT. Involvement of inflammation in Alzheimer’s disease pathogenesis and therapeutic potential of anti-inflammatory agents. Arch Pharm Res. 2015;38(12):2106–19.PubMed
38.
Zurück zum Zitat Santos FA, Silva RM, Campos AR, De Araújo RP, Lima Júnior RC. Rao VS.1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol. 2004;42(4):579–84.PubMed Santos FA, Silva RM, Campos AR, De Araújo RP, Lima Júnior RC. Rao VS.1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol. 2004;42(4):579–84.PubMed
39.
Zurück zum Zitat He Z, Ke J, He X, Lian L, Sun L, Chen Z, Wu X, Lan P. Inflammation promotes the development of colitis-associated colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2014;17(7):706–10.PubMed He Z, Ke J, He X, Lian L, Sun L, Chen Z, Wu X, Lan P. Inflammation promotes the development of colitis-associated colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. 2014;17(7):706–10.PubMed
40.
Zurück zum Zitat Shin IS, Hong J, Jeon CM, Shin NR, Kwon OK, Kim HS, Kim JC, Oh SR, Ahn KS. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression. Food Chem Toxicol. 2013;62:506–13.PubMed Shin IS, Hong J, Jeon CM, Shin NR, Kwon OK, Kim HS, Kim JC, Oh SR, Ahn KS. Diallyl-disulfide, an organosulfur compound of garlic, attenuates airway inflammation via activation of the Nrf-2/HO-1 pathway and NF-kappaB suppression. Food Chem Toxicol. 2013;62:506–13.PubMed
41.
Zurück zum Zitat Liu J, Cheng Y, Zhang X, Zhang X, Chen S, Hu Z, Zhou C, Zhang E, Ma S. Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation. 2015;38(5):2007–16.PubMed Liu J, Cheng Y, Zhang X, Zhang X, Chen S, Hu Z, Zhou C, Zhang E, Ma S. Astragalin attenuates allergic inflammation in a murine asthma model. Inflammation. 2015;38(5):2007–16.PubMed
42.
Zurück zum Zitat Dunican EM, Fahy JV. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc. 2015;12(Suppl 2):S144–9.PubMedPubMedCentral Dunican EM, Fahy JV. The role of type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc. 2015;12(Suppl 2):S144–9.PubMedPubMedCentral
43.
Zurück zum Zitat Pedicino D, Liuzzo G, Trotta F, Giglio AF, Giubilato S, Martini F, Zaccardi F, Scavone G, Previtero M, Massaro G, Cialdella P, Cardillo MT, Pitocco D, Ghirlanda G, Crea F. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus. J Diabetes Res. 2013;2013:184258.PubMedPubMedCentral Pedicino D, Liuzzo G, Trotta F, Giglio AF, Giubilato S, Martini F, Zaccardi F, Scavone G, Previtero M, Massaro G, Cialdella P, Cardillo MT, Pitocco D, Ghirlanda G, Crea F. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus. J Diabetes Res. 2013;2013:184258.PubMedPubMedCentral
44.
Zurück zum Zitat Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol. 2013;164:1–76.PubMed Nilius B, Appendino G. Spices: the savory and beneficial science of pungency. Rev Physiol Biochem Pharmacol. 2013;164:1–76.PubMed
45.
Zurück zum Zitat Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci. 2014;15(10):19183–202.PubMedPubMedCentral Opara EI, Chohan M. Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. Int J Mol Sci. 2014;15(10):19183–202.PubMedPubMedCentral
46.
Zurück zum Zitat Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P. Potential of spice-derived phytochemicals for cancer prevention. Planta Med. 2008;74(13):1560–9.PubMed Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P. Potential of spice-derived phytochemicals for cancer prevention. Planta Med. 2008;74(13):1560–9.PubMed
47.
Zurück zum Zitat Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMed Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.PubMed
48.
Zurück zum Zitat Lin JK, Shiau SYL. Turmeric (Curcumin). In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 403–24. Lin JK, Shiau SYL. Turmeric (Curcumin). In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 403–24.
49.
Zurück zum Zitat Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121–30.PubMed Meghwal M, Goswami TK. Piper nigrum and piperine: an update. Phytother Res. 2013;27(8):1121–30.PubMed
50.
Zurück zum Zitat Musenga A, Mandrioli R, Ferranti A, D’Orazio G, Fanali S, Raggi MA. Analysis of aromatic and terpenic constituents of pepper extracts by capillary electrochromatography. J Sep Sci. 2007;30:612–9.PubMed Musenga A, Mandrioli R, Ferranti A, D’Orazio G, Fanali S, Raggi MA. Analysis of aromatic and terpenic constituents of pepper extracts by capillary electrochromatography. J Sep Sci. 2007;30:612–9.PubMed
51.
Zurück zum Zitat Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res. 1999;428(1–2):305–27.PubMed Surh Y. Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res. 1999;428(1–2):305–27.PubMed
52.
Zurück zum Zitat Jolad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry. 2005;66(13):1614–35.PubMed Jolad SD, Lantz RC, Chen GJ, Bates RB, Timmermann BN. Commercially processed dry ginger (Zingiber officinale): composition and effects on LPS-stimulated PGE2 production. Phytochemistry. 2005;66(13):1614–35.PubMed
53.
Zurück zum Zitat Kimbaris AC, Siatis NG, Daferera DJ, Tarantilis PA, Pappas CS, Polissiou MG. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason Sonochem. 2006;13:54–60.PubMed Kimbaris AC, Siatis NG, Daferera DJ, Tarantilis PA, Pappas CS, Polissiou MG. Comparison of distillation and ultrasound-assisted extraction methods for the isolation of sensitive aroma compounds from garlic (Allium sativum). Ultrason Sonochem. 2006;13:54–60.PubMed
54.
Zurück zum Zitat Srinivasan K. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr. 2014;54(3):352–72.PubMed Srinivasan K. Antioxidant potential of spices and their active constituents. Crit Rev Food Sci Nutr. 2014;54(3):352–72.PubMed
55.
Zurück zum Zitat Howard LR, Talcott ST, Brenes CH, Villalon B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem. 2000;48:1713–20.PubMed Howard LR, Talcott ST, Brenes CH, Villalon B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J Agric Food Chem. 2000;48:1713–20.PubMed
56.
Zurück zum Zitat Marongiu B, Piras A, Porcedda S. Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton. J Agric Food Chem. 2004;52:6278–82.PubMed Marongiu B, Piras A, Porcedda S. Comparative analysis of the oil and supercritical CO2 extract of Elettaria cardamomum (L.) Maton. J Agric Food Chem. 2004;52:6278–82.PubMed
57.
Zurück zum Zitat Gruenwald J, Freder J, Armbruester N. Cinnamon and health. Crit Rev Food Sci Nutr. 2010;50:822–34.PubMed Gruenwald J, Freder J, Armbruester N. Cinnamon and health. Crit Rev Food Sci Nutr. 2010;50:822–34.PubMed
58.
Zurück zum Zitat Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. J Agric Food Chem. 2003;51:4344–8.PubMed Jayaprakasha GK, Jagan Mohan Rao L, Sakariah KK. Volatile constituents from Cinnamomum zeylanicum fruit stalks and their antioxidant activities. J Agric Food Chem. 2003;51:4344–8.PubMed
59.
Zurück zum Zitat Mullaicharam AR, Deori G, Maheswari RU. Medicinal values of fenugreek—a review. Res J Pharm Biol Chem Sci. 2013;4(1):1304. Mullaicharam AR, Deori G, Maheswari RU. Medicinal values of fenugreek—a review. Res J Pharm Biol Chem Sci. 2013;4(1):1304.
60.
Zurück zum Zitat Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem. 2005;53:57–61.PubMed Iacobellis NS, Lo Cantore P, Capasso F, Senatore F. Antibacterial activity of Cuminum cyminum L. and Carum carvi L. essential oils. J Agric Food Chem. 2005;53:57–61.PubMed
61.
Zurück zum Zitat Pandey MK, Kunnumakkara AB, Aggarwal BB. Kokum (Garcinol). In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 281–304. Pandey MK, Kunnumakkara AB, Aggarwal BB. Kokum (Garcinol). In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 281–304.
62.
Zurück zum Zitat Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55:7879–85.PubMed Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of rosemary and sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55:7879–85.PubMed
63.
Zurück zum Zitat Gohari AR, Saeidnia S, Mahmoodabadi MK. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev. 2013;7(13):61.PubMedPubMedCentral Gohari AR, Saeidnia S, Mahmoodabadi MK. An overview on saffron, phytochemicals, and medicinal properties. Pharmacogn Rev. 2013;7(13):61.PubMedPubMedCentral
64.
Zurück zum Zitat Butt MS, Naz A, Sultan MT, Qayyum MM. Anti-oncogenic perspectives of spices/herbs: a comprehensive review. EXCLI J. 2013;12:1043–65.PubMedPubMedCentral Butt MS, Naz A, Sultan MT, Qayyum MM. Anti-oncogenic perspectives of spices/herbs: a comprehensive review. EXCLI J. 2013;12:1043–65.PubMedPubMedCentral
65.
Zurück zum Zitat Zhao C, Sun J, Fang C, Tang F. 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation. 2014;37(2):566–72.PubMed Zhao C, Sun J, Fang C, Tang F. 1,8-cineol attenuates LPS-induced acute pulmonary inflammation in mice. Inflammation. 2014;37(2):566–72.PubMed
66.
Zurück zum Zitat Lima PR, de Melo TS, Carvalho KM, de Oliveira ÍB, Arruda BR, de Castro Brito GA, Rao VS, Santos FA. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice. Life Sci. 2013;92(24–26):1195–201.PubMed Lima PR, de Melo TS, Carvalho KM, de Oliveira ÍB, Arruda BR, de Castro Brito GA, Rao VS, Santos FA. 1,8-cineole (eucalyptol) ameliorates cerulein-induced acute pancreatitis via modulation of cytokines, oxidative stress and NF-κB activity in mice. Life Sci. 2013;92(24–26):1195–201.PubMed
67.
Zurück zum Zitat Khan A, Vaibhav K, Javed H, Tabassum R, Ahmed ME, Khan MM, Khan MB, Shrivastava P, Islam F, Siddiqui MS, Safhi MM, Islam F. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem Res. 2014;39(2):344–52.PubMed Khan A, Vaibhav K, Javed H, Tabassum R, Ahmed ME, Khan MM, Khan MB, Shrivastava P, Islam F, Siddiqui MS, Safhi MM, Islam F. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer’s disease. Neurochem Res. 2014;39(2):344–52.PubMed
68.
Zurück zum Zitat Santos FA, Silva RM, Tomé AR, Rao VS, Pompeu MM, Teixeira MJ, De Freitas LA, De Souza VL. 1,8-cineole protects against liver failure in an in vivo murine model of endotoxemic shock. J Pharm Pharmacol. 2001;53(4):505–11.PubMed Santos FA, Silva RM, Tomé AR, Rao VS, Pompeu MM, Teixeira MJ, De Freitas LA, De Souza VL. 1,8-cineole protects against liver failure in an in vivo murine model of endotoxemic shock. J Pharm Pharmacol. 2001;53(4):505–11.PubMed
69.
Zurück zum Zitat Juergens UR. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg). 2014;64(12):638–46. Juergens UR. Anti-inflammatory properties of the monoterpene 1.8-cineole: current evidence for co-medication in inflammatory airway diseases. Drug Res (Stuttg). 2014;64(12):638–46.
70.
Zurück zum Zitat Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog. 2008;47(3):197–208.PubMedPubMedCentral Lee SH, Cekanova M, Baek SJ. Multiple mechanisms are involved in 6-gingerol-induced cell growth arrest and apoptosis in human colorectal cancer cells. Mol Carcinog. 2008;47(3):197–208.PubMedPubMedCentral
71.
Zurück zum Zitat Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, Nag TC, Srivastava S, Kumar P. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms. Mol Vis. 2016;22:599–609.PubMedPubMedCentral Dongare S, Gupta SK, Mathur R, Saxena R, Mathur S, Agarwal R, Nag TC, Srivastava S, Kumar P. Zingiber officinale attenuates retinal microvascular changes in diabetic rats via anti-inflammatory and antiangiogenic mechanisms. Mol Vis. 2016;22:599–609.PubMedPubMedCentral
72.
Zurück zum Zitat Lee C, Park GH, Kim CY, Jang JH. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol. 2011;49(6):1261–9.PubMed Lee C, Park GH, Kim CY, Jang JH. [6]-Gingerol attenuates β-amyloid-induced oxidative cell death via fortifying cellular antioxidant defense system. Food Chem Toxicol. 2011;49(6):1261–9.PubMed
73.
Zurück zum Zitat Tzeng TF, Liou SS, Chang CJ, Liu IM. 6-gingerol protects against nutritional steatohepatitis by regulating key genes related to inflammation and lipid metabolism. Nutrients. 2015;7(2):999–1020.PubMedPubMedCentral Tzeng TF, Liou SS, Chang CJ, Liu IM. 6-gingerol protects against nutritional steatohepatitis by regulating key genes related to inflammation and lipid metabolism. Nutrients. 2015;7(2):999–1020.PubMedPubMedCentral
74.
Zurück zum Zitat Chang KW, Kuo CY. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct. 2015;6(10):3334–41.PubMed Chang KW, Kuo CY. 6-Gingerol modulates proinflammatory responses in dextran sodium sulfate (DSS)-treated Caco-2 cells and experimental colitis in mice through adenosine monophosphate-activated protein kinase (AMPK) activation. Food Funct. 2015;6(10):3334–41.PubMed
75.
Zurück zum Zitat Kawamoto Y, Ueno Y, Nakahashi E, Obayashi M, Sugihara K, Qiao S, Iida M, Kumasaka MY, Yajima I, Goto Y, Ohgami N, Kato M, Takeda K. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. J Nutr Biochem. 2016;27:112–22.PubMed Kawamoto Y, Ueno Y, Nakahashi E, Obayashi M, Sugihara K, Qiao S, Iida M, Kumasaka MY, Yajima I, Goto Y, Ohgami N, Kato M, Takeda K. Prevention of allergic rhinitis by ginger and the molecular basis of immunosuppression by 6-gingerol through T cell inactivation. J Nutr Biochem. 2016;27:112–22.PubMed
76.
Zurück zum Zitat Nam SY, Chung CK, Seo JH, Rah SY, Kim HM, Jeong HJ. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int Immunopharmacol. 2014;23(1):273–82.PubMed Nam SY, Chung CK, Seo JH, Rah SY, Kim HM, Jeong HJ. The therapeutic efficacy of α-pinene in an experimental mouse model of allergic rhinitis. Int Immunopharmacol. 2014;23(1):273–82.PubMed
77.
Zurück zum Zitat Kim DS, Lee HJ, Jeon YD, Han YH, Kee JY, Kim HJ, Shin HJ, Kang J, Lee BS, Kim SH, Kim SJ, Park SH, Choi BM, Park SJ, Um JY, Hong SH. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(4):731–42.PubMed Kim DS, Lee HJ, Jeon YD, Han YH, Kee JY, Kim HJ, Shin HJ, Kang J, Lee BS, Kim SH, Kim SJ, Park SH, Choi BM, Park SJ, Um JY, Hong SH. Alpha-pinene exhibits anti-inflammatory activity through the suppression of MAPKs and the NF-κB pathway in mouse peritoneal macrophages. Am J Chin Med. 2015;43(4):731–42.PubMed
78.
Zurück zum Zitat Bae GS, Park KC, Choi SB, Jo IJ, Choi MO, Hong SH, Song K, Song HJ, Park SJ. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17–18):866–71.PubMed Bae GS, Park KC, Choi SB, Jo IJ, Choi MO, Hong SH, Song K, Song HJ, Park SJ. Protective effects of alpha-pinene in mice with cerulein-induced acute pancreatitis. Life Sci. 2012;91(17–18):866–71.PubMed
79.
Zurück zum Zitat Ho CY, Lu CC, Weng CJ, Yen GC. Protective effects of diallyl sulfide on ovalbumin-induced pulmonary inflammation of allergic asthma mice by microRNA-144,-34a, and -34b/c-modulated Nrf2 activation. J Agric Food Chem. 2016;64(1):151–60.PubMed Ho CY, Lu CC, Weng CJ, Yen GC. Protective effects of diallyl sulfide on ovalbumin-induced pulmonary inflammation of allergic asthma mice by microRNA-144,-34a, and -34b/c-modulated Nrf2 activation. J Agric Food Chem. 2016;64(1):151–60.PubMed
80.
Zurück zum Zitat Lee HS, Lee CH, Tsai HC, Salter DM. Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1beta. Osteoarthr Cartil. 2009;17(1):91–9. Lee HS, Lee CH, Tsai HC, Salter DM. Inhibition of cyclooxygenase 2 expression by diallyl sulfide on joint inflammation induced by urate crystal and IL-1beta. Osteoarthr Cartil. 2009;17(1):91–9.
81.
Zurück zum Zitat Chen WP, Tang JL, Bao JP, Hu PF, Yu C, Shi ZL, Wu LD. Effects of diallyl sulphide in chondrocyte and cartilage in experimental osteoarthritis in rabbit. Phytother Res. 2011;25(3):351–6.PubMed Chen WP, Tang JL, Bao JP, Hu PF, Yu C, Shi ZL, Wu LD. Effects of diallyl sulphide in chondrocyte and cartilage in experimental osteoarthritis in rabbit. Phytother Res. 2011;25(3):351–6.PubMed
82.
Zurück zum Zitat Kang JS, Kim TM, Shim TJ, Salim EI, Han BS, Kim DJ. Modifying effect of diallyl sulfide on colon carcinogenesis in C57BL/6 J-ApcMin/+ mice. Asian Pac J Cancer Prev. 2012;13(4):1115–8.PubMed Kang JS, Kim TM, Shim TJ, Salim EI, Han BS, Kim DJ. Modifying effect of diallyl sulfide on colon carcinogenesis in C57BL/6 J-ApcMin/+ mice. Asian Pac J Cancer Prev. 2012;13(4):1115–8.PubMed
83.
Zurück zum Zitat Arora A, Shukla Y. Induction of apoptosis by diallyl sulfide in DMBA-induced mouse skin tumors. Nutr Cancer. 2002;44(1):89–94.PubMed Arora A, Shukla Y. Induction of apoptosis by diallyl sulfide in DMBA-induced mouse skin tumors. Nutr Cancer. 2002;44(1):89–94.PubMed
84.
Zurück zum Zitat Gayathri R, Gunadharini DN, Arunkumar A, SenthilkumarKrishnamoorthy G, Banudevi S, Vignesh RC, Arunakaran J. Effects of diallyl disulfide (DADS) on expression of apoptosis associated proteins in androgen independent human prostate cancer cells (PC-3). Mol Cell Biochem. 2009;320(1–2):197–203.PubMed Gayathri R, Gunadharini DN, Arunkumar A, SenthilkumarKrishnamoorthy G, Banudevi S, Vignesh RC, Arunakaran J. Effects of diallyl disulfide (DADS) on expression of apoptosis associated proteins in androgen independent human prostate cancer cells (PC-3). Mol Cell Biochem. 2009;320(1–2):197–203.PubMed
85.
Zurück zum Zitat Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016;36:282–90.PubMed Cianciulli A, Calvello R, Porro C, Trotta T, Salvatore R, Panaro MA. PI3k/Akt signalling pathway plays a crucial role in the anti-inflammatory effects of curcumin in LPS-activated microglia. Int Immunopharmacol. 2016;36:282–90.PubMed
86.
Zurück zum Zitat Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2014;20(1):54–8.PubMed Fu Y, Gao R, Cao Y, Guo M, Wei Z, Zhou E, Li Y, Yao M, Yang Z, Zhang N. Curcumin attenuates inflammatory responses by suppressing TLR4-mediated NF-κB signaling pathway in lipopolysaccharide-induced mastitis in mice. Int Immunopharmacol. 2014;20(1):54–8.PubMed
87.
Zurück zum Zitat Feng HL, Dang HZ, Fan H, Chen XP, Rao YX, Ren Y, Yang JD, Shi J, Wang PW, Tian JZ. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int J Immunopathol Pharmacol. 2016;29(4):734–41.PubMedPubMedCentral Feng HL, Dang HZ, Fan H, Chen XP, Rao YX, Ren Y, Yang JD, Shi J, Wang PW, Tian JZ. Curcumin ameliorates insulin signalling pathway in brain of Alzheimer’s disease transgenic mice. Int J Immunopathol Pharmacol. 2016;29(4):734–41.PubMedPubMedCentral
88.
Zurück zum Zitat Zhang QY, Mo ZN, Liu XD. Reducing effect of curcumin on expressions of TNF-alpha, IL-6 and IL-8 in rats with chronic nonbacterial prostatitis. Zhonghua Nan Ke Xue. 2010;16(1):84–8.PubMed Zhang QY, Mo ZN, Liu XD. Reducing effect of curcumin on expressions of TNF-alpha, IL-6 and IL-8 in rats with chronic nonbacterial prostatitis. Zhonghua Nan Ke Xue. 2010;16(1):84–8.PubMed
89.
Zurück zum Zitat Liu L, Shang Y, Li M, Han X, Wang J, Wang J. Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin Exp Pharmacol Physiol. 2015;42(5):520–9.PubMed Liu L, Shang Y, Li M, Han X, Wang J, Wang J. Curcumin ameliorates asthmatic airway inflammation by activating nuclear factor-E2-related factor 2/haem oxygenase (HO)-1 signalling pathway. Clin Exp Pharmacol Physiol. 2015;42(5):520–9.PubMed
90.
Zurück zum Zitat Jin H, Qiao F, Wang Y, Xu Y, Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 2015;34(5):2782–9.PubMed Jin H, Qiao F, Wang Y, Xu Y, Shang Y. Curcumin inhibits cell proliferation and induces apoptosis of human non-small cell lung cancer cells through the upregulation of miR-192-5p and suppression of PI3K/Akt signaling pathway. Oncol Rep. 2015;34(5):2782–9.PubMed
91.
Zurück zum Zitat Zhong K. Curcumin mediates a protective effect via TLR-4/NF-κB signaling pathway in rat model of severe acute pancreatitis. Cell Biochem Biophys. 2015;73(1):175–80.PubMed Zhong K. Curcumin mediates a protective effect via TLR-4/NF-κB signaling pathway in rat model of severe acute pancreatitis. Cell Biochem Biophys. 2015;73(1):175–80.PubMed
92.
Zurück zum Zitat Chojnacki JE, Liu K, Saathoff JM, Zhang S. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer’s disease. Bioorg Med Chem. 2015;23(22):7324–31.PubMedPubMedCentral Chojnacki JE, Liu K, Saathoff JM, Zhang S. Bivalent ligands incorporating curcumin and diosgenin as multifunctional compounds against Alzheimer’s disease. Bioorg Med Chem. 2015;23(22):7324–31.PubMedPubMedCentral
93.
Zurück zum Zitat He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, Sun J. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine. 2014;21(6):871–6.PubMed He Z, Chen H, Li G, Zhu H, Gao Y, Zhang L, Sun J. Diosgenin inhibits the migration of human breast cancer MDA-MB-231 cells by suppressing Vav2 activity. Phytomedicine. 2014;21(6):871–6.PubMed
94.
Zurück zum Zitat Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine. 2016;23(3):243–52.PubMed Jiang S, Fan J, Wang Q, Ju D, Feng M, Li J, Guan ZB, An D, Wang X, Ye L. Diosgenin induces ROS-dependent autophagy and cytotoxicity via mTOR signaling pathway in chronic myeloid leukemia cells. Phytomedicine. 2016;23(3):243–52.PubMed
95.
Zurück zum Zitat Wang L, Ma T, Zheng Y, Lv S, Li Y, Liu S. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes. Int J Clin Exp Pathol. 2015;8(5):4830–6.PubMedPubMedCentral Wang L, Ma T, Zheng Y, Lv S, Li Y, Liu S. Diosgenin inhibits IL-1β-induced expression of inflammatory mediators in human osteoarthritis chondrocytes. Int J Clin Exp Pathol. 2015;8(5):4830–6.PubMedPubMedCentral
96.
Zurück zum Zitat Wang YJ, Pan KL, Hsieh TC, Chang TY, Lin WH, Hsu JT. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J Nat Prod. 2011;74(4):580–4.PubMed Wang YJ, Pan KL, Hsieh TC, Chang TY, Lin WH, Hsu JT. Diosgenin, a plant-derived sapogenin, exhibits antiviral activity in vitro against hepatitis C virus. J Nat Prod. 2011;74(4):580–4.PubMed
97.
Zurück zum Zitat Li Y, Wang X, Cheng S, Du J, Deng Z, Zhang Y, Liu Q, Gao J, Cheng B, Ling C. Diosgenin induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Oncol Rep. 2015;33(2):693–8.PubMed Li Y, Wang X, Cheng S, Du J, Deng Z, Zhang Y, Liu Q, Gao J, Cheng B, Ling C. Diosgenin induces G2/M cell cycle arrest and apoptosis in human hepatocellular carcinoma cells. Oncol Rep. 2015;33(2):693–8.PubMed
98.
Zurück zum Zitat Nie C, Zhou J, Qin X, Shi X, Zeng Q, Liu J, Yan S, Zhang L. Diosgenin-induced autophagy and apoptosis in a human prostate cancer cell line. Mol Med Rep. 2016;14(5):4349–59.PubMed Nie C, Zhou J, Qin X, Shi X, Zeng Q, Liu J, Yan S, Zhang L. Diosgenin-induced autophagy and apoptosis in a human prostate cancer cell line. Mol Med Rep. 2016;14(5):4349–59.PubMed
99.
Zurück zum Zitat Zhao S, Niu F, Xu CY, Liu Y, Ye L, Bi GB, Chen L, Tian G, Nie TH. Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci. 2016;185(3):581–7.PubMed Zhao S, Niu F, Xu CY, Liu Y, Ye L, Bi GB, Chen L, Tian G, Nie TH. Diosgenin prevents bone loss on retinoic acid-induced osteoporosis in rats. Ir J Med Sci. 2016;185(3):581–7.PubMed
100.
Zurück zum Zitat Mnafgui K, Kaanich F, Derbali A, Hamden K, Derbali F, Slama S, Allouche N, Elfeki A. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Arch Physiol Biochem. 2013;119(5):225–33.PubMed Mnafgui K, Kaanich F, Derbali A, Hamden K, Derbali F, Slama S, Allouche N, Elfeki A. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats. Arch Physiol Biochem. 2013;119(5):225–33.PubMed
101.
Zurück zum Zitat Pan C, Dong Z. Antiasthmatic effects of eugenol in a mouse model of allergic asthma by regulation of vitamin D3 upregulated protein 1/NF-κB pathway. Inflammation. 2015;38(4):1385–93.PubMed Pan C, Dong Z. Antiasthmatic effects of eugenol in a mouse model of allergic asthma by regulation of vitamin D3 upregulated protein 1/NF-κB pathway. Inflammation. 2015;38(4):1385–93.PubMed
102.
Zurück zum Zitat Hussain A, Brahmbhatt K, Priyani A, Ahmed M, Rizvi TA, Sharma C. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm. 2011;26(5):519–27.PubMed Hussain A, Brahmbhatt K, Priyani A, Ahmed M, Rizvi TA, Sharma C. Eugenol enhances the chemotherapeutic potential of gemcitabine and induces anticarcinogenic and anti-inflammatory activity in human cervical cancer cells. Cancer Biother Radiopharm. 2011;26(5):519–27.PubMed
103.
Zurück zum Zitat Al-Sharif I, Remmal A, Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13(13):600.PubMedPubMedCentral Al-Sharif I, Remmal A, Aboussekhra A. Eugenol triggers apoptosis in breast cancer cells through E2F1/survivin down-regulation. BMC Cancer. 2013;13(13):600.PubMedPubMedCentral
104.
Zurück zum Zitat Manikandan P, Vinothini G, Vidya Priyadarsini R, Prathiba D, Nagini S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Invest New Drugs. 2011;29(1):110–7.PubMed Manikandan P, Vinothini G, Vidya Priyadarsini R, Prathiba D, Nagini S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Invest New Drugs. 2011;29(1):110–7.PubMed
105.
Zurück zum Zitat Aggarwal S, Das SN. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer. Tumour Biol. 2016;37(6):7175–84.PubMed Aggarwal S, Das SN. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer. Tumour Biol. 2016;37(6):7175–84.PubMed
106.
Zurück zum Zitat Behera AK, Swamy MM, Natesh N, Kundu TK. Garcinol and its role in chronic diseases. Adv Exp Med Biol. 2016;928:435–52.PubMed Behera AK, Swamy MM, Natesh N, Kundu TK. Garcinol and its role in chronic diseases. Adv Exp Med Biol. 2016;928:435–52.PubMed
107.
Zurück zum Zitat Wang B, Lin L, Ai Q, Zeng T, Ge P, Zhang L. HAT inhibitor, garcinol, exacerbates lipopolysaccharide-induced inflammation in vitro and in vivo. Mol Med Rep. 2016;13(6):5290–6.PubMed Wang B, Lin L, Ai Q, Zeng T, Ge P, Zhang L. HAT inhibitor, garcinol, exacerbates lipopolysaccharide-induced inflammation in vitro and in vivo. Mol Med Rep. 2016;13(6):5290–6.PubMed
108.
Zurück zum Zitat Tang J, Luo K, Li Y, Chen Q, Tang D, Wang D, Xiao J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int Immunopharmacol. 2015;28(1):264–9.PubMed Tang J, Luo K, Li Y, Chen Q, Tang D, Wang D, Xiao J. Capsaicin attenuates LPS-induced inflammatory cytokine production by upregulation of LXRα. Int Immunopharmacol. 2015;28(1):264–9.PubMed
109.
Zurück zum Zitat Shin YH, Namkoong E, Choi S, Bae JS, Jin M, Hwang SM, Arote R, Choi SY, Park K. Capsaicin regulates the NF-κB pathway in salivary gland inflammation. J Dent Res. 2013;92(6):547–52.PubMed Shin YH, Namkoong E, Choi S, Bae JS, Jin M, Hwang SM, Arote R, Choi SY, Park K. Capsaicin regulates the NF-κB pathway in salivary gland inflammation. J Dent Res. 2013;92(6):547–52.PubMed
110.
Zurück zum Zitat Qian K, Wang G, Cao R, Liu T, Qian G, Guan X, Guo Z, Xiao Y, Wang X. capsaicinsuppresses cell proliferation, induces cell cycle arrest and ROS production in bladder cancer cells through FOXO3a-mediated pathways. Molecules. 2016;21(10):1406.PubMedCentral Qian K, Wang G, Cao R, Liu T, Qian G, Guan X, Guo Z, Xiao Y, Wang X. capsaicinsuppresses cell proliferation, induces cell cycle arrest and ROS production in bladder cancer cells through FOXO3a-mediated pathways. Molecules. 2016;21(10):1406.PubMedCentral
111.
Zurück zum Zitat Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170(1):51–63.PubMedPubMedCentral Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170(1):51–63.PubMedPubMedCentral
112.
Zurück zum Zitat Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL, Zhou XW. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis. 2013;35(1):91–105.PubMed Jiang X, Jia LW, Li XH, Cheng XS, Xie JZ, Ma ZW, Xu WJ, Liu Y, Yao Y, Du LL, Zhou XW. Capsaicin ameliorates stress-induced Alzheimer’s disease-like pathological and cognitive impairments in rats. J Alzheimers Dis. 2013;35(1):91–105.PubMed
113.
Zurück zum Zitat Venier NA, Yamamoto T, Sugar LM, Adomat H, Fleshner NE, Klotz LH, Venkateswaran V. Capsaicin reduces the metastatic burden in the transgenic adenocarcinoma of the mouse prostate model. Prostate. 2015;75(12):1300–11.PubMed Venier NA, Yamamoto T, Sugar LM, Adomat H, Fleshner NE, Klotz LH, Venkateswaran V. Capsaicin reduces the metastatic burden in the transgenic adenocarcinoma of the mouse prostate model. Prostate. 2015;75(12):1300–11.PubMed
114.
Zurück zum Zitat Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS ONE. 2010;5(4):e10243.PubMedPubMedCentral Brown KC, Witte TR, Hardman WE, Luo H, Chen YC, Carpenter AB, Lau JK, Dasgupta P. Capsaicin displays anti-proliferative activity against human small cell lung cancer in cell culture and nude mice models via the E2F pathway. PLoS ONE. 2010;5(4):e10243.PubMedPubMedCentral
115.
Zurück zum Zitat Bachiega TF, de Sousa JP, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. J Pharm Pharmacol. 2012;64(4):610–6.PubMed Bachiega TF, de Sousa JP, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/anti-inflammatory action on cytokine production by murine macrophages. J Pharm Pharmacol. 2012;64(4):610–6.PubMed
116.
Zurück zum Zitat Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci. 2010;59(1):31–9.PubMed Pal D, Banerjee S, Mukherjee S, Roy A, Panda CK, Das S. Eugenol restricts DMBA croton oil induced skin carcinogenesis in mice: downregulation of c-Myc and H-ras, and activation of p53 dependent apoptotic pathway. J Dermatol Sci. 2010;59(1):31–9.PubMed
117.
Zurück zum Zitat Yeh JL, Hsu JH, Hong YS, Wu JR, Liang JC, Wu BN, Chen IJ, Liou SF. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages. Int J Immunopathol Pharmacol. 2011;24(2):345–56.PubMed Yeh JL, Hsu JH, Hong YS, Wu JR, Liang JC, Wu BN, Chen IJ, Liou SF. Eugenolol and glyceryl-isoeugenol suppress LPS-induced iNOS expression by down-regulating NF-kappaB AND AP-1 through inhibition of MAPKS and AKT/IkappaBalpha signaling pathways in macrophages. Int J Immunopathol Pharmacol. 2011;24(2):345–56.PubMed
118.
Zurück zum Zitat Muhammad JS, Zaidi SF, Shaharyar S, Refaat A, Usmanghani K, Saiki I, Sugiyama T. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol Pharm Bull. 2015;38(1):109–15.PubMed Muhammad JS, Zaidi SF, Shaharyar S, Refaat A, Usmanghani K, Saiki I, Sugiyama T. Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol Pharm Bull. 2015;38(1):109–15.PubMed
119.
Zurück zum Zitat Mondal S, Pahan K. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy. PLoS ONE. 2015;10(1):e0116566.PubMedPubMedCentral Mondal S, Pahan K. Cinnamon ameliorates experimental allergic encephalomyelitis in mice via regulatory T cells: implications for multiple sclerosis therapy. PLoS ONE. 2015;10(1):e0116566.PubMedPubMedCentral
120.
Zurück zum Zitat Rathi B, Bodhankar S, Mohan V, Thakurdesai P. Ameliorative effects of a polyphenolic fraction of Cinnamomum zeylanicum L. bark in animal models of inflammation and arthritis. Sci Pharm. 2013;81(2):567–89.PubMedPubMedCentral Rathi B, Bodhankar S, Mohan V, Thakurdesai P. Ameliorative effects of a polyphenolic fraction of Cinnamomum zeylanicum L. bark in animal models of inflammation and arthritis. Sci Pharm. 2013;81(2):567–89.PubMedPubMedCentral
121.
Zurück zum Zitat Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of Alzheimer’s disease. PLoS ONE. 2015;10(6):e0130398.PubMedPubMedCentral Modi KK, Roy A, Brahmachari S, Rangasamy SB, Pahan K. Cinnamon and its metabolite sodium benzoate attenuate the activation of p21rac and protect memory and learning in an animal model of Alzheimer’s disease. PLoS ONE. 2015;10(6):e0130398.PubMedPubMedCentral
122.
Zurück zum Zitat Shaltiel-Karyo R, Davidi D, Frenkel-Pinter M, Ovadia M, Segal D, Gazit E. Differential inhibition of α-synuclein oligomeric and fibrillar assembly in parkinson’s disease model by cinnamon extract. Biochim Biophys Acta. 2012;1820(10):1628–35.PubMed Shaltiel-Karyo R, Davidi D, Frenkel-Pinter M, Ovadia M, Segal D, Gazit E. Differential inhibition of α-synuclein oligomeric and fibrillar assembly in parkinson’s disease model by cinnamon extract. Biochim Biophys Acta. 2012;1820(10):1628–35.PubMed
123.
Zurück zum Zitat Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res. 2014;58(9):1820–9.PubMed Tsai ML, Chiou YS, Chiou LY, Ho CT, Pan MH. Garcinol suppresses inflammation-associated colon carcinogenesis in mice. Mol Nutr Food Res. 2014;58(9):1820–9.PubMed
124.
Zurück zum Zitat Ye X, Yuan L, Zhang L, Zhao J, Zhang CM, Deng HY. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol. Asian Pac J Cancer Prev. 2014;15(12):5001–7.PubMed Ye X, Yuan L, Zhang L, Zhao J, Zhang CM, Deng HY. Garcinol, an acetyltransferase inhibitor, suppresses proliferation of breast cancer cell line MCF-7 promoted by 17β-estradiol. Asian Pac J Cancer Prev. 2014;15(12):5001–7.PubMed
125.
Zurück zum Zitat Tu SH, Chiou YS, Kalyanam N, Ho CT, Chen LC, Pan MH. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA(2) and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct. 2017;8(3):1067–79.PubMed Tu SH, Chiou YS, Kalyanam N, Ho CT, Chen LC, Pan MH. Garcinol sensitizes breast cancer cells to Taxol through the suppression of caspase-3/iPLA(2) and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct. 2017;8(3):1067–79.PubMed
126.
Zurück zum Zitat Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu TK, Sethi G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila). 2013;6(8):843–54. Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, Kundu TK, Sethi G. Garcinol, a polyisoprenylated benzophenone modulates multiple proinflammatory signaling cascades leading to the suppression of growth and survival of head and neck carcinoma. Cancer Prev Res (Phila). 2013;6(8):843–54.
127.
Zurück zum Zitat Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. J Agric Food Chem. 2014;62(9):2085–95.PubMed Yu SY, Liao CH, Chien MH, Tsai TY, Lin JK, Weng MS. Induction of p21(Waf1/Cip1) by garcinol via downregulation of p38-MAPK signaling in p53-independent H1299 lung cancer. J Agric Food Chem. 2014;62(9):2085–95.PubMed
128.
Zurück zum Zitat Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, Padhye SB, Sarkar FH. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther. 2012;11(10):2193–201.PubMed Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, Li Y, Bao B, Kong D, Banerjee S, Padhye SB, Sarkar FH. Garcinol regulates EMT and Wnt signaling pathways in vitro and in vivo, leading to anticancer activity against breast cancer cells. Mol Cancer Ther. 2012;11(10):2193–201.PubMed
129.
Zurück zum Zitat Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P, Naidu VG. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res. 2015;99:63–73.PubMed Thummuri D, Jeengar MK, Shrivastava S, Nemani H, Ramavat RN, Chaudhari P, Naidu VG. Thymoquinone prevents RANKL-induced osteoclastogenesis activation and osteolysis in an in vivo model of inflammation by suppressing NF-KB and MAPK Signalling. Pharmacol Res. 2015;99:63–73.PubMed
130.
Zurück zum Zitat Wang D, Qiao J, Zhao X, Chen T, Guan D. Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-κB and MAPKs Signaling Pathway. Inflammation. 2015;38(6):2235–41.PubMed Wang D, Qiao J, Zhao X, Chen T, Guan D. Thymoquinone Inhibits IL-1β-Induced Inflammation in Human Osteoarthritis Chondrocytes by Suppressing NF-κB and MAPKs Signaling Pathway. Inflammation. 2015;38(6):2235–41.PubMed
131.
Zurück zum Zitat Su X, Ren Y, Yu N, Kong L, Kang J. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. Int Immunopharmacol. 2016;38:70–80.PubMed Su X, Ren Y, Yu N, Kong L, Kang J. Thymoquinone inhibits inflammation, neoangiogenesis and vascular remodeling in asthma mice. Int Immunopharmacol. 2016;38:70–80.PubMed
132.
Zurück zum Zitat Umar S, Hedaya O, Singh AK, Ahmed S. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol Appl Pharmacol. 2015;287(3):299–305.PubMedPubMedCentral Umar S, Hedaya O, Singh AK, Ahmed S. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation. Toxicol Appl Pharmacol. 2015;287(3):299–305.PubMedPubMedCentral
133.
Zurück zum Zitat Hayat K, Asim MB, Nawaz M, Li M, Zhang L, Sun N. Ameliorative effect of thymoquinone on ovalbumin-induced allergic conjunctivitis in Balb/c mice. Curr Eye Res. 2011;36(7):591–8.PubMed Hayat K, Asim MB, Nawaz M, Li M, Zhang L, Sun N. Ameliorative effect of thymoquinone on ovalbumin-induced allergic conjunctivitis in Balb/c mice. Curr Eye Res. 2011;36(7):591–8.PubMed
134.
Zurück zum Zitat Mu HQ, Yang S, Wang YJ, Chen YH. Role of NF-κB in the anti-tumor effect of thymoquinone on bladder cancer. Zhonghua Yi Xue Za Zhi. 2012;92(6):392–6.PubMed Mu HQ, Yang S, Wang YJ, Chen YH. Role of NF-κB in the anti-tumor effect of thymoquinone on bladder cancer. Zhonghua Yi Xue Za Zhi. 2012;92(6):392–6.PubMed
135.
Zurück zum Zitat Yang J, Kuang XR, Lv PT, Yan XX. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol. 2015;36(1):259–69.PubMed Yang J, Kuang XR, Lv PT, Yan XX. Thymoquinone inhibits proliferation and invasion of human nonsmall-cell lung cancer cells via ERK pathway. Tumour Biol. 2015;36(1):259–69.PubMed
136.
Zurück zum Zitat Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J Ovarian Res. 2015;8:46.PubMedPubMedCentral Wilson AJ, Saskowski J, Barham W, Yull F, Khabele D. Thymoquinone enhances cisplatin-response through direct tumor effects in a syngeneic mouse model of ovarian cancer. J Ovarian Res. 2015;8:46.PubMedPubMedCentral
137.
Zurück zum Zitat Zhu WQ, Wang J, Guo XF, Liu Z, Dong WG. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J Gastroenterol. 2016;22(16):4149–59.PubMedPubMedCentral Zhu WQ, Wang J, Guo XF, Liu Z, Dong WG. Thymoquinone inhibits proliferation in gastric cancer via the STAT3 pathway in vivo and in vitro. World J Gastroenterol. 2016;22(16):4149–59.PubMedPubMedCentral
138.
Zurück zum Zitat Li X, Liu HC, Yao QY, Xu BL, Zhang SC, Tu CT. Quercetin protects mice from ConA-induced hepatitis by inhibiting HMGB1-TLR expression and down-regulating the nuclear factor kappa B pathway. Inflammation. 2016;39(1):96–106.PubMed Li X, Liu HC, Yao QY, Xu BL, Zhang SC, Tu CT. Quercetin protects mice from ConA-induced hepatitis by inhibiting HMGB1-TLR expression and down-regulating the nuclear factor kappa B pathway. Inflammation. 2016;39(1):96–106.PubMed
139.
Zurück zum Zitat Gardi C, Bauerova K, Stringa B, Kuncirova V, Slovak L, Ponist S, Drafi F, Bezakova L, Tedesco I, Acquaviva A, Bilotto S, Russo GL. Quercetin reducedinflammation and increased antioxidant defense in rat adjuvant arthritis. ArchBiochem Biophys. 2015;583:150–7. Gardi C, Bauerova K, Stringa B, Kuncirova V, Slovak L, Ponist S, Drafi F, Bezakova L, Tedesco I, Acquaviva A, Bilotto S, Russo GL. Quercetin reducedinflammation and increased antioxidant defense in rat adjuvant arthritis. ArchBiochem Biophys. 2015;583:150–7.
140.
Zurück zum Zitat Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE. 2015;10(10):e0141370.PubMedPubMedCentral Ranganathan S, Halagowder D, Sivasithambaram ND. Quercetin suppresses twist to induce apoptosis in MCF-7 breast cancer cells. PLoS ONE. 2015;10(10):e0141370.PubMedPubMedCentral
141.
Zurück zum Zitat Dodda D, Chhajed R, Mishra J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: possible morphological and biochemical alterations. Pharmacol Rep. 2014;66(1):169–73.PubMed Dodda D, Chhajed R, Mishra J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: possible morphological and biochemical alterations. Pharmacol Rep. 2014;66(1):169–73.PubMed
142.
Zurück zum Zitat Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today. 2016;21(4):632–9.PubMed Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Watanabe K. Molecular targets of quercetin with anti-inflammatory properties in atopic dermatitis. Drug Discov Today. 2016;21(4):632–9.PubMed
143.
Zurück zum Zitat Maciel RM, Costa MM, Martins DB, França RT, Schmatz R, Graça DL, Duarte MM, Danesi CC, Mazzanti CM, Schetinger MR, Paim FC, Palma HE, Abdala FH, Stefanello N, Zimpel CK, Felin DV, Lopes ST. Antioxidant and anti-inflammatory effects ofquercetin in functional and morphological alterations in streptozotocin-induced diabetic rats. Res Vet Sci. 2013;95(2):389–97.PubMed Maciel RM, Costa MM, Martins DB, França RT, Schmatz R, Graça DL, Duarte MM, Danesi CC, Mazzanti CM, Schetinger MR, Paim FC, Palma HE, Abdala FH, Stefanello N, Zimpel CK, Felin DV, Lopes ST. Antioxidant and anti-inflammatory effects ofquercetin in functional and morphological alterations in streptozotocin-induced diabetic rats. Res Vet Sci. 2013;95(2):389–97.PubMed
144.
Zurück zum Zitat Vijayalakshmi A, Ravichandiran V, Malarkodi V, Nirmala S, Jayakumari S. Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. For anti-psoriatic activity. Asian Pac. J Trop Biomed. 2012;2(4):269–75. Vijayalakshmi A, Ravichandiran V, Malarkodi V, Nirmala S, Jayakumari S. Screening of flavonoid “quercetin” from the rhizome of Smilax china Linn. For anti-psoriatic activity. Asian Pac. J Trop Biomed. 2012;2(4):269–75.
145.
Zurück zum Zitat Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A. Quercetinattenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE. 2015;10(10):e0141509.PubMedPubMedCentral Sun GY, Chen Z, Jasmer KJ, Chuang DY, Gu Z, Hannink M, Simonyi A. Quercetinattenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PLoS ONE. 2015;10(10):e0141509.PubMedPubMedCentral
146.
Zurück zum Zitat Cho YH, Kim NH, Khan I, Yu JM, Jung HG, Kim HH, Jang JY, Kim HJ, Kim DI, Kwak JH, Kang SC, An BJ. Anti-inflammatory potential of quercetin-3-O-β-d-(“2″-galloyl)-glucopyranoside and Quercetin Isolated from Diospyros kaki calyx via suppression of MAP signaling molecules in LPS-induced RAW 264.7 macrophages. J Food Sci. 2016;81(10):C2447–56.PubMed Cho YH, Kim NH, Khan I, Yu JM, Jung HG, Kim HH, Jang JY, Kim HJ, Kim DI, Kwak JH, Kang SC, An BJ. Anti-inflammatory potential of quercetin-3-O-β-d-(“2″-galloyl)-glucopyranoside and Quercetin Isolated from Diospyros kaki calyx via suppression of MAP signaling molecules in LPS-induced RAW 264.7 macrophages. J Food Sci. 2016;81(10):C2447–56.PubMed
147.
Zurück zum Zitat Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother. 2017;85:658–71.PubMed Lu XL, Zhao CH, Yao XL, Zhang H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed Pharmacother. 2017;85:658–71.PubMed
148.
Zurück zum Zitat Zhai WJ, Zhang ZB, Xu NN, Guo YF, Qiu C, Li CY, Deng GZ, Guo MY. Piperine plays an anti-inflammatory role in Staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid Based Complement Alternat Med. 2016;2016:8597208.PubMedPubMedCentral Zhai WJ, Zhang ZB, Xu NN, Guo YF, Qiu C, Li CY, Deng GZ, Guo MY. Piperine plays an anti-inflammatory role in Staphylococcus aureus endometritis by inhibiting activation of NF-κB and MAPK pathways in mice. Evid Based Complement Alternat Med. 2016;2016:8597208.PubMedPubMedCentral
149.
Zurück zum Zitat Hou XF, Pan H, Xu LH, Zha QB, He XH, Ouyang DY. Piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells via downregulating the mitogen-activated protein kinase pathways. Inflammation. 2015;38(3):1093–102.PubMed Hou XF, Pan H, Xu LH, Zha QB, He XH, Ouyang DY. Piperine suppresses the expression of CXCL8 in lipopolysaccharide-activated SW480 and HT-29 cells via downregulating the mitogen-activated protein kinase pathways. Inflammation. 2015;38(3):1093–102.PubMed
150.
Zurück zum Zitat Kim SH, Lee YC. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J Pharm Pharmacol. 2009;61(3):353–9.PubMed Kim SH, Lee YC. Piperine inhibits eosinophil infiltration and airway hyperresponsiveness by suppressing T cell activity and Th2 cytokine production in the ovalbumin-induced asthma model. J Pharm Pharmacol. 2009;61(3):353–9.PubMed
151.
Zurück zum Zitat Umar S, Golam Sarwar AH, Umar K, Ahmad N, Sajad M, Ahmad S, Katiyar CK, Khan HA. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 2013;284(1–2):51–9.PubMed Umar S, Golam Sarwar AH, Umar K, Ahmad N, Sajad M, Ahmad S, Katiyar CK, Khan HA. Piperine ameliorates oxidative stress, inflammation and histological outcome in collagen induced arthritis. Cell Immunol. 2013;284(1–2):51–9.PubMed
152.
Zurück zum Zitat Kim HG, Han EH, Jang WS, Choi JH, Khanal T, Park BH, Tran TP, Chung YC, Jeong HG. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol. 2012;50(7):2342–8.PubMed Kim HG, Han EH, Jang WS, Choi JH, Khanal T, Park BH, Tran TP, Chung YC, Jeong HG. Piperine inhibits PMA-induced cyclooxygenase-2 expression through downregulating NF-κB, C/EBP and AP-1 signaling pathways in murine macrophages. Food Chem Toxicol. 2012;50(7):2342–8.PubMed
153.
Zurück zum Zitat Vaibhav K, Shrivastava P, Javed H, Khan A, Ahmed ME, Tabassum R, Khan MM, Khuwaja G, Islam F, Siddiqui MS, Safhi MM, Islam F. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem. 2012;367(1–2):73–84.PubMed Vaibhav K, Shrivastava P, Javed H, Khan A, Ahmed ME, Tabassum R, Khan MM, Khuwaja G, Islam F, Siddiqui MS, Safhi MM, Islam F. Piperine suppresses cerebral ischemia-reperfusion-induced inflammation through the repression of COX-2, NOS-2, and NF-κB in middle cerebral artery occlusion rat model. Mol Cell Biochem. 2012;367(1–2):73–84.PubMed
154.
Zurück zum Zitat Xia Y, Khoi PN, Yoon HJ, Lian S, Joo YE, Chay KO, Kim KK, Jung YD. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem. 2015;398(1–2):147–56.PubMed Xia Y, Khoi PN, Yoon HJ, Lian S, Joo YE, Chay KO, Kim KK, Jung YD. Piperine inhibits IL-1β-induced IL-6 expression by suppressing p38 MAPK and STAT3 activation in gastric cancer cells. Mol Cell Biochem. 2015;398(1–2):147–56.PubMed
155.
Zurück zum Zitat Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015;2015:407580.PubMedPubMedCentral Bai Y, Wang X, Zhao S, Ma C, Cui J, Zheng Y. Sulforaphane protects against cardiovascular disease via Nrf2 activation. Oxid Med Cell Longev. 2015;2015:407580.PubMedPubMedCentral
156.
Zurück zum Zitat Leone A, Diorio G, Sexton W, Schell M, Alexandrow M, Fahey JW, Kumar NB. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget. 2017;8(21):35412–24.PubMedPubMedCentral Leone A, Diorio G, Sexton W, Schell M, Alexandrow M, Fahey JW, Kumar NB. Sulforaphane for the chemoprevention of bladder cancer: molecular mechanism targeted approach. Oncotarget. 2017;8(21):35412–24.PubMedPubMedCentral
157.
Zurück zum Zitat Yamagishi S, Matsui T. Protective role of sulphoraphane against vascularcomplications in diabetes. Pharm Biol. 2016;54(10):2329–39.PubMed Yamagishi S, Matsui T. Protective role of sulphoraphane against vascularcomplications in diabetes. Pharm Biol. 2016;54(10):2329–39.PubMed
158.
Zurück zum Zitat Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane incancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal. 2015;22(16):1382–424.PubMedPubMedCentral Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane incancer chemoprevention: the role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal. 2015;22(16):1382–424.PubMedPubMedCentral
159.
Zurück zum Zitat Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. “Diseasemodifying nutricals” for multiple sclerosis. Pharmacol Ther. 2015;148:85–113.PubMed Schmitz K, Barthelmes J, Stolz L, Beyer S, Diehl O, Tegeder I. “Diseasemodifying nutricals” for multiple sclerosis. Pharmacol Ther. 2015;148:85–113.PubMed
160.
Zurück zum Zitat Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.PubMed Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, Aggarwal BB. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.PubMed
161.
Zurück zum Zitat Bordoloi D, Roy NK, Monisha J, Padmavathi G, Kunnumakkara AB. Multi targeted agents in cancer cell chemosensitization: what we learnt from curcumin thus far. Recent Pat Anticancer Drug Discov. 2016;11(1):67–97.PubMed Bordoloi D, Roy NK, Monisha J, Padmavathi G, Kunnumakkara AB. Multi targeted agents in cancer cell chemosensitization: what we learnt from curcumin thus far. Recent Pat Anticancer Drug Discov. 2016;11(1):67–97.PubMed
162.
Zurück zum Zitat Li LC, Piao HM, Zheng MY, Lin ZH, Li G, Yan GH. Sesamin attenuates mast cell-mediated allergic responses by suppressing the activation of p38 and nuclear factor-κB. Mol Med Rep. 2016;13(1):536–42.PubMed Li LC, Piao HM, Zheng MY, Lin ZH, Li G, Yan GH. Sesamin attenuates mast cell-mediated allergic responses by suppressing the activation of p38 and nuclear factor-κB. Mol Med Rep. 2016;13(1):536–42.PubMed
163.
Zurück zum Zitat Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, Duarte CM, Serra AT, Pinto R, Freitas M, Fernandes E, Silva-Lima B, Mota-Filipe H, Sepodes B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. BasicClin Pharmacol Toxicol. 2015;116(5):398–413. Rocha J, Eduardo-Figueira M, Barateiro A, Fernandes A, Brites D, Bronze R, Duarte CM, Serra AT, Pinto R, Freitas M, Fernandes E, Silva-Lima B, Mota-Filipe H, Sepodes B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. BasicClin Pharmacol Toxicol. 2015;116(5):398–413.
164.
Zurück zum Zitat Shojaii A, Abdollahi Fard M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharm. 2012;2012:510795.PubMedPubMedCentral Shojaii A, Abdollahi Fard M. Review of pharmacological properties and chemical constituents of Pimpinella anisum. ISRN Pharm. 2012;2012:510795.PubMedPubMedCentral
165.
Zurück zum Zitat Mahendra P, Bisht S. Ferula asafoetida: traditional uses and pharmacological activity. Pharmacogn Rev. 2012;6(12):141–6.PubMedPubMedCentral Mahendra P, Bisht S. Ferula asafoetida: traditional uses and pharmacological activity. Pharmacogn Rev. 2012;6(12):141–6.PubMedPubMedCentral
166.
Zurück zum Zitat El-Soud NH, Deabes M, El-Kassem LA, Khalil M. Chemical composition and antifungal activity of Ocimum basilicum L. essential oil. Maced. J Med Sci. 2015;3(3):374–9. El-Soud NH, Deabes M, El-Kassem LA, Khalil M. Chemical composition and antifungal activity of Ocimum basilicum L. essential oil. Maced. J Med Sci. 2015;3(3):374–9.
167.
Zurück zum Zitat Sahin Basak S, Candan F. Effect of Laurus nobilis L. Essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J Pharm Res. 2013;12(2):367–79. Sahin Basak S, Candan F. Effect of Laurus nobilis L. Essential oil and its main components on α-glucosidase and reactive oxygen species scavenging activity. Iran. J Pharm Res. 2013;12(2):367–79.
168.
Zurück zum Zitat Yalçin H, Anik M, Sanda MA, Cakir A. Gas chromatography/mass spectrometry analysis of Laurus nobilis essential oil composition of northern Cyprus. J Med Food. 2007;10(4):715–9.PubMed Yalçin H, Anik M, Sanda MA, Cakir A. Gas chromatography/mass spectrometry analysis of Laurus nobilis essential oil composition of northern Cyprus. J Med Food. 2007;10(4):715–9.PubMed
169.
Zurück zum Zitat Beis SJ, Goshman LM, Newkirk GL. Risk factors for metformin-associated lactic acidosis. WMJ. 1999;98:56–7.PubMed Beis SJ, Goshman LM, Newkirk GL. Risk factors for metformin-associated lactic acidosis. WMJ. 1999;98:56–7.PubMed
170.
Zurück zum Zitat Khan R, Adil M, Danishuddin M, Verma PK, Khan AU. In vitro and in vivo inhibition of Streptococcus mutans biofilm by Trachyspermum ammi seeds: an approach of alternative medicine. Phytomedicine. 2012;19(8–9):747–55.PubMed Khan R, Adil M, Danishuddin M, Verma PK, Khan AU. In vitro and in vivo inhibition of Streptococcus mutans biofilm by Trachyspermum ammi seeds: an approach of alternative medicine. Phytomedicine. 2012;19(8–9):747–55.PubMed
171.
Zurück zum Zitat Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem. 2006;54(17):6303–7.PubMed Jirovetz L, Buchbauer G, Stoilova I, Stoyanova A, Krastanov A, Schmidt E. Chemical composition and antioxidant properties of clove leaf essential oil. J Agric Food Chem. 2006;54(17):6303–7.PubMed
172.
Zurück zum Zitat Shukla S, Gupta S. Coriander. In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 149–71. Shukla S, Gupta S. Coriander. In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 149–71.
173.
Zurück zum Zitat Kazemi M. Phenolic profile, antioxidant capacity and anti-inflammatory activity of Anethum graveolens L. essential oil. Nat Prod Res. 2015;29(6):551–3.PubMed Kazemi M. Phenolic profile, antioxidant capacity and anti-inflammatory activity of Anethum graveolens L. essential oil. Nat Prod Res. 2015;29(6):551–3.PubMed
174.
Zurück zum Zitat Barazani O, Fait A, Cohen Y, Diminshtein S, Ravid U, Putievsky E, Lewinsohn E, Friedman J. Chemical variation among indigenous populations of Foeniculum vulgare var. vulgare in Israel. Planta Med. 1999;65(5):486–9.PubMed Barazani O, Fait A, Cohen Y, Diminshtein S, Ravid U, Putievsky E, Lewinsohn E, Friedman J. Chemical variation among indigenous populations of Foeniculum vulgare var. vulgare in Israel. Planta Med. 1999;65(5):486–9.PubMed
175.
Zurück zum Zitat Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry. 2004;65:1937–54.PubMed Jolad SD, Lantz RC, Solyom AM, Chen GJ, Bates RB, Timmermann BN. Fresh organically grown ginger (Zingiber officinale): composition and effects on LPS-induced PGE2 production. Phytochemistry. 2004;65:1937–54.PubMed
176.
Zurück zum Zitat Kunnumakkara AB, Chung JG, Koca C, Dey S. Mint and its constituents. In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 373–401. Kunnumakkara AB, Chung JG, Koca C, Dey S. Mint and its constituents. In: Aggarwal BB, Kunnumakkara AB, editors. Molecular targets and therapeutic uses of spices. Singapore: World scientific publishing; 2009. p. 373–401.
177.
Zurück zum Zitat Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014;165:560–8.PubMed Peng C, Zhao SQ, Zhang J, Huang GY, Chen LY, Zhao FY. Chemical composition, antimicrobial property and microencapsulation of Mustard (Sinapis alba) seed essential oil by complex coacervation. Food Chem. 2014;165:560–8.PubMed
178.
Zurück zum Zitat Du SS, Yang K, Wang CF, You CX, Geng ZF, Guo SS, Deng ZW, Liu ZL. Chemical constituents and activities of the essential oil from Myristica fragrans against cigarette beetle Lasioderma serricorne. Chem Biodivers. 2014;11(9):1449–56.PubMed Du SS, Yang K, Wang CF, You CX, Geng ZF, Guo SS, Deng ZW, Liu ZL. Chemical constituents and activities of the essential oil from Myristica fragrans against cigarette beetle Lasioderma serricorne. Chem Biodivers. 2014;11(9):1449–56.PubMed
179.
Zurück zum Zitat Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R. Antioxidative compounds from the outer scales of onion. J Agric Food Chem. 2005;53:8183–9.PubMed Ly TN, Hazama C, Shimoyamada M, Ando H, Kato K, Yamauchi R. Antioxidative compounds from the outer scales of onion. J Agric Food Chem. 2005;53:8183–9.PubMed
180.
Zurück zum Zitat Lopez MG, Sanchez-Mendoza IR, Ochoa-Alejo N. Comparative study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill). J Agric Food Chem. 1999;47:3292–6.PubMed Lopez MG, Sanchez-Mendoza IR, Ochoa-Alejo N. Comparative study of volatile components and fatty acids of plants and in vitro cultures of parsley (Petroselinum crispum (Mill) nym ex hill). J Agric Food Chem. 1999;47:3292–6.PubMed
181.
Zurück zum Zitat Ríos JL, Recio MC, Giner RM, Máňez S. An update review of saffron and its active constituents. Phytother Res. 1996;10:189–93. Ríos JL, Recio MC, Giner RM, Máňez S. An update review of saffron and its active constituents. Phytother Res. 1996;10:189–93.
182.
Zurück zum Zitat Raal A, Orav A, Arak E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res. 2007;21(5):406–11.PubMed Raal A, Orav A, Arak E. Composition of the essential oil of Salvia officinalis L. from various European countries. Nat Prod Res. 2007;21(5):406–11.PubMed
183.
Zurück zum Zitat Pathak N, Rai AK, Kumari R, Bhat KV. Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev. 2014;8(16):147–55.PubMedPubMedCentral Pathak N, Rai AK, Kumari R, Bhat KV. Value addition in sesame: a perspective on bioactive components for enhancing utility and profitability. Pharmacogn Rev. 2014;8(16):147–55.PubMedPubMedCentral
184.
Zurück zum Zitat Hudaib M, Speroni E, Di Pietra AM, Cavrini V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal. 2002;29(4):691–700.PubMed Hudaib M, Speroni E, Di Pietra AM, Cavrini V. GC/MS evaluation of thyme (Thymus vulgaris L.) oil composition and variations during the vegetative cycle. J Pharm Biomed Anal. 2002;29(4):691–700.PubMed
185.
Zurück zum Zitat Sinha AK, Verma SC, Sharma UK. Development and validation of an RP-HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia. J Sep Sci. 2007;30(1):15–20.PubMed Sinha AK, Verma SC, Sharma UK. Development and validation of an RP-HPLC method for quantitative determination of vanillin and related phenolic compounds in Vanilla planifolia. J Sep Sci. 2007;30(1):15–20.PubMed
186.
Zurück zum Zitat Juergens UR, Stöber M, Schmidt-Schilling L, Kleuver T, Vetter H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res. 1998;3(9):407–12.PubMed Juergens UR, Stöber M, Schmidt-Schilling L, Kleuver T, Vetter H. Antiinflammatory effects of euclyptol (1.8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes ex vivo. Eur J Med Res. 1998;3(9):407–12.PubMed
187.
Zurück zum Zitat Fan JZ, Yang X, Bi ZG. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells. Braz J Med Biol Res. 2015;48(7):637–43.PubMedPubMedCentral Fan JZ, Yang X, Bi ZG. The effects of 6-gingerol on proliferation, differentiation, and maturation of osteoblast-like MG-63 cells. Braz J Med Biol Res. 2015;48(7):637–43.PubMedPubMedCentral
188.
Zurück zum Zitat Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, Mendes AF. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 2014;77(2):264–9.PubMed Rufino AT, Ribeiro M, Judas F, Salgueiro L, Lopes MC, Cavaleiro C, Mendes AF. Anti-inflammatory and chondroprotective activity of (+)-α-pinene: structural and enantiomeric selectivity. J Nat Prod. 2014;77(2):264–9.PubMed
189.
Zurück zum Zitat Gu X, Wu H, Fu P. Allicin attenuates inflammation and suppresses HLA-B27 protein expression in ankylosing spondylitis mice. Biomed Res Int. 2013;2013:171573.PubMedPubMedCentral Gu X, Wu H, Fu P. Allicin attenuates inflammation and suppresses HLA-B27 protein expression in ankylosing spondylitis mice. Biomed Res Int. 2013;2013:171573.PubMedPubMedCentral
190.
Zurück zum Zitat Li XH, Li CY, Lu JM, Tian RB, Wei J. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett. 2012;514(1):46–50.PubMed Li XH, Li CY, Lu JM, Tian RB, Wei J. Allicin ameliorates cognitive deficits ageing-induced learning and memory deficits through enhancing of Nrf2 antioxidant signaling pathways. Neurosci Lett. 2012;514(1):46–50.PubMed
191.
Zurück zum Zitat García-Trejo EM, Arellano-Buendía AS, Argüello-García R, Loredo-Mendoza ML, García-Arroyo FE, Arellano-Mendoza MG, Castillo-Hernández MC, Guevara-Balcázar G, Tapia E, Sánchez-Lozada LG, Osorio-Alonso H. Effects of allicin on hypertensionand cardiac function in chronic kidney disease. Oxid Med Cell Longev. 2016;2016:3850402.PubMedPubMedCentral García-Trejo EM, Arellano-Buendía AS, Argüello-García R, Loredo-Mendoza ML, García-Arroyo FE, Arellano-Mendoza MG, Castillo-Hernández MC, Guevara-Balcázar G, Tapia E, Sánchez-Lozada LG, Osorio-Alonso H. Effects of allicin on hypertensionand cardiac function in chronic kidney disease. Oxid Med Cell Longev. 2016;2016:3850402.PubMedPubMedCentral
192.
Zurück zum Zitat Luo R, Fang D, Hang H, Tang Z. The mechanism in gastric cancer chemoprevention by allicin. Anticancer Agents Med Chem. 2016;16(7):802–9.PubMed Luo R, Fang D, Hang H, Tang Z. The mechanism in gastric cancer chemoprevention by allicin. Anticancer Agents Med Chem. 2016;16(7):802–9.PubMed
193.
Zurück zum Zitat Cha JH, Choi YJ, Cha SH, Choi CH, Cho WH. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep. 2012;28(1):41–8.PubMed Cha JH, Choi YJ, Cha SH, Choi CH, Cho WH. Allicin inhibits cell growth and induces apoptosis in U87MG human glioblastoma cells through an ERK-dependent pathway. Oncol Rep. 2012;28(1):41–8.PubMed
194.
Zurück zum Zitat El-Sheakh AR, Ghoneim HA, Suddek GM, Ammar ES. Attenuation of oxidative stress, inflammation, and endothelial dysfunction in hypercholesterolemic rabbits by allicin. Can J Physiol Pharmacol. 2015;94:216–49.PubMed El-Sheakh AR, Ghoneim HA, Suddek GM, Ammar ES. Attenuation of oxidative stress, inflammation, and endothelial dysfunction in hypercholesterolemic rabbits by allicin. Can J Physiol Pharmacol. 2015;94:216–49.PubMed
195.
Zurück zum Zitat Jiang XW, Hu J, Mian FI. A new therapeutic candidate for oral aphthous ulcer: allicin. Med Hypotheses. 2008;71(6):897–9.PubMed Jiang XW, Hu J, Mian FI. A new therapeutic candidate for oral aphthous ulcer: allicin. Med Hypotheses. 2008;71(6):897–9.PubMed
196.
Zurück zum Zitat Osman M, Adnan A, Salmah Bakar N, Alashkham F. Allicin has significant effect on autoimmune anti-islet cell antibodies in type 1 diabetic rats. Pol J Pathol. 2012;63(4):248–54.PubMed Osman M, Adnan A, Salmah Bakar N, Alashkham F. Allicin has significant effect on autoimmune anti-islet cell antibodies in type 1 diabetic rats. Pol J Pathol. 2012;63(4):248–54.PubMed
197.
Zurück zum Zitat Chen CH, deGraffenried LA. Anethole suppressed cell survival and inducedapoptosis in human breast cancer cells independent of estrogen receptor status. Phytomedicine. 2012;19(8–9):763–7.PubMed Chen CH, deGraffenried LA. Anethole suppressed cell survival and inducedapoptosis in human breast cancer cells independent of estrogen receptor status. Phytomedicine. 2012;19(8–9):763–7.PubMed
198.
Zurück zum Zitat Lam S, MacAulay C, Le Riche JC, Dyachkova Y, Coldman A, Guillaud M, Hawk E, Christen MO, Gazdar AF. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J Natl Cancer Inst. 2002;94(13):1001–9.PubMed Lam S, MacAulay C, Le Riche JC, Dyachkova Y, Coldman A, Guillaud M, Hawk E, Christen MO, Gazdar AF. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J Natl Cancer Inst. 2002;94(13):1001–9.PubMed
199.
Zurück zum Zitat Wang Q, Ma S, Li D, Zhang Y, Tang B, Qiu C, Yang Y, Yang D. Dietary capsaicin ameliorates pressure overload-induced cardiac hypertrophy anfibrosis through the transient receptor potential vanilloid type 1. Am J Hypertens. 2014;27(12):1521–9.PubMed Wang Q, Ma S, Li D, Zhang Y, Tang B, Qiu C, Yang Y, Yang D. Dietary capsaicin ameliorates pressure overload-induced cardiac hypertrophy anfibrosis through the transient receptor potential vanilloid type 1. Am J Hypertens. 2014;27(12):1521–9.PubMed
200.
Zurück zum Zitat Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS ONE. 2015;10(5):e0121538.PubMedPubMedCentral Hong ZF, Zhao WX, Yin ZY, Xie CR, Xu YP, Chi XQ, Zhang S, Wang XM. Capsaicin enhances the drug sensitivity of cholangiocarcinoma through the inhibition of chemotherapeutic-induced autophagy. PLoS ONE. 2015;10(5):e0121538.PubMedPubMedCentral
201.
Zurück zum Zitat Lu HF, Chen YL, Yang JS, Yang YY, Liu JY, Hsu SC, Lai KC, Chung JG. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumorxenografts in vivo. J Agric Food Chem. 2010;58(24):12999–3005.PubMed Lu HF, Chen YL, Yang JS, Yang YY, Liu JY, Hsu SC, Lai KC, Chung JG. Antitumor activity of capsaicin on human colon cancer cells in vitro and colo 205 tumorxenografts in vivo. J Agric Food Chem. 2010;58(24):12999–3005.PubMed
202.
Zurück zum Zitat Fernandes ES, Cerqueira AR, Soares AG, Costa SK. Capsaicin and its role in chronic diseases. Adv Exp Med Biol. 2016;929:91–125.PubMed Fernandes ES, Cerqueira AR, Soares AG, Costa SK. Capsaicin and its role in chronic diseases. Adv Exp Med Biol. 2016;929:91–125.PubMed
203.
Zurück zum Zitat Bai H, Li H, Zhang W, Matkowskyj KA, Liao J, Srivastava SK, Yang GY. Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis. 2011;32(11):1689–96.PubMedPubMedCentral Bai H, Li H, Zhang W, Matkowskyj KA, Liao J, Srivastava SK, Yang GY. Inhibition of chronic pancreatitis and pancreatic intraepithelial neoplasia (PanIN) by capsaicin in LSL-KrasG12D/Pdx1-Cre mice. Carcinogenesis. 2011;32(11):1689–96.PubMedPubMedCentral
204.
Zurück zum Zitat Banji OJ, Banji D, Soumya N, Chilipi KK, Kalpana CH, Kranthi Kumar CH, Annamalai AR. Combination of carvacrol with methotrexate suppresses Complete Freund’s Adjuvant induced synovial inflammation with reduced hepatotoxicity in rats. Eur J Pharmacol. 2014;723:91–8.PubMed Banji OJ, Banji D, Soumya N, Chilipi KK, Kalpana CH, Kranthi Kumar CH, Annamalai AR. Combination of carvacrol with methotrexate suppresses Complete Freund’s Adjuvant induced synovial inflammation with reduced hepatotoxicity in rats. Eur J Pharmacol. 2014;723:91–8.PubMed
205.
Zurück zum Zitat Kianmehr M, Rezaei A, Boskabady MH. Effect of carvacrol on various cytokines genes expression in splenocytes of asthmatic mice. Iran J Basic Med Sci. 2016;19(4):402–10.PubMedPubMedCentral Kianmehr M, Rezaei A, Boskabady MH. Effect of carvacrol on various cytokines genes expression in splenocytes of asthmatic mice. Iran J Basic Med Sci. 2016;19(4):402–10.PubMedPubMedCentral
206.
Zurück zum Zitat Lee KP, Sudjarwo GW, Jung SH, Lee D, Lee DY, Lee GB, Baek S, Kim DY, Lee HM, Kim B, Kwon SC, Won KJ. Carvacrol inhibits atherosclerotic neointima formation by downregulating reactive oxygen species production in vascular smooth muscle cells. Atherosclerosis. 2015;240(2):367–73.PubMed Lee KP, Sudjarwo GW, Jung SH, Lee D, Lee DY, Lee GB, Baek S, Kim DY, Lee HM, Kim B, Kwon SC, Won KJ. Carvacrol inhibits atherosclerotic neointima formation by downregulating reactive oxygen species production in vascular smooth muscle cells. Atherosclerosis. 2015;240(2):367–73.PubMed
207.
Zurück zum Zitat Arigesavan K, Sudhandiran G. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem Biophys Res Commun. 2015;461(2):314–20.PubMed Arigesavan K, Sudhandiran G. Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem Biophys Res Commun. 2015;461(2):314–20.PubMed
208.
Zurück zum Zitat Silva FV, Guimarães AG, Silva ER, Sousa-Neto BP, Machado FD, Quintans-Júnior LJ, Arcanjo DD, Oliveira FA, Oliveira RC. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J Med Food. 2012;15(11):984–91.PubMed Silva FV, Guimarães AG, Silva ER, Sousa-Neto BP, Machado FD, Quintans-Júnior LJ, Arcanjo DD, Oliveira FA, Oliveira RC. Anti-inflammatory and anti-ulcer activities of carvacrol, a monoterpene present in the essential oil of oregano. J Med Food. 2012;15(11):984–91.PubMed
209.
Zurück zum Zitat Alvarenga EM, Souza LK, Araújo TS, Nogueira KM, Sousa FB, Araújo AR, Martins CS, Pacífico DM, de Brito GA, Souza EP, Sousa DP, Medeiros JV. Carvacrolreduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem Biol Interact. 2016;260:129–40.PubMed Alvarenga EM, Souza LK, Araújo TS, Nogueira KM, Sousa FB, Araújo AR, Martins CS, Pacífico DM, de Brito GA, Souza EP, Sousa DP, Medeiros JV. Carvacrolreduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem Biol Interact. 2016;260:129–40.PubMed
210.
Zurück zum Zitat Bakır M, Geyikoglu F, Colak S, Turkez H, Bakır TO, Hosseinigouzdagani M. The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response. Cytotechnology. 2016;68(4):1131–46.PubMed Bakır M, Geyikoglu F, Colak S, Turkez H, Bakır TO, Hosseinigouzdagani M. The carvacrol ameliorates acute pancreatitis-induced liver injury via antioxidant response. Cytotechnology. 2016;68(4):1131–46.PubMed
211.
Zurück zum Zitat Botelho MA, Rao VS, Montenegro D, Bandeira MA, Fonseca SG, Nogueira NA, Ribeiro RA, Brito GA. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis. Phytother Res. 2008;22(4):442–9.PubMed Botelho MA, Rao VS, Montenegro D, Bandeira MA, Fonseca SG, Nogueira NA, Ribeiro RA, Brito GA. Effects of a herbal gel containing carvacrol and chalcones on alveolar bone resorption in rats on experimental periodontitis. Phytother Res. 2008;22(4):442–9.PubMed
212.
Zurück zum Zitat Sengupta A, Ghosh S, Bhattacharjee S. Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian Pac J Cancer Prev. 2005;6(2):118–22.PubMed Sengupta A, Ghosh S, Bhattacharjee S. Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian Pac J Cancer Prev. 2005;6(2):118–22.PubMed
213.
Zurück zum Zitat Qiblawi S, Dhanarasu S, Faris MA. Chemopreventive effect of cardamom (Elettaria cardamomum L.) against benzo(α)pyrene-induced forestomach papillomagenesis in swiss albino mice. J Environ Pathol Toxicol Oncol. 2015;34(2):95–104.PubMed Qiblawi S, Dhanarasu S, Faris MA. Chemopreventive effect of cardamom (Elettaria cardamomum L.) against benzo(α)pyrene-induced forestomach papillomagenesis in swiss albino mice. J Environ Pathol Toxicol Oncol. 2015;34(2):95–104.PubMed
214.
Zurück zum Zitat Samarghandian S, Azimi-Nezhad M, Borji A, Samini M, Farkhondeh T. Protective effects of carnosol against oxidative stress induced brain damage by chronicmstress in rats. BMC Complement Altern Med. 2017;17(1):249.PubMedPubMedCentral Samarghandian S, Azimi-Nezhad M, Borji A, Samini M, Farkhondeh T. Protective effects of carnosol against oxidative stress induced brain damage by chronicmstress in rats. BMC Complement Altern Med. 2017;17(1):249.PubMedPubMedCentral
215.
Zurück zum Zitat Amar Y, Meddah B, Bonacorsi I, Costa G, Pezzino G, Saija A, Cristani M, Boussahel S, Ferlazzo G, Meddah AT. Phytochemicals, antioxidant and antiproliferative properties of Rosmarinus officinalis L on U937 and CaCo-2Cells. Iran J Pharm Res. 2017;16(1):315–27.PubMedPubMedCentral Amar Y, Meddah B, Bonacorsi I, Costa G, Pezzino G, Saija A, Cristani M, Boussahel S, Ferlazzo G, Meddah AT. Phytochemicals, antioxidant and antiproliferative properties of Rosmarinus officinalis L on U937 and CaCo-2Cells. Iran J Pharm Res. 2017;16(1):315–27.PubMedPubMedCentral
216.
Zurück zum Zitat Kwon HK, Hwang JS, Lee CG, So JS, Sahoo A, Im CR, Jeon WK, Ko BS, Lee SH, Park ZY, Im SH. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells. World J Gastroenterol. 2011;17(8):976–86.PubMedPubMedCentral Kwon HK, Hwang JS, Lee CG, So JS, Sahoo A, Im CR, Jeon WK, Ko BS, Lee SH, Park ZY, Im SH. Cinnamon extract suppresses experimental colitis through modulation of antigen-presenting cells. World J Gastroenterol. 2011;17(8):976–86.PubMedPubMedCentral
217.
Zurück zum Zitat Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, Ryu JH, Jeon WK, Ko BS, Im CR, Lee SH, Park ZY, Im SH. Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer. 2010;10:392.PubMedPubMedCentral Kwon HK, Hwang JS, So JS, Lee CG, Sahoo A, Ryu JH, Jeon WK, Ko BS, Im CR, Lee SH, Park ZY, Im SH. Cinnamon extract induces tumor cell death through inhibition of NFkappaB and AP1. BMC Cancer. 2010;10:392.PubMedPubMedCentral
218.
Zurück zum Zitat Hosni AA, Abdel-Moneim AA, Abdel-Reheim ES, Mohamed SM, Helmy H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress. Biomed Pharmacother. 2017;88:52–60.PubMed Hosni AA, Abdel-Moneim AA, Abdel-Reheim ES, Mohamed SM, Helmy H. Cinnamaldehyde potentially attenuates gestational hyperglycemia in rats through modulation of PPARγ, proinflammatory cytokines and oxidative stress. Biomed Pharmacother. 2017;88:52–60.PubMed
219.
Zurück zum Zitat Lee BJ, Kim YJ, Cho DH, Sohn NW, Kang H. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol Immunotoxicol. 2011;33(4):714–22.PubMed Lee BJ, Kim YJ, Cho DH, Sohn NW, Kang H. Immunomodulatory effect of water extract of cinnamon on anti-CD3-induced cytokine responses and p38, JNK, ERK1/2, and STAT4 activation. Immunopharmacol Immunotoxicol. 2011;33(4):714–22.PubMed
220.
Zurück zum Zitat Cioanca O, Hritcu L, Mihasan M, Hancianu M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer’s disease. Physiol Behav. 2013;120:193–202.PubMed Cioanca O, Hritcu L, Mihasan M, Hancianu M. Cognitive-enhancing and antioxidant activities of inhaled coriander volatile oil in amyloid β(1-42) rat model of Alzheimer’s disease. Physiol Behav. 2013;120:193–202.PubMed
221.
Zurück zum Zitat Liu QF, Jeong H, Lee JH, Hong YK, Oh Y, Kim YM, Suh YS, Bang S, Yun HS, Lee K, Cho SM, Lee SB, Jeon S, Chin YW, Koo BS, Cho KS. Coriandrum sativum suppresses Aβ42-induced ROS increases, glial cell proliferation, and ERK activation. Am J Chin Med. 2016;44(7):1325–47.PubMed Liu QF, Jeong H, Lee JH, Hong YK, Oh Y, Kim YM, Suh YS, Bang S, Yun HS, Lee K, Cho SM, Lee SB, Jeon S, Chin YW, Koo BS, Cho KS. Coriandrum sativum suppresses Aβ42-induced ROS increases, glial cell proliferation, and ERK activation. Am J Chin Med. 2016;44(7):1325–47.PubMed
222.
Zurück zum Zitat Patel D, Desai S, Gajaria T, Devkar R, Ramachandran AV. Coriandrum sativum L. seed extract mitigates lipotoxicity in RAW 264.7 cells and prevents atherogenic changes in rats. EXCLI J. 2013;12:313–34.PubMedPubMedCentral Patel D, Desai S, Gajaria T, Devkar R, Ramachandran AV. Coriandrum sativum L. seed extract mitigates lipotoxicity in RAW 264.7 cells and prevents atherogenic changes in rats. EXCLI J. 2013;12:313–34.PubMedPubMedCentral
223.
Zurück zum Zitat Heidari B, Sajjadi SE, Minaiyan M. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats. Avicenna J Phytomed. 2016;6(2):205–14.PubMedPubMedCentral Heidari B, Sajjadi SE, Minaiyan M. Effect of Coriandrum sativum hydroalcoholic extract and its essential oil on acetic acid- induced acute colitis in rats. Avicenna J Phytomed. 2016;6(2):205–14.PubMedPubMedCentral
224.
Zurück zum Zitat Park G, Kim HG, Lim S, Lee W, Sim Y, Oh MS. Coriander alleviates 2,4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice. J Med Food. 2014;17(8):862–8.PubMedPubMedCentral Park G, Kim HG, Lim S, Lee W, Sim Y, Oh MS. Coriander alleviates 2,4-dinitrochlorobenzene-induced contact dermatitis-like skin lesions in mice. J Med Food. 2014;17(8):862–8.PubMedPubMedCentral
225.
Zurück zum Zitat Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, Bahar K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res. 2009;23(3):404–6.PubMed Eidi M, Eidi A, Saeidi A, Molanaei S, Sadeghipour A, Bahar M, Bahar K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother Res. 2009;23(3):404–6.PubMed
226.
Zurück zum Zitat Hosseinzadeh S, Ghalesefidi MJ, Azami M, Mohaghegh MA, Hejazi SH, Ghomashlooyan M. In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection. J Parasit Dis. 2016;40(4):1307–10.PubMed Hosseinzadeh S, Ghalesefidi MJ, Azami M, Mohaghegh MA, Hejazi SH, Ghomashlooyan M. In vitro and in vivo anthelmintic activity of seed extract of Coriandrum sativum compared to Niclosamid against Hymenolepis nana infection. J Parasit Dis. 2016;40(4):1307–10.PubMed
227.
Zurück zum Zitat Finley JW, Gao S. Perspective on Crocus sativus L. (Saffron) constituen crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem. 2017;65(5):1005–20.PubMed Finley JW, Gao S. Perspective on Crocus sativus L. (Saffron) constituen crocin: a potent water-soluble antioxidant and potential therapy for Alzheimer’s disease. J Agric Food Chem. 2017;65(5):1005–20.PubMed
228.
Zurück zum Zitat Xiong Y, Wang J, Yu H, Zhang X, Miao C. Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol. 2015;37(3):236–43.PubMed Xiong Y, Wang J, Yu H, Zhang X, Miao C. Anti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol Immunotoxicol. 2015;37(3):236–43.PubMed
229.
Zurück zum Zitat Hazman Ö, Aksoy L, Büyükben A. Effects of crocin on experimental obesity and type-2 diabetes. Turk J Med Sci. 2016;46(5):1593–602.PubMed Hazman Ö, Aksoy L, Büyükben A. Effects of crocin on experimental obesity and type-2 diabetes. Turk J Med Sci. 2016;46(5):1593–602.PubMed
231.
Zurück zum Zitat Li X, Jiang C, Zhu W. Crocin reduces the inflammation response in rheumatoid arthritis. Biosci Biotechnol Biochem. 2017;81(5):891–8.PubMed Li X, Jiang C, Zhu W. Crocin reduces the inflammation response in rheumatoid arthritis. Biosci Biotechnol Biochem. 2017;81(5):891–8.PubMed
232.
Zurück zum Zitat Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun. 2015;467(4):872–8.PubMed Chen FY, Zhou J, Guo N, Ma WG, Huang X, Wang H, Yuan ZY. Curcumin retunes cholesterol transport homeostasis and inflammation response in M1 macrophage to prevent atherosclerosis. Biochem Biophys Res Commun. 2015;467(4):872–8.PubMed
233.
Zurück zum Zitat Hernández M, Wicz S, Corral RS. Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E(2) pathway induced during Trypanosoma cruzi infection. Phytomedicine. 2016;23(12):1392–400.PubMed Hernández M, Wicz S, Corral RS. Cardioprotective actions of curcumin on the pathogenic NFAT/COX-2/prostaglandin E(2) pathway induced during Trypanosoma cruzi infection. Phytomedicine. 2016;23(12):1392–400.PubMed
234.
Zurück zum Zitat Zhang M, Xie Y, Yan R, Shan H, Tang J, Cai Y, Yin J, Chen M, Zhang J, Yang X, Zhang Q, Li Y. Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci. 2016;164:1–8.PubMed Zhang M, Xie Y, Yan R, Shan H, Tang J, Cai Y, Yin J, Chen M, Zhang J, Yang X, Zhang Q, Li Y. Curcumin ameliorates alveolar epithelial injury in a rat model of chronic obstructive pulmonary disease. Life Sci. 2016;164:1–8.PubMed
235.
Zurück zum Zitat Liu L, Liu YL, Liu GX, Chen X, Yang K, Yang YX, Xie Q, Gan HK, Huang XL. GanHT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int Immunopharmacol. 2013;17(2):314–20.PubMed Liu L, Liu YL, Liu GX, Chen X, Yang K, Yang YX, Xie Q, Gan HK, Huang XL. GanHT. Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. Int Immunopharmacol. 2013;17(2):314–20.PubMed
236.
Zurück zum Zitat Castro CN, Barcala Tabarrozzi AE, Winnewisser J, Gimeno ML, Antunica Noguerol M, Liberman AC, Paz DA, Dewey RA, Perone MJ. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Exp Immunol. 2014;177(1):149–60.PubMedPubMedCentral Castro CN, Barcala Tabarrozzi AE, Winnewisser J, Gimeno ML, Antunica Noguerol M, Liberman AC, Paz DA, Dewey RA, Perone MJ. Curcumin ameliorates autoimmune diabetes. Evidence in accelerated murine models of type 1 diabetes. Clin Exp Immunol. 2014;177(1):149–60.PubMedPubMedCentral
237.
Zurück zum Zitat Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int. 2015;89:40–50.PubMed Kaur H, Patro I, Tikoo K, Sandhir R. Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochem Int. 2015;89:40–50.PubMed
238.
Zurück zum Zitat He P, Zhou R, Hu G, Liu Z, Jin Y, Yang G, Li M, Lin Q. Curcumin-induced histone acetylation inhibition improves stress-induced gastric ulcer disease in rats. Mol Med Rep. 2015;11(3):1911–6.PubMed He P, Zhou R, Hu G, Liu Z, Jin Y, Yang G, Li M, Lin Q. Curcumin-induced histone acetylation inhibition improves stress-induced gastric ulcer disease in rats. Mol Med Rep. 2015;11(3):1911–6.PubMed
239.
Zurück zum Zitat Rechtman MM, Har-Noy O, Bar-Yishay I, Fishman S, Adamovich Y, Shaul Y, Halpern Z, Shlomai A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett. 2010;584(11):2485–90.PubMed Rechtman MM, Har-Noy O, Bar-Yishay I, Fishman S, Adamovich Y, Shaul Y, Halpern Z, Shlomai A. Curcumin inhibits hepatitis B virus via down-regulation of the metabolic coactivator PGC-1alpha. FEBS Lett. 2010;584(11):2485–90.PubMed
240.
Zurück zum Zitat Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013;57(9):1510–28.PubMed Gupta SC, Sung B, Kim JH, Prasad S, Li S, Aggarwal BB. Multitargeting by turmeric, the golden spice: from kitchen to clinic. Mol Nutr Food Res. 2013;57(9):1510–28.PubMed
241.
Zurück zum Zitat Lee H, Kim H, Lee G, Chung HS, Bae H. Curcumin attenuates lupus nephritis upon interaction with regulatory T cells in New Zealand Black/White mice. Br J Nutr. 2013;110(1):69–76.PubMed Lee H, Kim H, Lee G, Chung HS, Bae H. Curcumin attenuates lupus nephritis upon interaction with regulatory T cells in New Zealand Black/White mice. Br J Nutr. 2013;110(1):69–76.PubMed
242.
Zurück zum Zitat Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, Lai R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73–80.PubMed Kang D, Li B, Luo L, Jiang W, Lu Q, Rong M, Lai R. Curcumin shows excellent therapeutic effect on psoriasis in mouse model. Biochimie. 2016;123:73–80.PubMed
243.
Zurück zum Zitat Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci Rep. 2012;2:535.PubMedPubMedCentral Tohda C, Urano T, Umezaki M, Nemere I, Kuboyama T. Diosgenin is an exogenous activator of 1,25D3-MARRS/Pdia3/ERp57 and improves Alzheimer’s disease pathologies in 5XFAD mice. Sci Rep. 2012;2:535.PubMedPubMedCentral
244.
Zurück zum Zitat Kalailingam P, Kannaian B, Tamilmani E, Kaliaperumal R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. 2014;21(10):1154–61.PubMed Kalailingam P, Kannaian B, Tamilmani E, Kaliaperumal R. Efficacy of natural diosgenin on cardiovascular risk, insulin secretion, and beta cells in streptozotocin (STZ)-induced diabetic rats. Phytomedicine. 2014;21(10):1154–61.PubMed
245.
Zurück zum Zitat Naidu PB, Ponmurugan P, Begum MS, Mohan K, Meriga B, RavindarNaik R, Saravanan G. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats. J Sci Food Agric. 2015;95(15):3177–82.PubMed Naidu PB, Ponmurugan P, Begum MS, Mohan K, Meriga B, RavindarNaik R, Saravanan G. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats. J Sci Food Agric. 2015;95(15):3177–82.PubMed
246.
Zurück zum Zitat Cai H, Wang Z, Zhang HQ, Wang FR, Yu CX, Zhang FX, Gao L, Zhang J, Zhao JJ. Diosgenin relieves goiter via the inhibition of thyrocyte proliferation in a mouse model of Graves’ disease. Acta Pharmacol Sin. 2014;35(1):65–73.PubMed Cai H, Wang Z, Zhang HQ, Wang FR, Yu CX, Zhang FX, Gao L, Zhang J, Zhao JJ. Diosgenin relieves goiter via the inhibition of thyrocyte proliferation in a mouse model of Graves’ disease. Acta Pharmacol Sin. 2014;35(1):65–73.PubMed
247.
Zurück zum Zitat Zhang Z, Song C, Fu X, Liu M, Li Y, Pan J, Liu H, Wang S, Xiang L, Xiao GG, Ju D. High-dose diosgenin reduces bone loss in ovariectomized rats via attenuation of the RANKL/OPG ratio. Int J Mol Sci. 2014;15(9):17130–47.PubMedPubMedCentral Zhang Z, Song C, Fu X, Liu M, Li Y, Pan J, Liu H, Wang S, Xiang L, Xiao GG, Ju D. High-dose diosgenin reduces bone loss in ovariectomized rats via attenuation of the RANKL/OPG ratio. Int J Mol Sci. 2014;15(9):17130–47.PubMedPubMedCentral
248.
Zurück zum Zitat Venkadeswaran K, Thomas PA, Geraldine P. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. Biomed Pharmacother. 2016;80:276–88.PubMed Venkadeswaran K, Thomas PA, Geraldine P. An experimental evaluation of the anti-atherogenic potential of the plant, Piper betle, and its active constitutent, eugenol, in rats fed an atherogenic diet. Biomed Pharmacother. 2016;80:276–88.PubMed
249.
Zurück zum Zitat Irie Y, Itokazu N, Anjiki N, Ishige A, Watanabe K, Keung WM. Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus. Brain Res. 2004;1011(2):243–6.PubMed Irie Y, Itokazu N, Anjiki N, Ishige A, Watanabe K, Keung WM. Eugenol exhibits antidepressant-like activity in mice and induces expression of metallothionein-III in the hippocampus. Brain Res. 2004;1011(2):243–6.PubMed
250.
Zurück zum Zitat Jo HK, Kim GW, Jeong KJ, Kim DY, Chung SH. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull. 2014;37(8):1341–51.PubMed Jo HK, Kim GW, Jeong KJ, Kim DY, Chung SH. Eugenol ameliorates hepatic steatosis and fibrosis by down-regulating SREBP1 gene expression via AMPK-mTOR-p70S6K signaling pathway. Biol Pharm Bull. 2014;37(8):1341–51.PubMed
251.
Zurück zum Zitat Sanae F, Kamiyama O, Ikeda-Obatake K, Higashi Y, Asano N, Adachi I, Kato A. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice. Food Funct. 2014;5(2):214–9.PubMed Sanae F, Kamiyama O, Ikeda-Obatake K, Higashi Y, Asano N, Adachi I, Kato A. Effects of eugenol-reduced clove extract on glycogen phosphorylase b and the development of diabetes in db/db mice. Food Funct. 2014;5(2):214–9.PubMed
252.
Zurück zum Zitat Kaur G, Athar M, Alam MS. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol Carcinog. 2010;49(3):290–301.PubMed Kaur G, Athar M, Alam MS. Eugenol precludes cutaneous chemical carcinogenesis in mouse by preventing oxidative stress and inflammation and by inducing apoptosis. Mol Carcinog. 2010;49(3):290–301.PubMed
253.
Zurück zum Zitat Wang Y, Tsai ML, Chiou LY, Ho CT, Pan MH. antitumor activity of garcinol in human prostate cancer cells and xenograft mice. J Agric Food Chem. 2015;63(41):9047–52.PubMed Wang Y, Tsai ML, Chiou LY, Ho CT, Pan MH. antitumor activity of garcinol in human prostate cancer cells and xenograft mice. J Agric Food Chem. 2015;63(41):9047–52.PubMed
254.
Zurück zum Zitat Hirota R, Nakamura H, Bhatti SA, Ngatu NR, Muzembo BA, Dumavibhat N, Eitoku M, Sawamura M, Suganuma N. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol. 2012;24(6):373–81.PubMed Hirota R, Nakamura H, Bhatti SA, Ngatu NR, Muzembo BA, Dumavibhat N, Eitoku M, Sawamura M, Suganuma N. Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol. 2012;24(6):373–81.PubMed
255.
Zurück zum Zitat Sun J. d-Limonene: safety and clinical applications. Altern Med Rev. 2007;12(3):259–64.PubMed Sun J. d-Limonene: safety and clinical applications. Altern Med Rev. 2007;12(3):259–64.PubMed
256.
Zurück zum Zitat d’Alessio PA, Ostan R, Bisson JF, Schulzke JD, Ursini MV, Béné MC. Oral administration of d-limonene controls inflammation in rat colitis and display anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013;92(24–26):1151–6.PubMed d’Alessio PA, Ostan R, Bisson JF, Schulzke JD, Ursini MV, Béné MC. Oral administration of d-limonene controls inflammation in rat colitis and display anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013;92(24–26):1151–6.PubMed
257.
Zurück zum Zitat Chaudhary SC, Siddiqui MS, Athar M, Alam MS. d-Limonene modulate inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum Exp Toxicol. 2012;31(8):798–811.PubMed Chaudhary SC, Siddiqui MS, Athar M, Alam MS. d-Limonene modulate inflammation, oxidative stress and Ras-ERK pathway to inhibit murine skin tumorigenesis. Hum Exp Toxicol. 2012;31(8):798–811.PubMed
258.
Zurück zum Zitat Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol Mech Methods. 2013;23(4):223–34.PubMed Deepa B, Venkatraman Anuradha C. Effects of linalool on inflammation, matrix accumulation and podocyte loss in kidney of streptozotocin-induced diabetic rats. Toxicol Mech Methods. 2013;23(4):223–34.PubMed
259.
Zurück zum Zitat Gunaseelan S, Balupillai A, Govindasamy K, Muthusamy G, Ramasamy K, Shanmugam M, Prasad NR. The preventive effect of linalool on acute and chronic UVB-mediated skin carcinogenesis in Swiss albino mice. Photochem Photobiol Sci. 2016;15(7):851–60.PubMed Gunaseelan S, Balupillai A, Govindasamy K, Muthusamy G, Ramasamy K, Shanmugam M, Prasad NR. The preventive effect of linalool on acute and chronic UVB-mediated skin carcinogenesis in Swiss albino mice. Photochem Photobiol Sci. 2016;15(7):851–60.PubMed
260.
Zurück zum Zitat Chang MY, Shieh DE, Chen CC, Yeh CS, Dong HP. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int J Mol Sci. 2015;16(12):28169–79.PubMedPubMedCentral Chang MY, Shieh DE, Chen CC, Yeh CS, Dong HP. Linalool induces cell cycle arrest and apoptosis in leukemia cells and cervical cancer cells through CDKIs. Int J Mol Sci. 2015;16(12):28169–79.PubMedPubMedCentral
261.
Zurück zum Zitat Iwasaki K, Zheng YW, Murata S, Ito H, Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano YN, Isoda H, Matsui H, Ohkohchi N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol. 2016;22(44):9765–74.PubMedPubMedCentral Iwasaki K, Zheng YW, Murata S, Ito H, Nakayama K, Kurokawa T, Sano N, Nowatari T, Villareal MO, Nagano YN, Isoda H, Matsui H, Ohkohchi N. Anticancer effect of linalool via cancer-specific hydroxyl radical generation in human colon cancer. World J Gastroenterol. 2016;22(44):9765–74.PubMedPubMedCentral
262.
Zurück zum Zitat Wang Y, Wang X, Yang Z, Zhu G, Chen D, Meng Z. Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol Oncol Res. 2012;18(4):903–10.PubMed Wang Y, Wang X, Yang Z, Zhu G, Chen D, Meng Z. Menthol inhibits the proliferation and motility of prostate cancer DU145 cells. Pathol Oncol Res. 2012;18(4):903–10.PubMed
263.
Zurück zum Zitat Xue J, Li H, Deng X, Ma Z, Fu Q, Ma S. l-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol Biochem Behav. 2015;134:42–8.PubMed Xue J, Li H, Deng X, Ma Z, Fu Q, Ma S. l-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters. Pharmacol Biochem Behav. 2015;134:42–8.PubMed
264.
Zurück zum Zitat Liu Z, Shen C, Tao Y, Wang S, Wei Z, Cao Y, Wu H, Fan F, Lin C, Shan Y, Zhu P, Sun L, Chen C, Wang A, Zheng S, Lu Y. Chemopreventive efficacy of menthol on carcinogen-induced cutaneous carcinoma through inhibition of inflammation and oxidative stress in mice. Food Chem Toxicol. 2015;82:12–8.PubMed Liu Z, Shen C, Tao Y, Wang S, Wei Z, Cao Y, Wu H, Fan F, Lin C, Shan Y, Zhu P, Sun L, Chen C, Wang A, Zheng S, Lu Y. Chemopreventive efficacy of menthol on carcinogen-induced cutaneous carcinoma through inhibition of inflammation and oxidative stress in mice. Food Chem Toxicol. 2015;82:12–8.PubMed
265.
Zurück zum Zitat Sabzghabaee AM, Nili F, Ghannadi A, Eizadi-Mood N, Anvari M. Role of menthol in treatment of candidial napkin dermatitis. World J Pediatr. 2011;7(2):167–70.PubMed Sabzghabaee AM, Nili F, Ghannadi A, Eizadi-Mood N, Anvari M. Role of menthol in treatment of candidial napkin dermatitis. World J Pediatr. 2011;7(2):167–70.PubMed
266.
Zurück zum Zitat Fallon MT, Storey DJ, Krishan A, Weir CJ, Mitchell R, Fleetwood-Walker SM, Scott AC, Colvin LA. Cancer treatment-related neuropathic pain: proof of concept study with menthol–a TRPM8 agonist. Support Care Cancer. 2015;23(9):2769–77.PubMedPubMedCentral Fallon MT, Storey DJ, Krishan A, Weir CJ, Mitchell R, Fleetwood-Walker SM, Scott AC, Colvin LA. Cancer treatment-related neuropathic pain: proof of concept study with menthol–a TRPM8 agonist. Support Care Cancer. 2015;23(9):2769–77.PubMedPubMedCentral
267.
Zurück zum Zitat Paul S, Hwang JK, Kim HY, Jeon WK, Chung C, Han JS. Multiple biological properties of macelignan and its pharmacological implications. Arch Pharm Res. 2013;36(3):264–72.PubMed Paul S, Hwang JK, Kim HY, Jeon WK, Chung C, Han JS. Multiple biological properties of macelignan and its pharmacological implications. Arch Pharm Res. 2013;36(3):264–72.PubMed
268.
Zurück zum Zitat Shin K, Chung HC, Kim DU, Hwang JK, Lee SH. Macelignan attenuated allergic lung inflammation and airway hyper-responsiveness in murine experimental asthma. Life Sci. 2013;92(22):1093–9.PubMed Shin K, Chung HC, Kim DU, Hwang JK, Lee SH. Macelignan attenuated allergic lung inflammation and airway hyper-responsiveness in murine experimental asthma. Life Sci. 2013;92(22):1093–9.PubMed
269.
Zurück zum Zitat Han YS, Kim MS, Hwang JK. Macelignan inhibits histamine release and inflammatory mediator production in activated rat basophilic leukemia mast cells. Inflammation. 2012;35(5):1723–31.PubMed Han YS, Kim MS, Hwang JK. Macelignan inhibits histamine release and inflammatory mediator production in activated rat basophilic leukemia mast cells. Inflammation. 2012;35(5):1723–31.PubMed
270.
Zurück zum Zitat Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loadedchitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–56.PubMed Elnaggar YS, Etman SM, Abdelmonsif DA, Abdallah OY. Intranasal piperine-loadedchitosan nanoparticles as brain-targeted therapy in Alzheimer’s disease: optimization, biological efficacy, and potential toxicity. J Pharm Sci. 2015;104(10):3544–56.PubMed
271.
Zurück zum Zitat Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J Ethnopharmacol. 2016;188:87–95.PubMed Deng Y, Sriwiriyajan S, Tedasen A, Hiransai P, Graidist P. Anti-cancer effects of Piper nigrum via inducing multiple molecular signaling in vivo and in vitro. J Ethnopharmacol. 2016;188:87–95.PubMed
272.
Zurück zum Zitat Toyoda T, Shi L, Takasu S, Cho YM, Kiriyama Y, Nishikawa A, Ogawa K, Tatematsu M, Tsukamoto T. Anti-inflammatory effects of capsaicin and piperine on helicobacter pylori-induced chronic gastritis in mongolian gerbils. Helicobacter. 2016;21(2):131–42.PubMed Toyoda T, Shi L, Takasu S, Cho YM, Kiriyama Y, Nishikawa A, Ogawa K, Tatematsu M, Tsukamoto T. Anti-inflammatory effects of capsaicin and piperine on helicobacter pylori-induced chronic gastritis in mongolian gerbils. Helicobacter. 2016;21(2):131–42.PubMed
273.
Zurück zum Zitat Prashant A, Rangaswamy C, Yadav AK, Reddy V, Sowmya MN, Madhunapantula S. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int J Appl Basic Med Res. 2017;7(1):67–72.PubMedPubMedCentral Prashant A, Rangaswamy C, Yadav AK, Reddy V, Sowmya MN, Madhunapantula S. In vitro anticancer activity of ethanolic extracts of Piper nigrum against colorectal carcinoma cell lines. Int J Appl Basic Med Res. 2017;7(1):67–72.PubMedPubMedCentral
274.
Zurück zum Zitat Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav Brain Res. 2014;261:140–5.PubMed Mao QQ, Huang Z, Zhong XM, Xian YF, Ip SP. Brain-derived neurotrophic factor signalling mediates the antidepressant-like effect of piperine in chronically stressed mice. Behav Brain Res. 2014;261:140–5.PubMed
275.
Zurück zum Zitat Hwang YP, Yun HJ, Kim HG, Han EH, Choi JH, Chung YC, Jeong HG. Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett. 2011;203(1):9–19.PubMed Hwang YP, Yun HJ, Kim HG, Han EH, Choi JH, Chung YC, Jeong HG. Suppression of phorbol-12-myristate-13-acetate-induced tumor cell invasion by piperine via the inhibition of PKCα/ERK1/2-dependent matrix metalloproteinase-9 expression. Toxicol Lett. 2011;203(1):9–19.PubMed
276.
Zurück zum Zitat Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med. 2015;36(5):1369–76.PubMed Yang W, Chen YH, Liu H, Qu HD. Neuroprotective effects of piperine on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s disease mouse model. Int J Mol Med. 2015;36(5):1369–76.PubMed
277.
Zurück zum Zitat Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res. 2014;34(4):1893–9.PubMed Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I. Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res. 2014;34(4):1893–9.PubMed
278.
Zurück zum Zitat Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, Gong W, Du S, Wu Q. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm. 2015;490(1–2):22–31.PubMed Li Q, Zhai W, Jiang Q, Huang R, Liu L, Dai J, Gong W, Du S, Wu Q. Curcumin-piperine mixtures in self-microemulsifying drug delivery system for ulcerative colitis therapy. Int J Pharm. 2015;490(1–2):22–31.PubMed
279.
Zurück zum Zitat Napimoga MH, Clemente-Napimoga JT, Macedo CG, Freitas FF, Stipp RN, Pinho-Ribeiro FA, Casagrande R, Verri WA Jr. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model. J Nat Prod. 2013;76(12):2316–21.PubMed Napimoga MH, Clemente-Napimoga JT, Macedo CG, Freitas FF, Stipp RN, Pinho-Ribeiro FA, Casagrande R, Verri WA Jr. Quercetin inhibits inflammatory bone resorption in a mouse periodontitis model. J Nat Prod. 2013;76(12):2316–21.PubMed
280.
Zurück zum Zitat Seo JS, Choi J, Leem YH, Han PL. Rosmarinic acid alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurobiol. 2015;24(4):341–50.PubMedPubMedCentral Seo JS, Choi J, Leem YH, Han PL. Rosmarinic acid alleviates neurological symptoms in the G93A-SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Exp Neurobiol. 2015;24(4):341–50.PubMedPubMedCentral
281.
Zurück zum Zitat Jin BR, Chung KS, Cheon SY, Lee M, Hwang S, Noh Hwang S, Rhee KJ, An HJ. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep. 2017;7:46252.PubMedPubMedCentral Jin BR, Chung KS, Cheon SY, Lee M, Hwang S, Noh Hwang S, Rhee KJ, An HJ. Rosmarinic acid suppresses colonic inflammation in dextran sulphate sodium (DSS)-induced mice via dual inhibition of NF-κB and STAT3 activation. Sci Rep. 2017;7:46252.PubMedPubMedCentral
282.
Zurück zum Zitat Xu Y, Han S, Lei K, Chang X, Wang K, Li Z, Liu J. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev. 2016;25(6):481–9.PubMed Xu Y, Han S, Lei K, Chang X, Wang K, Li Z, Liu J. Anti-Warburg effect of rosmarinic acid via miR-155 in colorectal carcinoma cells. Eur J Cancer Prev. 2016;25(6):481–9.PubMed
283.
Zurück zum Zitat Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther. 2015;9:2695–703.PubMedPubMedCentral Han S, Yang S, Cai Z, Pan D, Li Z, Huang Z, Zhang P, Zhu H, Lei L, Wang W. Anti-Warburg effect of rosmarinic acid via miR-155 in gastric cancer cells. Drug Des Devel Ther. 2015;9:2695–703.PubMedPubMedCentral
284.
Zurück zum Zitat Cao W, Hu C, Wu L, Xu L, Jiang W. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci. 2016;132(2):131–7.PubMed Cao W, Hu C, Wu L, Xu L, Jiang W. Rosmarinic acid inhibits inflammation and angiogenesis of hepatocellular carcinoma by suppression of NF-κB signaling in H22 tumor-bearing mice. J Pharmacol Sci. 2016;132(2):131–7.PubMed
285.
Zurück zum Zitat Heo SK, Noh EK, Yoon DJ, Jo JC, Koh S, Baek JH, Park JH, Min YJ, Kim H. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur J Pharmacol. 2015;747:36–44.PubMed Heo SK, Noh EK, Yoon DJ, Jo JC, Koh S, Baek JH, Park JH, Min YJ, Kim H. Rosmarinic acid potentiates ATRA-induced macrophage differentiation in acute promyelocytic leukemia NB4 cells. Eur J Pharmacol. 2015;747:36–44.PubMed
286.
Zurück zum Zitat Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother. 2017;86:441–9.PubMed Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother. 2017;86:441–9.PubMed
287.
Zurück zum Zitat Omori A, Yoshimura Y, Deyama Y, Suzuki K. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. Biomed Rep. 2015;3(4):483–90.PubMedPubMedCentral Omori A, Yoshimura Y, Deyama Y, Suzuki K. Rosmarinic acid and arbutin suppress osteoclast differentiation by inhibiting superoxide and NFATc1 downregulation in RAW 264.7 cells. Biomed Rep. 2015;3(4):483–90.PubMedPubMedCentral
288.
Zurück zum Zitat Fan YT, Yin GJ, Xiao WQ, Qiu L, Yu G, Hu YL, Xing M, Wu DQ, Cang XF, Wan R, Wang XP, Hu GY. rosmarinic acid attenuates sodium taurocholate-induced acute pancreatitis in rats by inhibiting nuclear factor-κB activation. Am J Chin Med. 2015;43(6):1117–35.PubMed Fan YT, Yin GJ, Xiao WQ, Qiu L, Yu G, Hu YL, Xing M, Wu DQ, Cang XF, Wan R, Wang XP, Hu GY. rosmarinic acid attenuates sodium taurocholate-induced acute pancreatitis in rats by inhibiting nuclear factor-κB activation. Am J Chin Med. 2015;43(6):1117–35.PubMed
289.
Zurück zum Zitat Zhou MW, Jiang RH, Kim KD, Lee JH, Kim CD, Yin WT, Lee JH. Rosmarinic acid inhibits poly(I:C)-induced inflammatory reaction of epidermal keratinocytes. Life Sci. 2016;155:189–94.PubMed Zhou MW, Jiang RH, Kim KD, Lee JH, Kim CD, Yin WT, Lee JH. Rosmarinic acid inhibits poly(I:C)-induced inflammatory reaction of epidermal keratinocytes. Life Sci. 2016;155:189–94.PubMed
290.
Zurück zum Zitat Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. BioFactors. 2004;21(1–4):127–31.PubMed Osakabe N, Takano H, Sanbongi C, Yasuda A, Yanagisawa R, Inoue K, Yoshikawa T. Anti-inflammatory and anti-allergic effect of rosmarinic acid (RA); inhibition of seasonal allergic rhinoconjunctivitis (SAR) and its mechanism. BioFactors. 2004;21(1–4):127–31.PubMed
291.
Zurück zum Zitat Lin CH, Shen ML, Zhou N, Lee CC, Kao ST, Wu DC. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS ONE. 2014;9(4):e96091.PubMedPubMedCentral Lin CH, Shen ML, Zhou N, Lee CC, Kao ST, Wu DC. Protective effects of the polyphenol sesamin on allergen-induced T(H)2 responses and airway inflammation in mice. PLoS ONE. 2014;9(4):e96091.PubMedPubMedCentral
292.
Zurück zum Zitat Narasimhulu CA, Selvarajan K, Litvinov D, Parthasarathy S. Anti-atherosclerotic and anti-inflammatory actions of sesame oil. J Med Food. 2015;18(1):11–20.PubMedPubMedCentral Narasimhulu CA, Selvarajan K, Litvinov D, Parthasarathy S. Anti-atherosclerotic and anti-inflammatory actions of sesame oil. J Med Food. 2015;18(1):11–20.PubMedPubMedCentral
293.
Zurück zum Zitat Lee CC, Liu KJ, Wu YC, Lin SJ, Chang CC, Huang TS. Sesamin inhibitsmacrophage-induced vascular endothelial growth factor and matrixmetalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation. 2011;34(3):209–21.PubMed Lee CC, Liu KJ, Wu YC, Lin SJ, Chang CC, Huang TS. Sesamin inhibitsmacrophage-induced vascular endothelial growth factor and matrixmetalloproteinase-9 expression and proangiogenic activity in breast cancer cells. Inflammation. 2011;34(3):209–21.PubMed
294.
Zurück zum Zitat Mohammad Shahi M, Zakerzadeh M, Zakerkish M, Zarei M, Saki A. Effect of sesamin supplementation on glycemic status, inflammatory markers, and adiponectin levels in patients with type 2 diabetes mellitus. J Diet Suppl. 2016; 1–12. Mohammad Shahi M, Zakerzadeh M, Zakerkish M, Zarei M, Saki A. Effect of sesamin supplementation on glycemic status, inflammatory markers, and adiponectin levels in patients with type 2 diabetes mellitus. J Diet Suppl. 2016; 1–12.
296.
Zurück zum Zitat Kong P, Chen G, Jiang A, Wang Y, Song C, Zhuang J, Xi C, Wang G, Ji Y, Yan J. Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway. Oncotarget. 2016;7(50):83720–6.PubMedPubMedCentral Kong P, Chen G, Jiang A, Wang Y, Song C, Zhuang J, Xi C, Wang G, Ji Y, Yan J. Sesamin inhibits IL-1β-stimulated inflammatory response in human osteoarthritis chondrocytes by activating Nrf2 signaling pathway. Oncotarget. 2016;7(50):83720–6.PubMedPubMedCentral
297.
Zurück zum Zitat Xu P, Cai F, Liu X, Guo L. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol Rep. 2015;33(6):3117–23.PubMed Xu P, Cai F, Liu X, Guo L. Sesamin inhibits lipopolysaccharide-induced proliferation and invasion through the p38-MAPK and NF-κB signaling pathways in prostate cancer cells. Oncol Rep. 2015;33(6):3117–23.PubMed
298.
Zurück zum Zitat Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants inneuroinflammation: role of NRLP3 in Alzheimer disease. J Neurosci Res. 2016;95(7):1360–72.PubMed Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, Cuzzocrea S, Calabrese V. Inflammasomes, hormesis, and antioxidants inneuroinflammation: role of NRLP3 in Alzheimer disease. J Neurosci Res. 2016;95(7):1360–72.PubMed
299.
Zurück zum Zitat Byrne MM, Murphy RT, Ryan AW. Epigenetic modulation in the treatment of atherosclerotic disease. Front Genet. 2014;5:364.PubMedPubMedCentral Byrne MM, Murphy RT, Ryan AW. Epigenetic modulation in the treatment of atherosclerotic disease. Front Genet. 2014;5:364.PubMedPubMedCentral
300.
Zurück zum Zitat Shing CM, Fassett RG, Peake JM, Coombes JS. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy. Cardiovasc Ther. 2014;32(6):270–5.PubMed Shing CM, Fassett RG, Peake JM, Coombes JS. Effect of tocopherol on atherosclerosis, vascular function, and inflammation in apolipoprotein E knockout mice with subtotal nephrectomy. Cardiovasc Ther. 2014;32(6):270–5.PubMed
301.
Zurück zum Zitat Jiang Q, Jiang Z, Hall YJ, Jang Y, Snyder PW, Bain C, Huang J, Jannasch A, Cooper B, Wang Y, Moreland M. Gamma-tocopherol attenuates moderate but not severe colitis and suppresses moderate colitis-promoted colon tumorigenesis in mice. Free Radic Biol Med. 2013;65:1069–77.PubMed Jiang Q, Jiang Z, Hall YJ, Jang Y, Snyder PW, Bain C, Huang J, Jannasch A, Cooper B, Wang Y, Moreland M. Gamma-tocopherol attenuates moderate but not severe colitis and suppresses moderate colitis-promoted colon tumorigenesis in mice. Free Radic Biol Med. 2013;65:1069–77.PubMed
302.
Zurück zum Zitat Yang CS, Lu G, Ju J, Li GX. Inhibition of inflammation and carcinogenesis in the lung and colon by tocopherols. Ann NY Acad Sci. 2010;1203:29–34.PubMed Yang CS, Lu G, Ju J, Li GX. Inhibition of inflammation and carcinogenesis in the lung and colon by tocopherols. Ann NY Acad Sci. 2010;1203:29–34.PubMed
303.
Zurück zum Zitat Smolarek AK, So JY, Thomas PE, Lee HJ, Paul S, Dombrowski A, Wang CX, Saw CL, Khor TO, Kong AN, Reuhl K, Lee MJ, Yang CS, Suh N. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Mol Carcinog. 2013;52(7):514–25.PubMed Smolarek AK, So JY, Thomas PE, Lee HJ, Paul S, Dombrowski A, Wang CX, Saw CL, Khor TO, Kong AN, Reuhl K, Lee MJ, Yang CS, Suh N. Dietary tocopherols inhibit cell proliferation, regulate expression of ERα, PPARγ, and Nrf2, and decrease serum inflammatory markers during the development of mammary hyperplasia. Mol Carcinog. 2013;52(7):514–25.PubMed
304.
Zurück zum Zitat Zhou E, Fu Y, Wei Z, Yu Y, Zhang X, Yang Z. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia. 2014;96:131–7.PubMed Zhou E, Fu Y, Wei Z, Yu Y, Zhang X, Yang Z. Thymol attenuates allergic airway inflammation in ovalbumin (OVA)-induced mouse asthma. Fitoterapia. 2014;96:131–7.PubMed
305.
Zurück zum Zitat Wu H, Jiang K, Yin N, Ma X, Zhao G, Qiu C, Deng G. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-κB signaling pathways. Oncotarget. 2017;8(12):20042–55.PubMedPubMedCentral Wu H, Jiang K, Yin N, Ma X, Zhao G, Qiu C, Deng G. Thymol mitigates lipopolysaccharide-induced endometritis by regulating the TLR4- and ROS-mediated NF-κB signaling pathways. Oncotarget. 2017;8(12):20042–55.PubMedPubMedCentral
306.
Zurück zum Zitat Ribeiro AR, Diniz PB, Pinheiro MS, Albuquerque-Júnior RL, Thomazzi SM. Gastroprotective effects of thymol on acute and chronic ulcers in rats: the role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion. ChemBiol Interact. 2016;244:121–8. Ribeiro AR, Diniz PB, Pinheiro MS, Albuquerque-Júnior RL, Thomazzi SM. Gastroprotective effects of thymol on acute and chronic ulcers in rats: the role of prostaglandins, ATP-sensitive K(+) channels, and gastric mucus secretion. ChemBiol Interact. 2016;244:121–8.
307.
Zurück zum Zitat Liang D, Li F, Fu Y, Cao Y, Song X, Wang T, Wang W, Guo M, Zhou E, Li D, Yang Z, Zhang N. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation. 2014;37(1):214–22.PubMed Liang D, Li F, Fu Y, Cao Y, Song X, Wang T, Wang W, Guo M, Zhou E, Li D, Yang Z, Zhang N. Thymol inhibits LPS-stimulated inflammatory response via down-regulation of NF-κB and MAPK signaling pathways in mouse mammary epithelial cells. Inflammation. 2014;37(1):214–22.PubMed
308.
Zurück zum Zitat Xu D, Ma Y, Zhao B, Li S, Zhang Y, Pan S, Wu Y, Wang J, Wang D, Pan H, Liu L, Jiang H. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol Rep. 2014;31(5):2063–70.PubMed Xu D, Ma Y, Zhao B, Li S, Zhang Y, Pan S, Wu Y, Wang J, Wang D, Pan H, Liu L, Jiang H. Thymoquinone induces G2/M arrest, inactivates PI3K/Akt and nuclear factor-κB pathways in human cholangiocarcinomas both in vitro and in vivo. Oncol Rep. 2014;31(5):2063–70.PubMed
309.
Zurück zum Zitat Aquib M, Najmi AK, Akhtar M. Antidepressant effect of thymoquinone in animal models of depression. Drug Res (Stuttg). 2015;65(9):490–4. Aquib M, Najmi AK, Akhtar M. Antidepressant effect of thymoquinone in animal models of depression. Drug Res (Stuttg). 2015;65(9):490–4.
310.
Zurück zum Zitat El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, El-Sayed M, Takewaki T. Successful abrogation by thymoquinone against induction of diabetes mellitus with streptozotocin via nitric oxide inhibitory mechanism. Int Immunopharmacol. 2005;5(1):195–207.PubMed El-Mahmoudy A, Shimizu Y, Shiina T, Matsuyama H, El-Sayed M, Takewaki T. Successful abrogation by thymoquinone against induction of diabetes mellitus with streptozotocin via nitric oxide inhibitory mechanism. Int Immunopharmacol. 2005;5(1):195–207.PubMed
311.
Zurück zum Zitat Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget. 2014;5(3):634–48.PubMed Siveen KS, Mustafa N, Li F, Kannaiyan R, Ahn KS, Kumar AP, Chng WJ, Sethi G. Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB regulated gene products in multiple myeloma xenograft mouse model. Oncotarget. 2014;5(3):634–48.PubMed
312.
Zurück zum Zitat Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008;6(6):1059–70.PubMed Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-kappa B activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol Cancer Res. 2008;6(6):1059–70.PubMed
313.
Zurück zum Zitat Tekeoglu I, Dogan A, Ediz L, Budancamanak M, Demirel A. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother Res. 2007;21(9):895–7.PubMed Tekeoglu I, Dogan A, Ediz L, Budancamanak M, Demirel A. Effects of thymoquinone (volatile oil of black cumin) on rheumatoid arthritis in rat models. Phytother Res. 2007;21(9):895–7.PubMed
314.
Zurück zum Zitat Cingi C, Eskiizmir G, Burukoğlu D, Erdoğmuş N, Ural A, Ünlü H. The histopathological effect of thymoquinone on experimentally induced rhinosinusitis in rats. Am J Rhinol Allergy. 2011;25(6):e268–72.PubMed Cingi C, Eskiizmir G, Burukoğlu D, Erdoğmuş N, Ural A, Ünlü H. The histopathological effect of thymoquinone on experimentally induced rhinosinusitis in rats. Am J Rhinol Allergy. 2011;25(6):e268–72.PubMed
315.
Zurück zum Zitat Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol. 2013;701(1–3):131–43.PubMed Kim SH, Hong JH, Lee YC. Ursolic acid, a potential PPARγ agonist, suppresses ovalbumin-induced airway inflammation and Penh by down-regulating IL-5, IL-13, and IL-17 in a mouse model of allergic asthma. Eur J Pharmacol. 2013;701(1–3):131–43.PubMed
316.
Zurück zum Zitat Chun J, Lee C, Hwang SW, Im JP, Kim JS. Ursolic acid inhibits nuclear factor-κB signaling in intestinal epithelial cells and macrophages, and attenuates experimental colitis in mice. Life Sci. 2014;110(1):23–34.PubMed Chun J, Lee C, Hwang SW, Im JP, Kim JS. Ursolic acid inhibits nuclear factor-κB signaling in intestinal epithelial cells and macrophages, and attenuates experimental colitis in mice. Life Sci. 2014;110(1):23–34.PubMed
317.
Zurück zum Zitat Gai WT, Yu DP, Wang XS, Wang PT. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. Oncol Lett. 2016;12(4):2880–5.PubMedPubMedCentral Gai WT, Yu DP, Wang XS, Wang PT. Anti-cancer effect of ursolic acid activates apoptosis through ROCK/PTEN mediated mitochondrial translocation of cofilin-1 in prostate cancer. Oncol Lett. 2016;12(4):2880–5.PubMedPubMedCentral
318.
Zurück zum Zitat Kang SY, Yoon SY, Roh DH, Jeon MJ, Seo HS, Uh DK, Kwon YB, Kim HW, Han HJ, Lee HJ, Lee JH. The anti-arthritic effect of ursolic acid on zymosan-induced acuteinflammation and adjuvant-induced chronic arthritis models. J Pharm Pharmacol. 2008;60(10):1347–54.PubMed Kang SY, Yoon SY, Roh DH, Jeon MJ, Seo HS, Uh DK, Kwon YB, Kim HW, Han HJ, Lee HJ, Lee JH. The anti-arthritic effect of ursolic acid on zymosan-induced acuteinflammation and adjuvant-induced chronic arthritis models. J Pharm Pharmacol. 2008;60(10):1347–54.PubMed
Metadaten
Titel
Chronic diseases, inflammation, and spices: how are they linked?
verfasst von
Ajaikumar B. Kunnumakkara
Bethsebie L. Sailo
Kishore Banik
Choudhary Harsha
Sahdeo Prasad
Subash Chandra Gupta
Alok Chandra Bharti
Bharat B. Aggarwal
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2018
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-018-1381-2

Weitere Artikel der Ausgabe 1/2018

Journal of Translational Medicine 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.