Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2020

Open Access 01.12.2020 | Research article

Chronic hypoxaemia and gender status modulate adiponectin plasmatic level and its multimer proportion in severe COPD patients: new endotypic presentation?

verfasst von: Mélany Pierard, Alexandra Tassin, Antoine Legrand, Alexandre Legrand

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2020

Abstract

Background

Disease progression in COPD patient is associated to lung function decline, leading to a higher risk of hypoxaemia and associated comorbidities, notably cardiovascular diseases (CVD). Adiponectin (Ad) is an adipokine with cardio-protective properties. In COPD patients, conflicting results were previously reported regarding Ad plasmatic (Adpl) level, probably because COPD is a heterogeneous disease with multifactorial influence. Among these factors, gender and hypoxaemia could interact in a variety of ways with Ad pathway. Therefore, we postulated that these components could influence Adpl level and its multimers in COPD patients and contribute to the appearance of a distinct endotype associated to an altered CVD risk.

Methods

One hundred COPD patients were recruited: 61 were men and 39 were women. Patients who were not severely hypoxemic were allocated to non-hypoxemic group which included 46 patients: 27 men and 19 women. Hypoxemic group included 54 patients: 34 men and 20 women. For all patients, Adpl level and proportion of its different forms were measured. Differences between groups were evaluated by Rank-Sum tests. The relationship between these measures and BMI, blood gas analysis (PaO2, PaCO2), or lung function (FEV1, FEV1/FVC, TLCO, TLC, RV) were evaluated by Pearson correlation analysis.

Results

Despite similar age, BMI and obstruction severity, women had a higher TLC and RV (median: TLC = 105%; RV = 166%) than men (median: TLC = 87%; RV = 132%). Adpl level was higher in women (median = 11,152 ng/ml) than in men (median = 10,239 ng/ml) and was negatively associated with hyperinflation (R = − 0,43) and hypercapnia (R = − 0,42). The proportion of the most active forms of Ad (HMW) was increased in hypoxemic women (median = 10%) compared with non-hypoxemic women (median = 8%) but was not modulated in men.

Conclusion

COPD pathophysiology seemed to be different in hypoxemic women and was associated to Ad modulations. Hyperinflation and air-trapping in association with hypercapnia and hypoxaemia, could contribute to a modulation of Adpl level and of its HMW forms. These results suggest the development of a distinct endotypic presentation, based on gender.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12890-020-01288-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
Ad
Adiponectin
Adpl
Ad plasmatic
COPD
Chronic obstructive pulmonary disease
CVD
Cardiovascular diseases
FEV1
Forced expiratory volume in one second
FVC
Forced vital capacity
HMW
High molecular weight
IC
Inspiratory capacity
LMW
Low molecular weight
MMW
Medium molecular weight
PaO2
Arterial oxygen partial pressure
PaCO2
Carbon dioxide partial pressure
R
Pearson correlation coefficient
RV
Residual volume
TLC
Total lung capacity
TLco
Carbon monoxide transfer factor
%pv
Percentage of the predicted value

Background

Chronic obstructive pulmonary disease (COPD) is a progressive disease associated with lung function decline and comorbidities such as cardiovascular diseases (CVD). By inducing secondary erythrocytosis, endothelial dysfunction, and pulmonary arterial hypertension, hypoxaemia in severe COPD patients was suggested to contribute to the increased CVD risk in these patients [1, 2]. The prevalence of the disease is increasing among women due to the higher smoking rate [3, 4]. Moreover, sex-differences were reported in the course of the disease. Women were described to exhibit a greater susceptibility to tobacco, faster annual decline of lung function and worse quality of life [3, 4]. This increased effect of tobacco smoke on women was suggested to be due to gender differences in airway structure [57], but inflammatory response to tobacco smoke was also suspected to differ at the level of the small airways [8] and to be at the origin of a more extensive airway remodelling [9]. The prevalence of co-morbidities also varies with gender in COPD patients and men were described to be more susceptible to CVD and diabetes mellitus [10].
Adiponectin (Ad), a 30 kDa protein mainly secreted by adipose tissue, was well described for its anti-inflammatory, anti-atherogenic and anti-diabetic effects [11]. The physiological plasmatic concentration of this adipokine is higher in women [12]. In circulating blood, Ad was detected in 3 different isoforms: low (LMW), medium (MMW), and high molecular weight forms (HMW). This latter form was described as the most active isoform: it was better correlated to insulin sensitivity and circulating glucose concentration [13, 14]. A reduced Ad plasmatic (Adpl) level was associated to multiple metabolic and CVD disorders [15]. In COPD patients, conflicting results regarding Adpl level were observed in previous studies [1618] and could be explained by the heterogeneity of the disease. Several factors, such as exacerbation rate, BMI, disease severity and progression were associated to differences in Adpl level in COPD [16, 1922]. In addition, exposure to chronic hypoxia was also shown to alter Ad expression in adipocytes in vitro, and in adipose tissue in vivo [2325].
Adiponectin was previously proposed as a biomarker for COPD risk management, and its pathway was suggested as a potential therapeutic target [20, 26]. However, COPD is a complex and heterogeneous disease [27] that could interact in a variety of ways with Ad pathway [16, 1922]. In this study, we therefore evaluated Adpl level and the proportion of HMW forms in COPD patients, with a special attention to gender and hypoxaemia effects. Potential relationships between these data and lung function were also evaluated.

Methods

Subjects

One hundred COPD patients were recruited from the outpatient clinic of a tertiary University Hospital from 2016 to 2018 and were referred for evaluation of need for oxygen therapy or for the adaptation of this treatment. COPD was diagnosed according to the ACCP/ATS/ERS guidelines [28] and severity of their airflow limitation was defined according to GOLD criteria, described in [29].
In this study, patients were divided into several groups according to gender and/or the severity of hypoxaemia. Among all patients of the study, 61 were men and 39 women. Concerning the hypoxaemia, patients were affected the hypoxemic group when they were severely hypoxemic patients (PaO2 ≤ 55 mmHg) or to the non-hypoxemic group when their PaO2 was above 55 mmHg, while breathing room air. This cut-off was based on ATS/ERS statement in which severe hypoxaemic COPD patients were defined as patients exhibiting a PaO2 ≤ 55 mmHg. Non-hypoxemic group included 46 patients (27 men and 19 women), whereas hypoxemic group included 54 patients (34 men and 20 women).
Patients with significant comorbidities such as malignancy, endocrine, liver, or gastrointestinal disorders, primitive cardiovascular abnormalities, or a recent surgery were excluded. All subjects were older than 40 years of age. This study was approved by the Erasme Hospital Ethics Committee and conducted in accordance with the Helsinki Declaration.
Patients’ data including age, gender and BMI were collected, and analyses were performed anonymously. Arterial blood samples were obtained at rest, with the patient in the sitting position, while breathing room air. Arterial oxygen (PaO2) and carbon dioxide (PaCO2) partial pressures were measured and recorded. Spirometry, lung volumes and single-breath determination of carbon monoxide uptake were then evaluated according to the ATS guidelines [3032] (M.E.C PFT systems Body™ and Diff™, Belgium) and expressed as a percentage of the predicted value (%pv). FEV1 (forced expiratory volume in one second) and FVC (forced vital capacity), FEV1/FVC ratio, carbon monoxide transfer factor (TLCO), total lung capacity (TLC), and residual volume (RV) were recorded. As patients did not interrupt their medical treatment before medical appointment, these measures could be reasonably considered as post-bronchodilation data. TLC and RV have not been obtained from 2 non-hypoxemic women and 5 men because they were unable to perform plethysmography in a reproducible way.

Adiponectin plasmatic level measurement

Adpl level was measured according to the manufacturer’s instructions (DRP300: Human Total Adiponectin/Acrp30 Quantikine ELISA Kit, R&D Systems). Assay sensitivity was estimated at 0.891 ng/ml and assay range was between 3.9 and 250 ng/ml. Patient samples were diluted according to the manufacturer’s instructions in order to be within the predefined range.

Adiponectin oligomer distribution determined by Western blot

The relative amounts of LMW, MMW and HMW Admer were evaluated for each patient as previously described in Pierard et al. [33]. These amounts were determined using a non-denaturing PAGE-SDS followed by a Western blot [33]. Five microliter of plasma diluted to contain 5 μg/ml of Ad were loaded onto a 6% polyacrylamide gel in the presence of SDS [33]. For the Western blot, proteins were transferred to a nitrocellulose membrane (Millipore, Darmstadt, Germany) [33]. After blocking with 5% fat-free dry milk-TBS, the membranes were incubated with a rabbit polyclonal primary antibody directed against Ad (Ab85827, 1:1000, Abcam, Cambridge, UK) [33]. The membranes were then incubated with a horseradish peroxidase-labelled secondary antibody (1:5000, Sigma-Aldrich, St. Louis, MO, USA) [33]. The ECL™ Western Blotting Detection kit (GE Healthcare, Little Chalfont, UK) was used for the revelation step [33]. The immunoreactive bands were then submitted to a densitometric analysis using the Image J software to determine the proportion of LMW, MMW and HMW forms [33].

Statistical analysis

Sample size was estimated for a 4-group ANOVA study with a power of 0.8 and the significance level at 0.05. The expected difference in means was based on the difference in HMW% observed in mice [34] and the variation among experimental subjects was arbitrarily considered as twice as high as in this mouse study. The total sample size was rounded to 100 patients. A Rank-Sum test was used to evaluate differences between groups. In the tables, results were represented as median and 5th–95th percentiles. In the graphs, all data were represented as boxplots (5th–95th percentiles; dots are outliers). Pearson’s coefficient was used for correlation analyses. Pearson correlation coefficient (R) was calculated between every lung function parameter and Adpl level measured by ELISA or HMW form proportion determined by non-denaturant SDS-PAGE followed by a Western blot. All representative blots were included in supplementary material 1 and all data obtained to perform these correlations were included in supplementary material 2. Differences were considered statistically significant at a P value < 0.05. All statistical analyses were performed with Sigma Plot 11.0 Software (Systat Software, USA).

Results

Characteristics of subjects

One hundred COPD patients with moderate (16%), severe (43%) or very severe obstruction (41%) were included in this study. 61% of the cohort were male. 46% were not severely hypoxemic and allocated to the non-hypoxemic group (Table 1). On average, hypoxemic and non-hypoxemic patients exhibited the same age, BMI and disease severity based on FEV1 value. Both groups had a significant air trapping (increased RV). The alteration of TLCO was more severe in hypoxemic patients and these patients were more hypercapnic than non-hypoxemic counterparts. When the cohort was separated according to gender, no difference was observed for age, BMI, FEV1, PaCO2 or TLCO. However, we found an increased TLC and RV in women compared with men.
Table 1
Clinical characteristics of COPD subjects separated according to gender or hypoxaemia status. Median [25th – 75th percentiles]. * p < 0.05; **p < 0,001; Rank-Sum test
 
Non-hypoxemic
(n = 46)
Hypoxemic
(n = 54)
P value
Age (year)
68 [65–76]
71,5 [64–77]
0,745
BMI (kg/m2)
24,3 [20,2 – 30,5]
25,8 [22,4 – 30,1]
0,531
PaO2 (mmHg)
62 [59–66]
47 [41–51]
< 0,001**
PaCO2 (mmHg)
41 [37–44]
45,5 [39–53]
0,002*
pH
7,42 [7,40 – 7,45]
7,42 [7,38 – 7,44]
0,535
FEV1 (%pv)
34,5 [2946]
31 [25–44]
0,186
FEV1/FVC
46,8 [38–58]
46,3 [39,5–52]
0,445
TLCO (%pv)
39,5 [32,5 – 49,5]
29,5 [23–42,8]
0,002*
TLC (% pv)
91 [79–104,8]
97,5 [82–109,8]
0,225
RV (%pv)
143 [117,5–171]
152, 65 [114–202,5]
0,334
Adpl level (ng/ml)
11,599,1 [6021,6 – 15,073,0]
9804,7 [5857,8 – 13,306,2]
0,483
 
Men
(n = 61)
Women
(n = 39)
 
Age (year)
72 [66,7 – 77,2]
67 [60–74,7]
0,061
BMI (kg/m2)
25,6 [22,4 – 30,5]
24,8 [20,3 – 30,6]
0,799
PaO2 (mmHg)
54 [45–60,5]
55 [47–61,7]
0,538
PaCO2 (mmHg)
42 [37–47]
45 [40–50]
0,127
pH
7,42 [7,40 – 7,44]
7,42 [7,39 – 7,45]
0,450
FEV1 (%pv)
32 [25,7 – 44,2]
34 [27,2–46]
0,424
FEV1/FVC
47 [39,7 – 55,2]
45,8 [39,0 – 54,8]
0,835
TLCO (%pv)
35 [26,6 – 50,5]
32,9 [24–43,3]
0,254
TLC (% pv)
87,35 [74,5 – 102,5]
105,4 [90–116]
< 0,001**
RV (%pv)
132,3 [104–179]
166,25 [138–195]
0,008*
Adpl level (ng/ml)
10,239,2 [5265,7-13,062,8]
11,152,232 [7549,7-19,022,8]
0,044*

Effect of hypoxaemia on Adpl level and HMW forms

We did not observe any difference in Adpl level and in HMW form proportion between hypoxemic and non-hypoxemic patients (Fig. 1a-b, e). We found that Adpl level was negatively correlated with BMI in both groups but was not correlated with other parameters (Fig. 1c-d, Table 2). We detected a significant negative correlation between BMI and HMW form proportion in non-hypoxemic patients, but not in the hypoxemic group. Moreover, a negative correlation was observed between HMW forms and TLCO in non-hypoxemic patients. In the hypoxemic group, these parameters were positively correlated but without reaching a statistically significant level (p = 0.055).
Table 2
Correlation between lung function parameters and Adpl level or HMW form proportion in non-hypoxemic and hypoxemic COPD patients. Adpl level was measured by ELISA and HMW form proportion was determined using a non-denaturing PAGE-SDS followed by a Western blot. Data were represented as Pearson correlation coefficient (p value)
 
Adpl level
HMW form proportion (%)
Correlation
Non-hypoxemic (n = 46)
Hypoxemic (n = 54)
Non-hypoxemic (n = 46)
Hypoxemic (n = 54)
BMI (kg/m2)
−0,428* (p = 0,003)
− 0,422* (p = 0,001)
− 0,340* (p = 0,021)
−0,012 (p = 0,934)
PaO2 (mmHg)
− 0,161 (p = 0,287)
0,214 (p = 0,120)
−0,047 (p = 0,757)
0,113 (p = 0,416)
PaCO2 (mmHg)
−0,148 (p = 0,328)
0,074 (p = 0,600)
−0,221 (p = 0,141)
0,163 (p = 0,247)
FEV1 (%pv)
−0,033 (p = 0,826)
− 0,181 (p = 0,190)
− 0,237 (p = 0,113)
0,105 (p = 0,451)
FEV1/FVC
0,052 (p = 0,732)
−0,155 (p = 0,262)
−0,080 (p = 0,598)
0,038 (p = 0,787)
TLCO (%pv)
−0,155 (p = 0,315)
−0,142 (p = 0,306)
− 0,314* (p = 0,043)
0,263 (p = 0,055)
TLC (%pv)
0,038 (p = 0,811)
−0,104 (p = 0,464)
−0,007 (p = 0,963)
− 0,181 (p = 0,198)
RV (%pv)
0,043 (p = 0,786)
0,003 (p = 0,983)
0,166 (p = 0,294)
−0,232 (p = 0,097)
* Pearson correlation coefficient with a p < 0.05

Impact of gender difference on Adpl level and HMW forms

As gender differences in total and HMW Ad levels were previously observed in many studies [35, 36], we evaluated these parameters in men and women and correlated these values with lung function parameters. We found a higher Adpl level in women compared with men, while no difference between HMW form proportions was observed (Fig. 2a-b, e). As previously, in both groups, Adpl level was negatively correlated with BMI (Fig. 2c-d, Table 3). In women, we observed a significant negative correlation between Adpl level and TLC, as well as with PaCO2. These observations were in accordance with the decrease of Adpl level in hypercapnic women (PaCO2 > 45 mmHg) compared with normocapnic women (p < 0.05) (Fig. 3a). A reduced Adpl level was also observed in women characterized by hyperinflated lungs (TLC > 115%pv) (Fig. 3b). Concerning HMW form proportion, no gender difference and no correlation with BMI, arterial gas values, or lung parameters were detected.
Table 3
Correlation between lung function parameters and Adpl level or HMW form proportion in men and women COPD patients. Adpl level was measured by ELISA and HMW form proportion was determined using a non-denaturing PAGE-SDS followed by a Western blot. Data were represented as Pearson correlation coefficient (p value)
 
Adpl level
HMW form proportion (%)
Correlation
Men (n = 61)
Women (n = 39)
Men (n = 61)
Women (n = 39)
BMI (kg/m2)
−0,402* (p = 0,001)
−0,458* (p = 0,003)
− 0,036 (p = 0,783)
− 0,293 (p = 0,070)
PaO2 (mmHg)
− 0,002 (p = 0,989)
0,127 (p = 0,440)
− 0,003 (0,984)
− 0,269 (p = 0,098)
PaCO2 (mmHg)
0,220 (p = 0,0913)
−0,421* (p = 0,008)
0,186 (p = 0,155)
−0,087 (p = 0,603)
FEV1 (%pv)
−0,208 (p = 0,109)
0,008 (p = 0,962)
0,054 (p = 0,682)
−0,268 (p = 0,099)
FEV1/FVC
−0,185 (p = 0,153)
0,093 (p = 0,575)
0,031 (p = 0,814)
−0,150 (p = 0,362)
TLCO (%pv)
−0,174 (p = 0,181)
0,032 (p = 0,851)
−0,100 (p = 0,441)
−0,182 (p = 0,282)
TLC (%pv)
0,067 (p = 0,622)
−0,429* (p = 0,007)
0,033 (p = 0,811)
−0,254 (p = 0,124)
RV (%pv)
0,127 (p = 0,352)
−0,300 (p = 0,067)
0,049 (p = 0,721)
−0,210 (p = 0,206)
* Pearson correlation coefficient with a p < 0.05

Effect of combined gender difference and hypoxia on Adpl level and HMW forms

We did not observe any modification in total or HMW Ad level between hypoxemic and non-hypoxemic men (Fig. 4). In women, hypoxaemia did not modify total Adpl level but increased HMW form proportion. Indeed, as shown on representative blots (Fig. 4f), the higher bands, corresponding to HMW Ad forms, are more intense in hypoxemic women compared with non-hypoxemic women. As previously, whatever the gender, Adpl level was negatively correlated with BMI in hypoxemic and non-hypoxemic groups (Fig. 5, Table 4). A negative correlation between total Adpl level and TLC was statistically significant in non-hypoxemic women, and borderline in hypoxemic women (p = 0.07). Adpl level was also negatively correlated with PaCO2 in hypoxemic women. Regarding HMW forms, we observed a positive correlation between HMW proportion and RV in non-hypoxemic men (Fig. 5, Table 5). We also detected an opposite relationship between TLCO and HMW level in hypoxemic and non-hypoxemic men. While a positive correlation was observed in hypoxemic men, a negative correlation was detected in non-hypoxemic men. This relationship did not appear in women. Although, we observed that HMW level was negatively associated with RV in hypoxemic women.
Table 4
Correlation between lung function parameters and Adpl level in hypoxemic and non-hypoxemic men and women COPD patients. Adpl level was measured by ELISA and HMW form proportion was determined using a non-denaturing PAGE-SDS followed by a Western blot. Data were represented as Pearson correlation coefficient (p value)
 
Adpl level
Adpl level
Correlation
Non-hypoxemic Men (n = 27)
Hypoxemic Men (n = 34)
Non-hypoxemic Women (n = 19)
Hypoxemic Women (n = 20)
BMI (kg/m2)
−0,395* (p = 0,042)
−0,439* (p = 0,009)
− 0,467* (p = 0,044)
− 0,446* (p = 0,049)
PaO2 (mmHg)
− 0,239 (p = 0,231)
0,221 (p = 0,210)
0,019 (p = 0,939)
0,177 (p = 0,454)
PaCO2 (mmHg)
−0,025 (p = 0,901)
0,288 (p = 0,104)
−0,355 (p = 0,136)
−0,477* (p = 0,039)
FEV1 (%pv)
−0,017 (p = 0,932)
−0,290 (p = 0,096)
− 0,204 (p = 0,401)
0,223 (p = 0,344)
FEV1/FVC
0,001 (p = 0,995)
−0,321 (p = 0,064)
−0,006 (p = 0,981)
0,158 (p = 0,506)
TLCO (%pv)
−0,334 (0,095)
−0,126 (p = 0,478)
0,195 (p = 0,454)
−0,116 (p = 0,625)
TLC (%pv)
0,098 (p = 0,647)
0,025 (p = 0,892)
−0,455* (p = 0,05)
−0,405 (p = 0,076)
RV (%pv)
−0,014 (p = 0,947)
0,169 (p = 0,354)
−0,209 (p = 0,404)
− 0,331 (p = 0,155)
* Pearson correlation coefficient with a p < 0.05
Table 5
Correlation between lung function parameters and HMW form proportion in hypoxemic and non-hypoxemic men and women COPD patients. Adpl level was measured by ELISA and HMW form proportion was determined using a non-denaturing PAGE-SDS followed by a Western blot. Data were represented as Pearson correlation coefficient (p value)
 
HMW form proportion (%)
HMW form proportion (%)
Correlation
Non-hypoxemic Men (n = 27)
Hypoxemic Men (n = 34)
Non-hypoxemic Women (n = 19)
Hypoxemic Women (n = 20)
BMI (kg/m2)
−0,352 (p = 0,072)
0,258 (p = 0,141)
−0,401 (p = 0,088)
− 0,365 (p = 0,114)
PaO2 (mmHg)
−0,202 (p = 0,311)
0,157 (p = 0,374)
0,328 (p = 0,170)
−0,023 (p = 0,922)
PaCO2 (mmHg)
−0,163 (p = 0,416)
0,335 (p = 0,057)
−0,299 (p = 0,213)
−0,373 (p = 0,116)
FEV1 (%pv)
−0,032 (p = 0,874)
0,095 (p = 0,593)
−0,422 (p = 0,072)
0,308 (p = 0,186)
FEV1/FVC
0,022 (p = 0,915)
0,039 (p = 0,829)
−0,140 (p = 0,568)
0,096 (p = 0,686)
TLCO (%pv)
−0,513* (p = 0,007)
0,413* (p = 0,015)
−0,181 (p = 0,487)
0,021 (p = 0,930)
TLC (%pv)
0,341 (p = 0,102)
−0,165 (p = 0,367)
−0,255 (p = 0,308)
− 0,372 (p = 0,106)
RV (%pv)
0,423* (p = 0,039)
−0,181 (p = 0,321)
−0,065 (p = 0,798)
− 0,448* (p = 0,047)
* Pearson correlation coefficient with a p < 0.05

Discussion

We postulated that gender and hypoxaemia could influence Adpl level as well as its multimers and therefore contribute to the appearance of a distinct endotype associated to an altered CVD risk. Our results showed a gender difference in Adpl level. Women exhibited a higher Adpl level compared with men. While this discrepancy was previously described [37, 38], the mechanism underlying this divergence is still investigated. Testosterone level [3942] and the difference in adipose tissue distribution between men and women were previously mentioned [43]. Other mechanisms could also explain this gender variation in Adpl level in COPD patients. In our study, differences in men and women Adpl level were associated with divergent clinical characteristics, among which the increased TCL and RV %pv in women, reflecting hyperinflation and air-trapping respectively.
The increased TLC %pv was correlated with a reduced Adpl level. As pro-inflammatory cytokines were previously demonstrated to reduce Ad expression in adipocytes [44], it could be hypothesised that inflammatory state in these patients modulates Adpl level. Indeed, Rubinsztajn et al. observed that patients with hyperinflation had elevated inflammatory markers [21]. Another explanation supporting this hypothesis could be the gender difference in inflammatory processes [4547]. The exact mechanism remains unclear. Rathod et al. showed that a divergent hormonal status could be involved in this regulation [46], whereas the study of Casimir et al. observed that some genes on X chromosome, involved in the inflammatory pathway, were overexpressed in women [45]. While this divergence in the inflammatory state was not previously described in COPD, this phenomenon is well known in patients with asthma, with a more pronounced inflammatory response within the airway wall in women [4850]. Therefore, more studies are necessary for elucidating the potential role of inflammation in the association between Adpl level and TLC %pv in women with COPD.
Moreover, Adpl level in women was negatively associated with PaCO2, especially in the hypoxemic subgroup. These observations are consistent with previous studies that found a decreased Adpl level and a higher PaCO2 in mice with acute lung injury [51] or in patients with hypoventilation syndrome [52]. Moreover, Dimoulis et al. observed that Adpl level was negatively correlated with bicarbonate level [53]. They also found that, in stable hypercapnic COPD, non-invasive ventilation reduced PaCO2 and increased PaO2 and Adpl level from the first month of intervention, without any change in BMI [54]. Therefore, our study suggested that functional alterations such as hyperinflation, air trapping and impaired gas exchange also modulated Adpl level in COPD patients.
In addition to its potential modulation of Adpl level through its association with hypercapnia, hypoxaemia was associated to an increased level of HMW forms in women. Interestingly, these observations were in accordance with our previous study in which an increased HMW form proportion in a murine model of hypoxaemia was observed [34]. In this model, the only difference between the active and control groups was the exposure to hypoxia. However, we also observed that the increased HMW form proportion was associated to a decreased AdipoR protein level in different tissues [55, 56]. Further studies are therefore needed to better understand the impact of an increased level of HMW forms in hypoxemic women. No modulation of Adpl level or HMW form proportion were observed among hypoxemic and non-hypoxemic men, suggesting that Ad is modulated by different mechanisms in men and women. One explanation could be the presence of a gender-difference in the inflammatory response, as previously mentioned. Indeed, in different pathological contexts, previous studies reported that women were affected to a more extended level by a pro-inflammatory state but respond more vigorously [5759].
Altogether, our results suggested that gender difference in Adpl level observed in our COPD patients could be explained by a divergent pathophysiology in men and women. Indeed, we observed a gender divergence in TLC and RV, without any difference in BMI. The increase of TLC and RV %pv observed in women in our study was also found in other recent studies [6062]. These data suggested that, for a given FEV1, women had a more pronounced air trapping or hyperinflation than men, while hyperinflation was quite limited in our study (mean TLC was 105%pv in women and 87%pv in men). These observations are consistent with Grabicki et al. that showed that COPD women had more hyperinflation, air trapping and comorbidities, inducing a higher risk of mortality [61]. In addition, in women, this increased air trapping also led to the development of hypercapnia [63]. Our results also contrasted with previous studies in which men exhibited more emphysema than women. By using CT scan, previous studies observed that the percentage of low attenuation area was higher in men than in women [6466]. However, the study of Hardin et al. [67] highlighted that gender difference in CT-determined emphysema is dependent on the severity of airway obstruction (GOLD classification). Despite of these considerations, it is interesting to note that the difference in radiological emphysema did not appear in functional hyperinflation in Martinez’s study. These results underlined the contrast between radiological evaluations in favour of more emphysema in men, and functional measures reflecting probably a higher air trapping in women. This study has some limitations. As we evaluated the effect of the hypoxaemia component in COPD patient, we separated our cohort according to the PaO2 (≤55 mmHg). However, patients in such severe condition received LTOT in order to reduce the risk of complications and mortality. It was therefore difficult to tolerate a washing period from oxygen therapy for those already on this treatment at the inclusion time. Treatment-naive patients should be selected and modulation of Adpl level and HMW form proportion could then be studied before and after LTOT in the same patient. In our study, the main confounding factors (age, BMI, gender) affecting Adpl level in COPD patients [68], were taken into consideration. However, we cannot exclude any influence of other concomitant factors such as medication, physical activity or cardio-vascular co-morbidities.

Conclusions

Altogether, these data suggested that men and women with severe hypoxaemia exhibited a different pathophysiology of COPD, which is linked to Ad modulation. Indeed, an increased Adpl level was observed in COPD women and was associated with a distinct pattern of functional alterations (for the same age, BMI or obstruction severity): women had more hyperinflation, air-trapping and hypercapnia, which, in association with hypoxaemia, could contribute to a modulation of Adpl level. These variations were accompanied with an increased level of HMW forms in hypoxemic women. All these results suggest the development of a distinct endotypic presentation, based on gender, with a more pronounced bronchiolar damages possibly associated with an inflammatory state, leading to an increased air-trapping. Consequently, a long-term study should be realized to evaluate if these modulations of total Adpl and HMW forms are associated with a better survival or with a lower risk of comorbidities.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12890-020-01288-3.

Acknowledgements

We acknowledge V. Jenart and B. Blairon, for technical assistance.
This study was approved by the Erasme Hospital Ethics Committee. All procedures were conducted in accordance with ACCP/ATS/ERS guidelines. All patients had previously given their written informed consent for this study.
Not Applicable.

Competing interests

The authors declare that they have no conflict of interest regarding the publication of this paper. Each author meets the criteria for authorship and assumes the corresponding responsibility.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Anhänge
Literatur
1.
Zurück zum Zitat Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis. 2011;6:199–208.PubMedPubMedCentral Kent BD, Mitchell PD, McNicholas WT. Hypoxemia in patients with COPD: cause, effects, and disease progression. Int J Chron Obstruct Pulmon Dis. 2011;6:199–208.PubMedPubMedCentral
2.
Zurück zum Zitat Maclay JD, McAllister DA, Macnee W. Cardiovascular risk in chronic obstructive pulmonary disease. Respirology. 2007;12(5):634–41.PubMedCrossRef Maclay JD, McAllister DA, Macnee W. Cardiovascular risk in chronic obstructive pulmonary disease. Respirology. 2007;12(5):634–41.PubMedCrossRef
4.
Zurück zum Zitat Han MK, Postma D, Mannino DM, Giardino ND, Buist S, Curtis JL, et al. Gender and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(12):1179–84.PubMedPubMedCentralCrossRef Han MK, Postma D, Mannino DM, Giardino ND, Buist S, Curtis JL, et al. Gender and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2007;176(12):1179–84.PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Raherison C, Biron E, Nocent-Ejnaini C, Taillé C, Tillie-Leblond I, Prudhomme A. Are there specific characteristics of COPD in women? Rev Mal Respir. 2010;27(6):611–24.PubMedCrossRef Raherison C, Biron E, Nocent-Ejnaini C, Taillé C, Tillie-Leblond I, Prudhomme A. Are there specific characteristics of COPD in women? Rev Mal Respir. 2010;27(6):611–24.PubMedCrossRef
6.
Zurück zum Zitat Kanner RE, Connett JE, Altose MD, Buist AS, Lee WW, Tashkin DP, et al. Gender difference in airway hyperresponsiveness in smokers with mild COPD. The lung health study. Am J Respir Crit Care Med. 1994;150(4):956–61.PubMedCrossRef Kanner RE, Connett JE, Altose MD, Buist AS, Lee WW, Tashkin DP, et al. Gender difference in airway hyperresponsiveness in smokers with mild COPD. The lung health study. Am J Respir Crit Care Med. 1994;150(4):956–61.PubMedCrossRef
7.
Zurück zum Zitat Amaral AFS, Strachan DP, Burney PGJ, Jarvis DL. Female smokers are at greater risk of airflow obstruction than male smokers. UK biobank. Am J Respir Crit Care Med. 2017;195(9):1226–35.PubMedCrossRef Amaral AFS, Strachan DP, Burney PGJ, Jarvis DL. Female smokers are at greater risk of airflow obstruction than male smokers. UK biobank. Am J Respir Crit Care Med. 2017;195(9):1226–35.PubMedCrossRef
8.
Zurück zum Zitat Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53.PubMedCrossRef Hogg JC, Chu F, Utokaparch S, Woods R, Elliott WM, Buzatu L, et al. The nature of small-airway obstruction in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(26):2645–53.PubMedCrossRef
9.
Zurück zum Zitat Sayiner A, Hague C, Ajlan A, Leipsic J, Wierenga L, Krowchuk NM, et al. Bronchiolitis in young female smokers. Respir Med. 2013;107(5):732–8.PubMedCrossRef Sayiner A, Hague C, Ajlan A, Leipsic J, Wierenga L, Krowchuk NM, et al. Bronchiolitis in young female smokers. Respir Med. 2013;107(5):732–8.PubMedCrossRef
10.
Zurück zum Zitat Sawalha S, Hedman L, Backman H, Stenfors N, Rönmark E, Lundbäck B, et al. The impact of comorbidities on mortality among men and women with COPD: report from the OLIN COPD study. Ther Adv Respir Dis. 2019;13:1753466619860058.PubMedPubMedCentralCrossRef Sawalha S, Hedman L, Backman H, Stenfors N, Rönmark E, Lundbäck B, et al. The impact of comorbidities on mortality among men and women with COPD: report from the OLIN COPD study. Ther Adv Respir Dis. 2019;13:1753466619860058.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92.PubMedPubMedCentralCrossRef Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest. 2006;116(7):1784–92.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Swarbrick MM, Havel PJ. Physiological, pharmacological, and nutritional regulation of circulating Adiponectin concentrations in humans. Metab Syndr Relat Disord. 2008;6(2):87–102.PubMedPubMedCentralCrossRef Swarbrick MM, Havel PJ. Physiological, pharmacological, and nutritional regulation of circulating Adiponectin concentrations in humans. Metab Syndr Relat Disord. 2008;6(2):87–102.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;55(1):249–59.PubMedCrossRef Lara-Castro C, Luo N, Wallace P, Klein RL, Garvey WT. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes. 2006;55(1):249–59.PubMedCrossRef
14.
Zurück zum Zitat Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013;17(2):185–96.PubMedCrossRef Yamauchi T, Kadowaki T. Adiponectin receptor as a key player in healthy longevity and obesity-related diseases. Cell Metab. 2013;17(2):185–96.PubMedCrossRef
15.
Zurück zum Zitat Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P, Bazi Z. Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag. 2015;11:55–70.PubMedPubMedCentral Ebrahimi-Mamaeghani M, Mohammadi S, Arefhosseini SR, Fallah P, Bazi Z. Adiponectin as a potential biomarker of vascular disease. Vasc Health Risk Manag. 2015;11:55–70.PubMedPubMedCentral
16.
Zurück zum Zitat Xie J, Yang X-Y, Shi J-D, Deng X-Q, Long W. A new inflammation marker of chronic obstructive pulmonary disease-adiponectin. World J Emerg Med. 2010;1(3):190–5.PubMedPubMedCentral Xie J, Yang X-Y, Shi J-D, Deng X-Q, Long W. A new inflammation marker of chronic obstructive pulmonary disease-adiponectin. World J Emerg Med. 2010;1(3):190–5.PubMedPubMedCentral
17.
Zurück zum Zitat Uzum AK, Aydin MM, Tutuncu Y, Omer B, Kiyan E, Alagol F. Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight chronic obstructive pulmonary disease patients. Eur J Intern Med. 2014;25(4):364–9.PubMedCrossRef Uzum AK, Aydin MM, Tutuncu Y, Omer B, Kiyan E, Alagol F. Serum ghrelin and adiponectin levels are increased but serum leptin level is unchanged in low weight chronic obstructive pulmonary disease patients. Eur J Intern Med. 2014;25(4):364–9.PubMedCrossRef
18.
Zurück zum Zitat Breyer M-K, Rutten EPA, Locantore NW, Watkins ML, Miller BE, Wouters EFM, et al. Dysregulated adipokine metabolism in chronic obstructive pulmonary disease. Eur J Clin Invest. 2012;42(9):983–91.PubMedCrossRef Breyer M-K, Rutten EPA, Locantore NW, Watkins ML, Miller BE, Wouters EFM, et al. Dysregulated adipokine metabolism in chronic obstructive pulmonary disease. Eur J Clin Invest. 2012;42(9):983–91.PubMedCrossRef
19.
Zurück zum Zitat Bianco A, Nigro E, Monaco ML, Matera MG, Scudiero O, Mazzarella G, et al. The burden of obesity in asthma and COPD: role of adiponectin. Pulm Pharmacol Ther. 2017;43:20–5.PubMedCrossRef Bianco A, Nigro E, Monaco ML, Matera MG, Scudiero O, Mazzarella G, et al. The burden of obesity in asthma and COPD: role of adiponectin. Pulm Pharmacol Ther. 2017;43:20–5.PubMedCrossRef
20.
Zurück zum Zitat Jaswal S, Saini V, Kaur J, Gupta S, Kaur H, Garg K. Association of adiponectin with lung function impairment and disease severity in chronic obstructive pulmonary disease. Int J Appl Basic Med Res. 2018;8(1):14.PubMedPubMedCentralCrossRef Jaswal S, Saini V, Kaur J, Gupta S, Kaur H, Garg K. Association of adiponectin with lung function impairment and disease severity in chronic obstructive pulmonary disease. Int J Appl Basic Med Res. 2018;8(1):14.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Rubinsztajn R, Przybyłowski T, Maskey-Warzęchowska M, Paplińska-Goryca M, Karwat K, Nejman-Gryz P, et al. Correlation between hyperinflation defined as an elevated RV/TLC ratio and body composition and cytokine profile in patients with chronic obstructive pulmonary disease. Pneumonol Alergol Pol. 2015;83(2):120–5.PubMedCrossRef Rubinsztajn R, Przybyłowski T, Maskey-Warzęchowska M, Paplińska-Goryca M, Karwat K, Nejman-Gryz P, et al. Correlation between hyperinflation defined as an elevated RV/TLC ratio and body composition and cytokine profile in patients with chronic obstructive pulmonary disease. Pneumonol Alergol Pol. 2015;83(2):120–5.PubMedCrossRef
22.
Zurück zum Zitat Wert SE. Does adiponectin play a role in pulmonary emphysema? Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1032–4.PubMedCrossRef Wert SE. Does adiponectin play a role in pulmonary emphysema? Am J Physiol Lung Cell Mol Physiol. 2008;294(6):L1032–4.PubMedCrossRef
23.
Zurück zum Zitat Guo Q, Jin S, Hu H, Zhou Y, Yan Y, Zong H, et al. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun. 2017;493(1):346–51.PubMedCrossRef Guo Q, Jin S, Hu H, Zhou Y, Yan Y, Zong H, et al. Hypoxia in 3T3-L1 adipocytes suppresses adiponectin expression via the PERK and IRE1 unfolded protein response. Biochem Biophys Res Commun. 2017;493(1):346–51.PubMedCrossRef
24.
Zurück zum Zitat Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of Ob/Ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–28.PubMedCrossRef Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of Ob/Ob and dietary obese mice. Am J Physiol Endocrinol Metab. 2007;293(4):E1118–28.PubMedCrossRef
25.
Zurück zum Zitat Pan G, Su M, Ding W, Ding N, Huang H, Zhang X. Effects of chronic intermittent hypoxia on oxidative stress and inflammatory response and the interventional roles of adiponectin. Zhonghua Yi Xue Za Zhi. 2015;95(16):1218–21.PubMed Pan G, Su M, Ding W, Ding N, Huang H, Zhang X. Effects of chronic intermittent hypoxia on oxidative stress and inflammatory response and the interventional roles of adiponectin. Zhonghua Yi Xue Za Zhi. 2015;95(16):1218–21.PubMed
26.
Zurück zum Zitat Sato K, Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, et al. Association between plasma adiponectin levels and decline in forced expiratory volume in 1 s in a general Japanese population: the Takahata study. Int J Med Sci. 2014;11(8):758–64.PubMedPubMedCentralCrossRef Sato K, Shibata Y, Abe S, Inoue S, Igarashi A, Yamauchi K, et al. Association between plasma adiponectin levels and decline in forced expiratory volume in 1 s in a general Japanese population: the Takahata study. Int J Med Sci. 2014;11(8):758–64.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.PubMedCrossRef Qaseem A, Wilt TJ, Weinberger SE, Hanania NA, Criner G, van der Molen T, et al. Diagnosis and management of stable chronic obstructive pulmonary disease: a clinical practice guideline update from the American College of Physicians, American College of Chest Physicians, American Thoracic Society, and European Respiratory Society. Ann Intern Med. 2011;155(3):179–91.PubMedCrossRef
30.
Zurück zum Zitat Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–35.PubMedCrossRef Macintyre N, Crapo RO, Viegi G, Johnson DC, van der Grinten CPM, Brusasco V, et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur Respir J. 2005;26(4):720–35.PubMedCrossRef
31.
Zurück zum Zitat Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.PubMedCrossRef Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation of the measurement of lung volumes. Eur Respir J. 2005;26(3):511–22.PubMedCrossRef
32.
Zurück zum Zitat Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.PubMedCrossRef Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.PubMedCrossRef
35.
Zurück zum Zitat Song HJ, Oh S, Quan S, Ryu O-H, Jeong J-Y, Hong K-S, et al. Gender differences in adiponectin levels and body composition in older adults: Hallym aging study. BMC Geriatr. 2014;14:8.PubMedPubMedCentralCrossRef Song HJ, Oh S, Quan S, Ryu O-H, Jeong J-Y, Hong K-S, et al. Gender differences in adiponectin levels and body composition in older adults: Hallym aging study. BMC Geriatr. 2014;14:8.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Eglit T, Lember M, Ringmets I, Rajasalu T. Gender differences in serum high-molecular-weight adiponectin levels in metabolic syndrome. Eur J Endocrinol. 2013;168(3):385–91.PubMedCrossRef Eglit T, Lember M, Ringmets I, Rajasalu T. Gender differences in serum high-molecular-weight adiponectin levels in metabolic syndrome. Eur J Endocrinol. 2013;168(3):385–91.PubMedCrossRef
37.
Zurück zum Zitat Sun Y, Xun K, Wang C, Zhao H, Bi H, Chen X, et al. Adiponectin, an unlocking adipocytokine. Cardiovasc Ther. 2009;27(1):59–75.PubMedCrossRef Sun Y, Xun K, Wang C, Zhao H, Bi H, Chen X, et al. Adiponectin, an unlocking adipocytokine. Cardiovasc Ther. 2009;27(1):59–75.PubMedCrossRef
38.
Zurück zum Zitat Breyer M-K, Rutten EPA, Vernooy JHJ, Spruit MA, Dentener MA, van der Kallen C, et al. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): a pivotal role of leptin. Respir Med. 2011;105(7):1046–53.PubMedCrossRef Breyer M-K, Rutten EPA, Vernooy JHJ, Spruit MA, Dentener MA, van der Kallen C, et al. Gender differences in the adipose secretome system in chronic obstructive pulmonary disease (COPD): a pivotal role of leptin. Respir Med. 2011;105(7):1046–53.PubMedCrossRef
39.
Zurück zum Zitat Frederiksen L, Højlund K, Hougaard DM, Mosbech TH, Larsen R, Flyvbjerg A, et al. Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol. 2012;166(3):469–76.PubMedCrossRef Frederiksen L, Højlund K, Hougaard DM, Mosbech TH, Larsen R, Flyvbjerg A, et al. Testosterone therapy decreases subcutaneous fat and adiponectin in aging men. Eur J Endocrinol. 2012;166(3):469–76.PubMedCrossRef
40.
Zurück zum Zitat Horenburg S, Fischer-Posovszky P, Debatin K-M, Wabitsch M. Influence of sex hormones on adiponectin expression in human adipocytes. Horm Metab Res. 2008;40(11):779–86.PubMedCrossRef Horenburg S, Fischer-Posovszky P, Debatin K-M, Wabitsch M. Influence of sex hormones on adiponectin expression in human adipocytes. Horm Metab Res. 2008;40(11):779–86.PubMedCrossRef
41.
Zurück zum Zitat Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002;51(9):2734–41.PubMedCrossRef Nishizawa H, Shimomura I, Kishida K, Maeda N, Kuriyama H, Nagaretani H, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes. 2002;51(9):2734–41.PubMedCrossRef
42.
Zurück zum Zitat Page ST, Herbst KL, Amory JK, Coviello AD, Anawalt BD, Matsumoto AM, et al. Testosterone administration suppresses adiponectin levels in men. J Androl. 2005;26(1):85–92.PubMed Page ST, Herbst KL, Amory JK, Coviello AD, Anawalt BD, Matsumoto AM, et al. Testosterone administration suppresses adiponectin levels in men. J Androl. 2005;26(1):85–92.PubMed
45.
Zurück zum Zitat Casimir GJ, Heldenbergh F, Hanssens L, Mulier S, Heinrichs C, Lefevre N, et al. Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. J Inflamm (Lond). 2010;7:28.CrossRef Casimir GJ, Heldenbergh F, Hanssens L, Mulier S, Heinrichs C, Lefevre N, et al. Gender differences and inflammation: an in vitro model of blood cells stimulation in prepubescent children. J Inflamm (Lond). 2010;7:28.CrossRef
46.
Zurück zum Zitat Rathod K, Kapil V, Velmurugan S, Khambata R, Siddique U, Khan S, et al. Sex differences in the inflammatory response and inflammation-induced vascular dysfunction. Lancet. 2017;389:S20.CrossRef Rathod K, Kapil V, Velmurugan S, Khambata R, Siddique U, Khan S, et al. Sex differences in the inflammatory response and inflammation-induced vascular dysfunction. Lancet. 2017;389:S20.CrossRef
47.
Zurück zum Zitat Diodato MD, Knöferl MW, Schwacha MG, Bland KI, Chaudry IH. Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine. 2001;14(3):162–9.PubMedCrossRef Diodato MD, Knöferl MW, Schwacha MG, Bland KI, Chaudry IH. Gender differences in the inflammatory response and survival following haemorrhage and subsequent sepsis. Cytokine. 2001;14(3):162–9.PubMedCrossRef
50.
Zurück zum Zitat Postma DS. Gender differences in asthma development and progression. Gend Med. 2007;4 Suppl B:S133–46.PubMedCrossRef Postma DS. Gender differences in asthma development and progression. Gend Med. 2007;4 Suppl B:S133–46.PubMedCrossRef
51.
Zurück zum Zitat Xu L, Bao H-G, Si Y-N, Han L, Zhang R, Cai M-M, et al. Effects of adiponectin on acute lung injury in cecal ligation and puncture-induced sepsis rats. J Surg Res. 2013;183(2):752–9.PubMedCrossRef Xu L, Bao H-G, Si Y-N, Han L, Zhang R, Cai M-M, et al. Effects of adiponectin on acute lung injury in cecal ligation and puncture-induced sepsis rats. J Surg Res. 2013;183(2):752–9.PubMedCrossRef
53.
Zurück zum Zitat Dimoulis A, Pastaka C, Tsolaki V, Tsilioni I, Pournaras S, Liakos N, et al. Non-invasive ventilation (NIV) and homeostatic model assessment (HOMA) index in stable chronic obstructive pulmonary disease (COPD) patients with chronic Hypercapnic respiratory failure: a pilot study. COPD. 2015;12(4):427–34.PubMedCrossRef Dimoulis A, Pastaka C, Tsolaki V, Tsilioni I, Pournaras S, Liakos N, et al. Non-invasive ventilation (NIV) and homeostatic model assessment (HOMA) index in stable chronic obstructive pulmonary disease (COPD) patients with chronic Hypercapnic respiratory failure: a pilot study. COPD. 2015;12(4):427–34.PubMedCrossRef
54.
Zurück zum Zitat Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68(11):975–81.PubMedCrossRef Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, et al. Adiponectin as a biomarker of the metabolic syndrome. Circ J. 2004;68(11):975–81.PubMedCrossRef
55.
Zurück zum Zitat Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail. 2010;3(2):185–94.PubMedCrossRef Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Functional adiponectin resistance at the level of the skeletal muscle in mild to moderate chronic heart failure. Circ Heart Fail. 2010;3(2):185–94.PubMedCrossRef
56.
Zurück zum Zitat Li R, Xu M, Wang X, Wang Y, Lau WB, Yuan Y, et al. Reduced vascular responsiveness to adiponectin in hyperlipidemic rats--mechanisms and significance. J Mol Cell Cardiol. 2010;49(3):508–15.PubMedPubMedCentralCrossRef Li R, Xu M, Wang X, Wang Y, Lau WB, Yuan Y, et al. Reduced vascular responsiveness to adiponectin in hyperlipidemic rats--mechanisms and significance. J Mol Cell Cardiol. 2010;49(3):508–15.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Spitzer JA, Zhang P. Gender differences in neutrophil function and cytokine-induced neutrophil chemoattractant generation in endotoxic rats. Inflammation. 1996;20(5):485–98.PubMedCrossRef Spitzer JA, Zhang P. Gender differences in neutrophil function and cytokine-induced neutrophil chemoattractant generation in endotoxic rats. Inflammation. 1996;20(5):485–98.PubMedCrossRef
58.
Zurück zum Zitat Casimir GJA, Duchateau J. Gender differences in inflammatory processes could explain poorer prognosis for males. J Clin Microbiol. 2011;49(1):478–9.PubMedPubMedCentralCrossRef Casimir GJA, Duchateau J. Gender differences in inflammatory processes could explain poorer prognosis for males. J Clin Microbiol. 2011;49(1):478–9.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Onat A, Karadeniz Y, Tusun E, Yüksel H, Kaya A. Advances in understanding gender difference in cardiometabolic disease risk. Expert Rev Cardiovasc Ther. 2016;14(4):513–23.PubMedCrossRef Onat A, Karadeniz Y, Tusun E, Yüksel H, Kaya A. Advances in understanding gender difference in cardiometabolic disease risk. Expert Rev Cardiovasc Ther. 2016;14(4):513–23.PubMedCrossRef
60.
Zurück zum Zitat Verhage TL, Heijdra Y, Molema J, Vercoulen J, Dekhuijzen R. Associations of muscle depletion with health status. Another gender difference in COPD? Clin Nutr. 2011;30(3):332–8.PubMedCrossRef Verhage TL, Heijdra Y, Molema J, Vercoulen J, Dekhuijzen R. Associations of muscle depletion with health status. Another gender difference in COPD? Clin Nutr. 2011;30(3):332–8.PubMedCrossRef
61.
Zurück zum Zitat Grabicki M, Kuźnar-Kamińska B, Rubinsztajn R, Brajer-Luftmann B, Kosacka M, Nowicka A, et al. COPD course and comorbidities: are there gender differences? Adv Exp Med Biol. 2019;1113:43–51. Grabicki M, Kuźnar-Kamińska B, Rubinsztajn R, Brajer-Luftmann B, Kosacka M, Nowicka A, et al. COPD course and comorbidities: are there gender differences? Adv Exp Med Biol. 2019;1113:43–51.
62.
Zurück zum Zitat Laviolette L, Lacasse Y, Doucet M, Lacasse M, Marquis K, Saey D, et al. Chronic obstructive pulmonary disease in women. Can Respir J. 2007;14(2):93–8.PubMedPubMedCentralCrossRef Laviolette L, Lacasse Y, Doucet M, Lacasse M, Marquis K, Saey D, et al. Chronic obstructive pulmonary disease in women. Can Respir J. 2007;14(2):93–8.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Shade D, Cordova F, Lando Y, Travaline JM, Furukawa S, Kuzma AM, et al. Relationship between resting hypercapnia and physiologic parameters before and after lung volume reduction surgery in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1405–11.PubMedCrossRef Shade D, Cordova F, Lando Y, Travaline JM, Furukawa S, Kuzma AM, et al. Relationship between resting hypercapnia and physiologic parameters before and after lung volume reduction surgery in severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1405–11.PubMedCrossRef
64.
Zurück zum Zitat Camp PG, Coxson HO, Levy RD, Pillai SG, Anderson W, Vestbo J, et al. Sex differences in emphysema and airway disease in smokers. Chest. 2009;136(6):1480–8.PubMedCrossRef Camp PG, Coxson HO, Levy RD, Pillai SG, Anderson W, Vestbo J, et al. Sex differences in emphysema and airway disease in smokers. Chest. 2009;136(6):1480–8.PubMedCrossRef
65.
Zurück zum Zitat Dransfield MT, Washko GR, Foreman MG, Estepar RSJ, Reilly J, Bailey WC. Gender differences in the severity of CT emphysema in COPD. Chest. 2007;132(2):464–70.PubMedCrossRef Dransfield MT, Washko GR, Foreman MG, Estepar RSJ, Reilly J, Bailey WC. Gender differences in the severity of CT emphysema in COPD. Chest. 2007;132(2):464–70.PubMedCrossRef
66.
Zurück zum Zitat Martinez FJ, Curtis JL, Sciurba F, Mumford J, Giardino ND, Weinmann G, et al. Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med. 2007;176(3):243–52.PubMedPubMedCentralCrossRef Martinez FJ, Curtis JL, Sciurba F, Mumford J, Giardino ND, Weinmann G, et al. Sex differences in severe pulmonary emphysema. Am J Respir Crit Care Med. 2007;176(3):243–52.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Hardin M, Foreman M, Dransfield MT, Hansel N, Han MK, Cho MH, et al. Sex-specific features of emphysema among current and former smokers with COPD. Eur Respir J. 2016;47(1):104–12.PubMedCrossRef Hardin M, Foreman M, Dransfield MT, Hansel N, Han MK, Cho MH, et al. Sex-specific features of emphysema among current and former smokers with COPD. Eur Respir J. 2016;47(1):104–12.PubMedCrossRef
Metadaten
Titel
Chronic hypoxaemia and gender status modulate adiponectin plasmatic level and its multimer proportion in severe COPD patients: new endotypic presentation?
verfasst von
Mélany Pierard
Alexandra Tassin
Antoine Legrand
Alexandre Legrand
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2020
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-01288-3

Weitere Artikel der Ausgabe 1/2020

BMC Pulmonary Medicine 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.