Skip to main content
Erschienen in: International Ophthalmology 9/2020

09.05.2020 | Original Paper

Ciliary muscle dimensions measured by swept-source optical coherence tomography in eyes with primary open-angle glaucoma and healthy eyes

verfasst von: Bachar Kudsieh, José Ignacio Fernández-Vigo, Hang Shi, Lucía De Pablo Gómez de Liaño, José María Ruiz-Moreno, Julián García-Feijóo, José Ángel Fernández-Vigo

Erschienen in: International Ophthalmology | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To compare in vivo swept-source optical coherence tomography (SS-OCT) measurements of the ciliary muscle (CM) in patients with primary open-angle glaucoma (POAG) and healthy subjects, and examine correlations between CM dimensions and several covariates.

Methods

This was a cross-sectional study of the right eyes of 181 subjects: 89 POAG patients and 92 healthy subjects. Using the Triton SS-OCT device (Topcon, Tokyo, Japan), CM length (CML), area (CMA) and thickness measured 1000 µm (CMT1), 2000 µm (CMT2) and 3000 µm (CMT3) from the scleral spur were determined in the temporal and nasal quadrants. POAG patients were subjected to visual field (VF) and peripapillary retinal nerve fiber layer (RNFL) assessment. CM dimensions were then assessed for correlation with VF mean defect (MD), mean RNFL thickness and intraocular pressure (IOP).

Results

Mean CMLs were 4325 ± 340 µm and 4195 ± 843 µm for the healthy subjects and POAG patients, respectively (p = 0.17). Mean CM thicknesses were CMT1 = 546 ± 56 µm, CMT2 = 326 ± 44 µm and CMT3 = 174 ± 16 µm in the healthy eyes versus CMT1 = 534 ± 108, CMT2 = 332 ± 99 and CMT3 = 183 ± 74 in the POAG eyes, with no significant differences detected (all p ≥ 0.25). In the temporal quadrant, mean CMA was 1.12 ± 0.29 mm2 and 1.15 ± 0.24 mm2 for the healthy and POAG subjects, respectively (p = 0.45). No correlations were observed between CM measurements and RNFL thickness (p ≥ 0.15), IOP or VF MD (p ≥ 0.14) in POAG subjects irrespective of glaucoma severity (p ≥ 0.19).

Conclusions

While SS-OCT proved useful to measure CM dimensions in vivo, these dimensions did not differ between healthy individuals and POAG subjects. In the patients with POAG, no correlations were detected between CM dimensions and VF, RNFL or IOP.
Literatur
1.
Zurück zum Zitat Sheppard AL, Davies LN (2010) In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Invest Ophthalmol Vis Sci 51:6882–6889PubMedCrossRef Sheppard AL, Davies LN (2010) In vivo analysis of ciliary muscle morphologic changes with accommodation and axial ametropia. Invest Ophthalmol Vis Sci 51:6882–6889PubMedCrossRef
2.
3.
Zurück zum Zitat Lossing LA, Sinnott LT, Kai C, Richdale K, Bailey MD (2012) Measuring changes in ciliary muscle thickness with accommodation in young adults. Optom Vis Sci 89:719–726PubMedPubMedCentralCrossRef Lossing LA, Sinnott LT, Kai C, Richdale K, Bailey MD (2012) Measuring changes in ciliary muscle thickness with accommodation in young adults. Optom Vis Sci 89:719–726PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Sheppard AL, Davies LN (2011) The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 52:1809–1816PubMedCrossRef Sheppard AL, Davies LN (2011) The effect of ageing on in vivo human ciliary muscle morphology and contractility. Invest Ophthalmol Vis Sci 52:1809–1816PubMedCrossRef
5.
Zurück zum Zitat Mao Y, Bai HX, Li B, Xu XL, Gao F, Zhang ZB, Jonas JB (2018) Dimensions of the ciliary muscles of Brücke, Müller and Iwanoff and their associations with axial length and glaucoma. Graefes Arch Clin Exp Ophthalmol 256:2165–2171PubMedCrossRef Mao Y, Bai HX, Li B, Xu XL, Gao F, Zhang ZB, Jonas JB (2018) Dimensions of the ciliary muscles of Brücke, Müller and Iwanoff and their associations with axial length and glaucoma. Graefes Arch Clin Exp Ophthalmol 256:2165–2171PubMedCrossRef
6.
Zurück zum Zitat Croft MA, Lütjen-Drecoll E, Kaufman PL (2017) Age-related posterior ciliary muscle restriction—a link between trabecular meshwork and optic nerve head pathophysiology. Exp Eye Res 158:187–189PubMedCrossRef Croft MA, Lütjen-Drecoll E, Kaufman PL (2017) Age-related posterior ciliary muscle restriction—a link between trabecular meshwork and optic nerve head pathophysiology. Exp Eye Res 158:187–189PubMedCrossRef
7.
Zurück zum Zitat Ku JY, Nongpiur ME, Park J, Narayanaswamy AK, Perera SA, Tun TA, Kumar RS, Baskaran M, Aung T (2014) Qualitative evaluation of the iris and ciliary body by ultrasound biomicroscopy in subjects with angle closure. J Glaucoma 23:583–588PubMedCrossRef Ku JY, Nongpiur ME, Park J, Narayanaswamy AK, Perera SA, Tun TA, Kumar RS, Baskaran M, Aung T (2014) Qualitative evaluation of the iris and ciliary body by ultrasound biomicroscopy in subjects with angle closure. J Glaucoma 23:583–588PubMedCrossRef
8.
Zurück zum Zitat Lindsey JD, Kashiwagi K, Kashiwagi F et al (1997) Prostaglandins alter extracellular matrix adjacent to human ciliary muscle cells in vitro. Invest Ophthalmol Vis Sci 38:2214–2223PubMed Lindsey JD, Kashiwagi K, Kashiwagi F et al (1997) Prostaglandins alter extracellular matrix adjacent to human ciliary muscle cells in vitro. Invest Ophthalmol Vis Sci 38:2214–2223PubMed
9.
Zurück zum Zitat Marchini G, Babighian S, Tosi R et al (1999) Effects of 0.2% brimonidine on ocular anterior structures. J Ocul Pharmacol Ther 15:337–344PubMedCrossRef Marchini G, Babighian S, Tosi R et al (1999) Effects of 0.2% brimonidine on ocular anterior structures. J Ocul Pharmacol Ther 15:337–344PubMedCrossRef
10.
Zurück zum Zitat Bailey MD, Sinnott LT, Mutti DO (2008) Ciliary body thickness and refractive error in children. Invest Ophthalmol Vis Sci 49:4352–4360CrossRef Bailey MD, Sinnott LT, Mutti DO (2008) Ciliary body thickness and refractive error in children. Invest Ophthalmol Vis Sci 49:4352–4360CrossRef
11.
Zurück zum Zitat Jeon S, Lee WK, Lee K, Moon NJ (2012) Diminished ciliary muscle movement on accommodation in myopia. Exp Eye Res 105:9–14PubMedCrossRef Jeon S, Lee WK, Lee K, Moon NJ (2012) Diminished ciliary muscle movement on accommodation in myopia. Exp Eye Res 105:9–14PubMedCrossRef
12.
Zurück zum Zitat Pucker AD, Sinnott LT, Kao C, Bailey MD (2013) Region specific relationships between refractive error and ciliary muscle thickness in children. Invest Ophthalmol Vis Sci 54:4710–4716PubMedPubMedCentralCrossRef Pucker AD, Sinnott LT, Kao C, Bailey MD (2013) Region specific relationships between refractive error and ciliary muscle thickness in children. Invest Ophthalmol Vis Sci 54:4710–4716PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Lütjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW (1986) Quantitative analysis of ‘plaque material’ between ciliary muscle tips in normal and glaucomatous eyes. Exp Eye Res 42:457–465PubMedCrossRef Lütjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW (1986) Quantitative analysis of ‘plaque material’ between ciliary muscle tips in normal and glaucomatous eyes. Exp Eye Res 42:457–465PubMedCrossRef
14.
Zurück zum Zitat Gao K, Li F, Li Y, Li X, Huang W, Chen S, Liu Y, Aung T, Zhang X (2018) Anterior choroidal thickness increased in primary open-angle glaucoma and primary angle-closure disease eyes evidenced by ultrasound biomicroscopy and SS-OCT. Invest Ophthalmol Vis Sci 59:1270–1277PubMedCrossRef Gao K, Li F, Li Y, Li X, Huang W, Chen S, Liu Y, Aung T, Zhang X (2018) Anterior choroidal thickness increased in primary open-angle glaucoma and primary angle-closure disease eyes evidenced by ultrasound biomicroscopy and SS-OCT. Invest Ophthalmol Vis Sci 59:1270–1277PubMedCrossRef
15.
Zurück zum Zitat Aiello AL, Tran VT, Rao NA (1992) Postnatal development of the ciliary body and pars plana. Arch Ophthalmol 110:802–805PubMedCrossRef Aiello AL, Tran VT, Rao NA (1992) Postnatal development of the ciliary body and pars plana. Arch Ophthalmol 110:802–805PubMedCrossRef
16.
Zurück zum Zitat Esteve-Taboada JJ, Domínguez-Vicent A, Monsálvez-Romín D, Del Águila-Carrasco AJ, Montés-Micó R (2017) Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Graefes Arch Clin Exp Ophthalmol 255:1385–1394PubMedCrossRef Esteve-Taboada JJ, Domínguez-Vicent A, Monsálvez-Romín D, Del Águila-Carrasco AJ, Montés-Micó R (2017) Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Graefes Arch Clin Exp Ophthalmol 255:1385–1394PubMedCrossRef
17.
Zurück zum Zitat Ruggeri M, de Freitas C, Williams S, Hernandez VM, Cabot F, Yesilirmak N, Alawa K, Chang YC, Yoo SH, Gregori G, Parel JM, Manns F (2016) Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging. Biomed Opt Express 7:1351–1364PubMedPubMedCentralCrossRef Ruggeri M, de Freitas C, Williams S, Hernandez VM, Cabot F, Yesilirmak N, Alawa K, Chang YC, Yoo SH, Gregori G, Parel JM, Manns F (2016) Quantification of the ciliary muscle and crystalline lens interaction during accommodation with synchronous OCT imaging. Biomed Opt Express 7:1351–1364PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Pardue MT, Sivak JG (2000) Age-related changes in human ciliary muscle. Optom Vis Sci 77:204–210PubMedCrossRef Pardue MT, Sivak JG (2000) Age-related changes in human ciliary muscle. Optom Vis Sci 77:204–210PubMedCrossRef
19.
Zurück zum Zitat Domínguez-Vicent A, Monsálvez-Romín D, Esteve-Taboada JJ, Montés-Micó R, Ferrer-Blasco T (2019) Effect of age in the ciliary muscle during accommodation: sectorial analysis. J Optom 12:14–21PubMedCrossRef Domínguez-Vicent A, Monsálvez-Romín D, Esteve-Taboada JJ, Montés-Micó R, Ferrer-Blasco T (2019) Effect of age in the ciliary muscle during accommodation: sectorial analysis. J Optom 12:14–21PubMedCrossRef
20.
Zurück zum Zitat Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha Dos Santos V, Garhöfer G, Mehta JS, Schmetterer L (2018) Anterior segment optical coherence tomography. Prog Retin Eye Res 66:132–156PubMedCrossRef Ang M, Baskaran M, Werkmeister RM, Chua J, Schmidl D, Aranha Dos Santos V, Garhöfer G, Mehta JS, Schmetterer L (2018) Anterior segment optical coherence tomography. Prog Retin Eye Res 66:132–156PubMedCrossRef
21.
Zurück zum Zitat Laughton DS, Coldrick BJ, Sheppard AL, Davies LN (2015) A program to analyse optical coherence tomography images of the ciliary muscle. Cont. Lens Anterior Eye 38:402–408PubMedCrossRef Laughton DS, Coldrick BJ, Sheppard AL, Davies LN (2015) A program to analyse optical coherence tomography images of the ciliary muscle. Cont. Lens Anterior Eye 38:402–408PubMedCrossRef
22.
Zurück zum Zitat Fernandez-Vigo JI, Shi H, Kudsieh B, Arriola-Villalobos P, De-Pablo Gómez-de-Liaño L, García-Feijóo J, Fernández-Vigo JA (2019) Ciliary muscle dimensions by swept-source optical coherence tomography and correlation study in a large population. Acta Ophthalmol. https://doi.org/10.1111/aos.14304PubMedCrossRef Fernandez-Vigo JI, Shi H, Kudsieh B, Arriola-Villalobos P, De-Pablo Gómez-de-Liaño L, García-Feijóo J, Fernández-Vigo JA (2019) Ciliary muscle dimensions by swept-source optical coherence tomography and correlation study in a large population. Acta Ophthalmol. https://​doi.​org/​10.​1111/​aos.​14304PubMedCrossRef
23.
Zurück zum Zitat Bailey MD (2011) How should we measure the ciliary muscle? Invest Ophthalmol Vis Sci 52:1817–1818PubMedCrossRef Bailey MD (2011) How should we measure the ciliary muscle? Invest Ophthalmol Vis Sci 52:1817–1818PubMedCrossRef
24.
Zurück zum Zitat Wang Z, Chung C, Lin J, Xu J, Huang J (2016) Quantitative measurements of the ciliary body in eyes with acute primary-angle closure. Invest Ophthalmol Vis Sci 57:3299–3305PubMedCrossRef Wang Z, Chung C, Lin J, Xu J, Huang J (2016) Quantitative measurements of the ciliary body in eyes with acute primary-angle closure. Invest Ophthalmol Vis Sci 57:3299–3305PubMedCrossRef
25.
Zurück zum Zitat Marchini G, Ghilotti G, Bonadimani M, Babighian S (2003) Effects of 0.005% latanoprost on ocular anterior structures and ciliary body thickness. J Glaucoma 12:295–300PubMedCrossRef Marchini G, Ghilotti G, Bonadimani M, Babighian S (2003) Effects of 0.005% latanoprost on ocular anterior structures and ciliary body thickness. J Glaucoma 12:295–300PubMedCrossRef
26.
Zurück zum Zitat Oliveira C, Tello C, Liebmann JM, Ritch R (2005) Ciliary body thickness increases with increasing axial myopia. Am J Ophthalmol 140:324–325PubMedCrossRef Oliveira C, Tello C, Liebmann JM, Ritch R (2005) Ciliary body thickness increases with increasing axial myopia. Am J Ophthalmol 140:324–325PubMedCrossRef
27.
Zurück zum Zitat Li X, Wang W, Huang W, Chen S, Wang J, Wang Z, Liu Y, He M, Zhang X (2018) Difference of uveal parameters between the acute primary angle closure eyes and the fellow eyes. Eye (Lond) 32:1174–1182CrossRef Li X, Wang W, Huang W, Chen S, Wang J, Wang Z, Liu Y, He M, Zhang X (2018) Difference of uveal parameters between the acute primary angle closure eyes and the fellow eyes. Eye (Lond) 32:1174–1182CrossRef
28.
Zurück zum Zitat Výborný P, Hejsek L, Sicáková S, Pasta J (2007) Changes of the thickness of the ciliary body after the latanoprost 0.005% application. Cesk Slov Oftalmol 63:418–421 Výborný P, Hejsek L, Sicáková S, Pasta J (2007) Changes of the thickness of the ciliary body after the latanoprost 0.005% application. Cesk Slov Oftalmol 63:418–421
Metadaten
Titel
Ciliary muscle dimensions measured by swept-source optical coherence tomography in eyes with primary open-angle glaucoma and healthy eyes
verfasst von
Bachar Kudsieh
José Ignacio Fernández-Vigo
Hang Shi
Lucía De Pablo Gómez de Liaño
José María Ruiz-Moreno
Julián García-Feijóo
José Ángel Fernández-Vigo
Publikationsdatum
09.05.2020
Verlag
Springer Netherlands
Erschienen in
International Ophthalmology / Ausgabe 9/2020
Print ISSN: 0165-5701
Elektronische ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-020-01405-5

Weitere Artikel der Ausgabe 9/2020

International Ophthalmology 9/2020 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.