Skip to main content
Erschienen in: Annals of Nuclear Medicine 12/2022

30.09.2022 | Original Article

Chronic fluoxetine enhances extinction therapy for PTSD by evaluating brain glucose metabolism in rats: an [18F]FDG PET study

verfasst von: Jing Liu, Jun Yu, Hong Biao Liu, Qiong Yao, Ying Zhang

Erschienen in: Annals of Nuclear Medicine | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Recent studies suggest that selective serotonin reuptake inhibitors (SSRIs) and exposure therapies have been used to reduced footshock-induced posttraumatic stress disorder (PTSD) symptoms. However, the therapeutic effect of the combination of SSRIs treatment with exposure therapy remains a matter of debate. This study aimed to evaluate these therapeutic effect through the behavioural and the neuroimaging changes by positron emission tomography (PET) in model rats.

Methods

Pavlovian fear conditioning paradigm to establish model rats, and serial PET imaging with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) was performed during the control, fear-conditioning, and extinction-retrieval phases. The expression of c-Fos was used to identify neural activity.

Results

We report that fear conditioning increased glucose metabolism in the right amygdala and left primary visual cortex but decreased glucose metabolism in the left primary somatosensory cortex. After extinction retrieval, there was increased [18F]FDG uptake in the left striatum, left cochlear nucleus and right primary visual cortex but decreased uptake in the anterior cingulate cortex in the extinction group. Fluoxetine increased [18F]FDG uptake in the left hippocampus and right primary visual cortex but decreased uptake in the bilateral primary somatosensory cortex, left primary/secondary motor cortex and cuneiform nucleus. The combined therapy increased [18F]FDG uptake in the left hippocampus, left striatum, right insular cortex, left posterior parietal cortex, and right secondary visual cortex but reduced uptake in the cerebellar lobule. c-Fos expression in the hippocampal dentate gyrus and anterior cingulate cortex in the fluoxetine and combined groups was significantly higher than that in the extinction group, with no significant difference between the two groups.

Conclusions

Chronic fluoxetine enhanced the effects of extinction training in a rat model of PTSD. In vivo PET imaging may provide a promising approach for evaluation chronic fluoxetine treatment of PTSD.
Literatur
1.
Zurück zum Zitat Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47(13):2260–74. PubMedPubMedCentralCrossRef Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47(13):2260–74. PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Guideline Development Panel for the Treatment of Ptsd in Adults APA. Summary of the clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Am Psychol. 2019;74(5):596–607. CrossRef Guideline Development Panel for the Treatment of Ptsd in Adults APA. Summary of the clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Am Psychol. 2019;74(5):596–607. CrossRef
3.
Zurück zum Zitat Bisson JI, Berliner L, Cloitre M, Forbes D, Jensen TK, Lewis C, et al. The international society for traumatic stress studies new guidelines for the prevention and treatment of posttraumatic stress disorder: methodology and development process. J Trauma Stress. 2019;32(4):475–83. PubMedCrossRef Bisson JI, Berliner L, Cloitre M, Forbes D, Jensen TK, Lewis C, et al. The international society for traumatic stress studies new guidelines for the prevention and treatment of posttraumatic stress disorder: methodology and development process. J Trauma Stress. 2019;32(4):475–83. PubMedCrossRef
4.
Zurück zum Zitat Cipriani A, Williams T, Nikolakopoulou A, Salanti G, Chaimani A, Ipser J, et al. Comparative efficacy and acceptability of pharmacological treatments for post-traumatic stress disorder in adults: a network meta-analysis. Psychol Med. 2018;48(12):1975–84. PubMedCrossRef Cipriani A, Williams T, Nikolakopoulou A, Salanti G, Chaimani A, Ipser J, et al. Comparative efficacy and acceptability of pharmacological treatments for post-traumatic stress disorder in adults: a network meta-analysis. Psychol Med. 2018;48(12):1975–84. PubMedCrossRef
5.
Zurück zum Zitat Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334(6063):1731–4. PubMedPubMedCentralCrossRef Karpova NN, Pickenhagen A, Lindholm J, Tiraboschi E, Kulesskaya N, Agustsdottir A, et al. Fear erasure in mice requires synergy between antidepressant drugs and extinction training. Science. 2011;334(6063):1731–4. PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Tian M, Chen Q, Zhang Y, Du F, Hou H, Chao F, et al. PET imaging reveals brain functional changes in internet gaming disorder. Eur J Nucl Med Mol Imaging. 2014;41(7):1388–97. PubMedCrossRef Tian M, Chen Q, Zhang Y, Du F, Hou H, Chao F, et al. PET imaging reveals brain functional changes in internet gaming disorder. Eur J Nucl Med Mol Imaging. 2014;41(7):1388–97. PubMedCrossRef
7.
Zurück zum Zitat Pedraza LK, Sierra RO, Giachero M, Nunes-Souza W, Lotz FN, de Oliveira AL. Chronic fluoxetine prevents fear memory generalization and enhances subsequent extinction by remodeling hippocampal dendritic spines and slowing down systems consolidation. Transl Psychiatry. 2019;9(1):53. PubMedPubMedCentralCrossRef Pedraza LK, Sierra RO, Giachero M, Nunes-Souza W, Lotz FN, de Oliveira AL. Chronic fluoxetine prevents fear memory generalization and enhances subsequent extinction by remodeling hippocampal dendritic spines and slowing down systems consolidation. Transl Psychiatry. 2019;9(1):53. PubMedPubMedCentralCrossRef
9.
10.
Zurück zum Zitat Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5(11):844–52. PubMedCrossRef Maren S, Quirk GJ. Neuronal signalling of fear memory. Nat Rev Neurosci. 2004;5(11):844–52. PubMedCrossRef
11.
Zurück zum Zitat Garrett AS, Carrion V, Kletter H, Karchemskiy A, Weems CF, Reiss A. Brain activation to facial expressions in youth with PTSD symptoms. Depress Anxiety. 2012;29(5):449–59. PubMedPubMedCentralCrossRef Garrett AS, Carrion V, Kletter H, Karchemskiy A, Weems CF, Reiss A. Brain activation to facial expressions in youth with PTSD symptoms. Depress Anxiety. 2012;29(5):449–59. PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Vermetten E, Schmahl C, Southwick SM, Bremner JD. Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull. 2007;40(1):8–30. PubMed Vermetten E, Schmahl C, Southwick SM, Bremner JD. Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull. 2007;40(1):8–30. PubMed
13.
Zurück zum Zitat Brydges NM, Whalley HC, Jansen MA, Merrifield GD, Wood ER, Lawrie SM, et al. Imaging conditioned fear circuitry using awake rodent fMRI. PLoS ONE. 2013;8(1): e54197. PubMedPubMedCentralCrossRef Brydges NM, Whalley HC, Jansen MA, Merrifield GD, Wood ER, Lawrie SM, et al. Imaging conditioned fear circuitry using awake rodent fMRI. PLoS ONE. 2013;8(1): e54197. PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Bromis K, Calem M, Reinders A, Williams SCR, Kempton MJ. Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry. 2018;175(10):989–98. PubMedPubMedCentralCrossRef Bromis K, Calem M, Reinders A, Williams SCR, Kempton MJ. Meta-analysis of 89 structural MRI studies in posttraumatic stress disorder and comparison with major depressive disorder. Am J Psychiatry. 2018;175(10):989–98. PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Chao LL, Yaffe K, Samuelson K, Neylan TC. Hippocampal volume is inversely related to PTSD duration. Psychiatry Res. 2014;222(3):119–23. PubMedCrossRef Chao LL, Yaffe K, Samuelson K, Neylan TC. Hippocampal volume is inversely related to PTSD duration. Psychiatry Res. 2014;222(3):119–23. PubMedCrossRef
16.
Zurück zum Zitat Rubin M, Shvil E, Papini S, Chhetry BT, Helpman L, Markowitz JC, et al. Greater hippocampal volume is associated with PTSD treatment response. Psychiatry Res Neuroimaging. 2016;252:36–9. PubMedCrossRef Rubin M, Shvil E, Papini S, Chhetry BT, Helpman L, Markowitz JC, et al. Greater hippocampal volume is associated with PTSD treatment response. Psychiatry Res Neuroimaging. 2016;252:36–9. PubMedCrossRef
17.
Zurück zum Zitat Patricio P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, et al. Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology. 2015;40(2):338–49. PubMedCrossRef Patricio P, Mateus-Pinheiro A, Irmler M, Alves ND, Machado-Santos AR, Morais M, et al. Differential and converging molecular mechanisms of antidepressants’ action in the hippocampal dentate gyrus. Neuropsychopharmacology. 2015;40(2):338–49. PubMedCrossRef
19.
Zurück zum Zitat Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–8. PubMedCrossRef Maya Vetencourt JF, Sale A, Viegi A, Baroncelli L, De Pasquale R, O’Leary OF, et al. The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science. 2008;320(5874):385–8. PubMedCrossRef
20.
Zurück zum Zitat Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, et al. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci USA. 2010;107(18):8434–9. PubMedPubMedCentralCrossRef Kobayashi K, Ikeda Y, Sakai A, Yamasaki N, Haneda E, Miyakawa T, et al. Reversal of hippocampal neuronal maturation by serotonergic antidepressants. Proc Natl Acad Sci USA. 2010;107(18):8434–9. PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Rogoz Z, Kaminska K, Panczyszyn-Trzewik P, Sowa-Kucma M. Repeated co-treatment with antidepressants and risperidone increases BDNF mRNA and protein levels in rats. Pharmacol Rep. 2017;69(5):885–93. PubMedCrossRef Rogoz Z, Kaminska K, Panczyszyn-Trzewik P, Sowa-Kucma M. Repeated co-treatment with antidepressants and risperidone increases BDNF mRNA and protein levels in rats. Pharmacol Rep. 2017;69(5):885–93. PubMedCrossRef
22.
Zurück zum Zitat Mendez-David I, Tritschler L, Ali ZE, Damiens MH, Pallardy M, David DJ, et al. Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett. 2015;597:121–6. PubMedCrossRef Mendez-David I, Tritschler L, Ali ZE, Damiens MH, Pallardy M, David DJ, et al. Nrf2-signaling and BDNF: a new target for the antidepressant-like activity of chronic fluoxetine treatment in a mouse model of anxiety/depression. Neurosci Lett. 2015;597:121–6. PubMedCrossRef
23.
Zurück zum Zitat Kuipers SD, Trentani A, Tiron A, Mao X, Kuhl D, Bramham CR. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci Rep. 2016;6:21222. PubMedPubMedCentralCrossRef Kuipers SD, Trentani A, Tiron A, Mao X, Kuhl D, Bramham CR. BDNF-induced LTP is associated with rapid Arc/Arg3.1-dependent enhancement in adult hippocampal neurogenesis. Sci Rep. 2016;6:21222. PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology. 2008;55(7):1114–20. PubMedPubMedCentralCrossRef Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology. 2008;55(7):1114–20. PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA. 2004;101(43):15506–11. PubMedPubMedCentralCrossRef Evans SJ, Choudary PV, Neal CR, Li JZ, Vawter MP, Tomita H, et al. Dysregulation of the fibroblast growth factor system in major depression. Proc Natl Acad Sci USA. 2004;101(43):15506–11. PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Graham BM, Zagic D, Richardson R. Low endogenous fibroblast growth factor 2 levels are associated with heightened conditioned fear expression in rats and humans. Biol Psychiatry. 2017;82(8):601–7. PubMedCrossRef Graham BM, Zagic D, Richardson R. Low endogenous fibroblast growth factor 2 levels are associated with heightened conditioned fear expression in rats and humans. Biol Psychiatry. 2017;82(8):601–7. PubMedCrossRef
27.
Zurück zum Zitat Graham BM, Dong V, Richardson R. The impact of chronic fluoxetine on conditioned fear expression and hippocampal FGF2 in rats: short- and long-term effects. Neurobiol Learn Mem. 2018;155:344–50. PubMedCrossRef Graham BM, Dong V, Richardson R. The impact of chronic fluoxetine on conditioned fear expression and hippocampal FGF2 in rats: short- and long-term effects. Neurobiol Learn Mem. 2018;155:344–50. PubMedCrossRef
28.
Zurück zum Zitat Perez JA, Clinton SM, Turner CA, Watson SJ, Akil H. A new role for FGF2 as an endogenous inhibitor of anxiety. J Neurosci. 2009;29(19):6379–87. PubMedPubMedCentralCrossRef Perez JA, Clinton SM, Turner CA, Watson SJ, Akil H. A new role for FGF2 as an endogenous inhibitor of anxiety. J Neurosci. 2009;29(19):6379–87. PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Lin CC, Tung CS, Liu YP. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology. 2016;233(7):1135–46. PubMedCrossRef Lin CC, Tung CS, Liu YP. Escitalopram reversed the traumatic stress-induced depressed and anxiety-like symptoms but not the deficits of fear memory. Psychopharmacology. 2016;233(7):1135–46. PubMedCrossRef
30.
Zurück zum Zitat Van Dyke AM, Francis TC, Chen H, Bailey AM, Thompson SM. Chronic fluoxetine treatment in vivo enhances excitatory synaptic transmission in the hippocampus. Neuropharmacology. 2019;150:38–45. PubMedPubMedCentralCrossRef Van Dyke AM, Francis TC, Chen H, Bailey AM, Thompson SM. Chronic fluoxetine treatment in vivo enhances excitatory synaptic transmission in the hippocampus. Neuropharmacology. 2019;150:38–45. PubMedPubMedCentralCrossRef
31.
32.
Zurück zum Zitat Enman NM, Arthur K, Ward SJ, Perrine SA, Unterwald EM. Anhedonia, reduced cocaine reward, and dopamine dysfunction in a rat model of posttraumatic stress disorder. Biol Psychiatry. 2015;78(12):871–9. PubMedPubMedCentralCrossRef Enman NM, Arthur K, Ward SJ, Perrine SA, Unterwald EM. Anhedonia, reduced cocaine reward, and dopamine dysfunction in a rat model of posttraumatic stress disorder. Biol Psychiatry. 2015;78(12):871–9. PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Lee B, Shim I, Lee H, Hahm DH. Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder. Korean J Physiol Pharmacol. 2018;22(2):183–92. PubMedPubMedCentralCrossRef Lee B, Shim I, Lee H, Hahm DH. Berberine alleviates symptoms of anxiety by enhancing dopamine expression in rats with post-traumatic stress disorder. Korean J Physiol Pharmacol. 2018;22(2):183–92. PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Felmingham KL, Falconer EM, Williams L, Kemp AH, Allen A, Peduto A, et al. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing. PLoS ONE. 2014;9(9): e103653. PubMedPubMedCentralCrossRef Felmingham KL, Falconer EM, Williams L, Kemp AH, Allen A, Peduto A, et al. Reduced amygdala and ventral striatal activity to happy faces in PTSD is associated with emotional numbing. PLoS ONE. 2014;9(9): e103653. PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Milad MR, Rosenbaum BL, Simon NM. Neuroscience of fear extinction: implications for assessment and treatment of fear-based and anxiety related disorders. Behav Res Ther. 2014;62:17–23. PubMedCrossRef Milad MR, Rosenbaum BL, Simon NM. Neuroscience of fear extinction: implications for assessment and treatment of fear-based and anxiety related disorders. Behav Res Ther. 2014;62:17–23. PubMedCrossRef
36.
Zurück zum Zitat El-Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 2001;892(1):86–93. PubMedCrossRef El-Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 2001;892(1):86–93. PubMedCrossRef
37.
Zurück zum Zitat Hadamitzky M, Orlowski K, Schwitalla JC, Bosche K, Unteroberdorster M, Bendix I, et al. Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A. Neurobiol Learn Mem. 2016;133:129–35. PubMedCrossRef Hadamitzky M, Orlowski K, Schwitalla JC, Bosche K, Unteroberdorster M, Bendix I, et al. Transient inhibition of protein synthesis in the rat insular cortex delays extinction of conditioned taste aversion with cyclosporine A. Neurobiol Learn Mem. 2016;133:129–35. PubMedCrossRef
38.
Zurück zum Zitat Rodriguez-Serrano LM, Ramirez-Leon B, Rodriguez-Duran LF, Escobar ML. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction. Neurobiol Learn Mem. 2014;116:139–44. PubMedCrossRef Rodriguez-Serrano LM, Ramirez-Leon B, Rodriguez-Duran LF, Escobar ML. Acute infusion of brain-derived neurotrophic factor in the insular cortex promotes conditioned taste aversion extinction. Neurobiol Learn Mem. 2014;116:139–44. PubMedCrossRef
39.
Zurück zum Zitat Woodward SH, Shurick AA, Alvarez J, Kuo J, Nonyieva Y, Blechert J, et al. A psychophysiological investigation of emotion regulation in chronic severe posttraumatic stress disorder. Psychophysiology. 2015;52(5):667–78. PubMedCrossRef Woodward SH, Shurick AA, Alvarez J, Kuo J, Nonyieva Y, Blechert J, et al. A psychophysiological investigation of emotion regulation in chronic severe posttraumatic stress disorder. Psychophysiology. 2015;52(5):667–78. PubMedCrossRef
40.
Zurück zum Zitat Wisdom NM, Pastorek NJ, Miller BI, Booth JE, Romesser JM, Linck JF, et al. PTSD and cognitive functioning: importance of including performance validity testing. Clin Neuropsychol. 2014;28(1):128–45. PubMedCrossRef Wisdom NM, Pastorek NJ, Miller BI, Booth JE, Romesser JM, Linck JF, et al. PTSD and cognitive functioning: importance of including performance validity testing. Clin Neuropsychol. 2014;28(1):128–45. PubMedCrossRef
41.
Zurück zum Zitat Naviaux RK. Oxidative shielding or oxidative stress? J Pharmacol Exp Ther. 2012;342(3):608–18. PubMedCrossRef Naviaux RK. Oxidative shielding or oxidative stress? J Pharmacol Exp Ther. 2012;342(3):608–18. PubMedCrossRef
42.
Zurück zum Zitat Kao CY, He Z, Zannas AS, Hahn O, Kuhne C, Reichel JM, et al. Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. J Psychiatr Res. 2016;76:74–83. PubMedCrossRef Kao CY, He Z, Zannas AS, Hahn O, Kuhne C, Reichel JM, et al. Fluoxetine treatment prevents the inflammatory response in a mouse model of posttraumatic stress disorder. J Psychiatr Res. 2016;76:74–83. PubMedCrossRef
43.
Zurück zum Zitat Hou L, Qi Y, Sun H, Wang G, Li Q, Wang Y, et al. Applying ketamine to alleviate the PTSD-like effects by regulating the HCN1-related BDNF. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:313–21. PubMedCrossRef Hou L, Qi Y, Sun H, Wang G, Li Q, Wang Y, et al. Applying ketamine to alleviate the PTSD-like effects by regulating the HCN1-related BDNF. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:313–21. PubMedCrossRef
44.
Zurück zum Zitat Chang S-H, Yu YH, He A, Ou CY, Shyu BC, Huang ACW, et al. BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model. Behav Neurol. 2021;2021:1–13. CrossRef Chang S-H, Yu YH, He A, Ou CY, Shyu BC, Huang ACW, et al. BDNF protein and BDNF mRNA expression of the medial prefrontal cortex, amygdala, and hippocampus during situational reminder in the PTSD animal model. Behav Neurol. 2021;2021:1–13. CrossRef
45.
Zurück zum Zitat Schofield BR, Coomes DL. Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res. 2005;199(1–2):89–102. PubMedCrossRef Schofield BR, Coomes DL. Auditory cortical projections to the cochlear nucleus in guinea pigs. Hear Res. 2005;199(1–2):89–102. PubMedCrossRef
46.
Zurück zum Zitat Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Front Neural Circuits. 2014;8:146. PubMed Wilber AA, Clark BJ, Demecha AJ, Mesina L, Vos JM, McNaughton BL. Cortical connectivity maps reveal anatomically distinct areas in the parietal cortex of the rat. Front Neural Circuits. 2014;8:146. PubMed
47.
Zurück zum Zitat Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature. 2012;484(7392):62–8. PubMedPubMedCentralCrossRef Harvey CD, Coen P, Tank DW. Choice-specific sequences in parietal cortex during a virtual-navigation decision task. Nature. 2012;484(7392):62–8. PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci. 2008;9(8):601–12. PubMedCrossRef Diamond ME, von Heimendahl M, Knutsen PM, Kleinfeld D, Ahissar E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat Rev Neurosci. 2008;9(8):601–12. PubMedCrossRef
49.
Zurück zum Zitat Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17(9):1233–9. PubMedCrossRef Proville RD, Spolidoro M, Guyon N, Dugue GP, Selimi F, Isope P, et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat Neurosci. 2014;17(9):1233–9. PubMedCrossRef
50.
Zurück zum Zitat Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33(15):6552–6. PubMedPubMedCentralCrossRef Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33(15):6552–6. PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat He X, Jin C, Ma M, Zhou R, Wu S, Huang H, et al. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder. Front Med. 2019;13(5):602–9. PubMedCrossRef He X, Jin C, Ma M, Zhou R, Wu S, Huang H, et al. PET imaging on neurofunctional changes after optogenetic stimulation in a rat model of panic disorder. Front Med. 2019;13(5):602–9. PubMedCrossRef
Metadaten
Titel
Chronic fluoxetine enhances extinction therapy for PTSD by evaluating brain glucose metabolism in rats: an [18F]FDG PET study
verfasst von
Jing Liu
Jun Yu
Hong Biao Liu
Qiong Yao
Ying Zhang
Publikationsdatum
30.09.2022
Verlag
Springer Nature Singapore
Erschienen in
Annals of Nuclear Medicine / Ausgabe 12/2022
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-022-01790-0

Weitere Artikel der Ausgabe 12/2022

Annals of Nuclear Medicine 12/2022 Zur Ausgabe