Skip to main content
Erschienen in: BMC Cancer 1/2018

Open Access 01.12.2018 | Research article

CK1α overexpression correlates with poor survival in colorectal cancer

verfasst von: Julia Richter, Anna-Laura Kretz, Johannes Lemke, Michael Fauler, Jens-Uwe Werner, Stephan Paschke, Frank Leithäuser, Doris Henne-Bruns, Andreas Hillenbrand, Uwe Knippschild

Erschienen in: BMC Cancer | Ausgabe 1/2018

Abstract

Background

Colorectal cancer (CRC) is the fourth leading cause of cancer related deaths worldwide and prognosis in advanced tumor stage still remains poor. Since CK1 isoforms have been reported to be deregulated in several tumor entities CK1 has emerged as a novel drug target in cancer therapy. In this study we set out to investigate whether CK1α might have the potential to serve as prognostic marker.

Methods

CK1α RNA and protein expression levels in healthy and tumor tissue of CRC patients were analyzed using quantitative real-time PCR and Western Blot analysis, respectively. Prognostic relevance was investigated by correlating obtained CK1α expression levels with patients’ survival rate generating Kaplan-Meier survival plots.

Results

It could be shown that CK1α is overexpressed in colorectal tumor tissue compared to normal tissue and CK1α overexpression in tumor tissue correlates with poor survival in CRC patients. Results become more significant when only considering patients with high-grade tumors, as well as patients assigned to UICC II and UICC III stage. Furthermore, Cox regression analysis revealed that CK1α is an independent prognostic factor. In addition, tumors expressing decreased levels of the kinase reveal positive effects on overall survival when localized in the right colon compared to those in the left side.

Conclusion

In summary, this study provides evidence for the first time that CK1α RNA levels might serve as prognostic marker for CRC.
Begleitmaterial
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12885-018-4019-0) contains supplementary material, which is available to authorized users.
Julia Richter and Anna-Laura Kretz contributed equally to this work.
Andreas Hillenbrand and Uwe Knippschild shared senior authorship.
Abkürzungen
APC
Adenomatous polyposis coli
CK1
Casein kinase 1
CRC
Colorectal cancer
DCC
Deleted in colorectal cancer
HNPCC
Hereditary Non-Polyposis Colorectal Cancer
IHC
Immunohistochemistry
LCC
Left colon cancer
MDM2
Mouse double minute 2 homolog
MVA
Multivariate analysis
RCC
Right colon cancer
TP53
Tumor protein 53
UICC
Union for International Cancer Control
UVA
Univariate analysis

Background

According to the GLOBOCAN statistics an incidence of 1,360,000 estimated cases of colorectal cancer (CRC) globally occurred in 2012, thereby representing the third most common cancer in men (746,000 cases, 10% of total) after lung and prostate cancer and the second in women (614,000 cases, 9.2% of total) following breast cancer. Almost 55% of the CRC cases have been accounted in developed regions with most cases depicted in Australia and New Zealand, followed by Western and Southern Europe [1]. In fact, CRC is the fourth leading cause of cancer related deaths resulting largely from the inefficiency of early detection and resistance to chemotherapy [2]. Older age, lifestyle, dietary, and the gut microbiota influence lifetime risk of CRC (reviewed in [3]). Colorectal carcinogenesis is a process over several years usually arising from benign adenomatous polyps of the colonic mucosa which eventually develop malignancy. CRC can infiltrate into other intestinal layers and might invade lymph or blood vessels, giving rise to metastasis in lymph nodes or distant organs [4]. Despite extensive research in CRC, its pathogenesis is still not fully understood. However, based on Fearon and Vogelstein’s findings, the adenoma-carcinoma sequence describes a multi-step process for CRC development, promoted by specific and well-defined genetic aberrations of the genes APC (adenomatous polyposis coli), KRAS (GTPase KRas), DCC (Deleted in Colorectal Cancer) and TP53 (Tumor protein 53) [5]. However, up to 30% of the CRC cases are described as an inherited variant including hereditary non-polyposis colon cancer (HNPCC/Lynch syndrome) and familial adenomatous polyposis coli (FAP) as the most common forms of hereditary CRC (reviewed in [6, 7]). Approximately 15% of CRC development is based on microsatellite instability (MSI-H) due to either germline mutations in one of the mismatch repair genes MLH1, MSH2, MSH6, and pMSM2 (Lynch Syndrome), or to sporadic mutations in the DNA mismatch repair pathway which predominantly occurs through hypermethylation of the MLH1 promotor region and is often associated with the BRAFV600E mutation (reviewed in [8, 9]).
The standard therapy for CRC is surgical resection combined with adjuvant chemotherapy for patients with high risk stage II or III. Recent improvement of the chemotherapeutic regimes supplemented with biological reagents such as EGFR (epidermal growth factor receptor) antagonists have been shown to significantly improve patients’ overall survival [10]. Despite these advances in systemic therapy, the 5-year-survival of metastatic CRC patients remained a mere 12.5% and the main reason for therapy failure seems to be due to acquired treatment resistance occurring in 90% of the patients [11, 12]. Mechanisms described to circumvent the drug delivery include upregulation, mutations or activation of downstream signaling molecules being involved in oncogenic pathways, as well as pathway bypass mechanisms or increased networking between cancer promoting pathways (reviewed in [13]). With respect to the high mortality rate of advanced CRC identification of new biomarkers for prognosis paving the way for new and possibly individual therapeutic approaches are urgently needed.
So far, the general role of CK1 isoforms in cancer development and progression has been revealed (reviewed in [14, 15]) and several reports indicate a potential role of CK1 in digestive cancer screening (reviewed in [16]). However, the prognostic relevance of CK1α in CRC as well as its potential as a therapeutic target has not yet been addressed in detail. Recently, we reported that low CK1δ expression is associated with increased survival rates in CRC patients, especially in patients with highly differentiated tumors [17]. The aim of this study was to investigate whether CK1α is overexpressed in CRC tissue and whether CK1α RNA levels correlate with the overall survival of CRC patients. Furthermore, we wondered if CK1α expression levels and survival of patients correlate with tumor localization. The results presented in this study indicate that CK1α RNA levels might serve as prognostic biomarker for CRC as increased kinase levels correlate with poor survival.

Methods

Human tumor tissue

In summary, 283 patients suffering from CRC, who underwent curative tumor resection between 2003 and 2014 at the Department of General and Visceral Surgery at the University of Ulm, Germany, a Certified Intestinal Cancer Center, were included in the study. Informed consent was obtained prior to surgery. Exclusion criteria were age < 18 years, pregnancy, or viral infections like HIV or hepatitis B infection. Moreover, in cases without sufficient amounts of tumor and healthy tissue for processing, patients were not included in the analyses. None of the patients received neoadjuvant treatment prior to the surgery. Tissue samples were collected during operation and specimens were subjected to routine pathological analysis. Thereafter, pathologists provided tumor tissue as well as normal large intestinal mucosa, with at least 3 cm distance to the tumor interface for our tissue data bank.
Retrospectively, clinical data were reviewed based on the departmental records including medical history and on histopathological results from contributing pathologists. The following variables were considered: gender, histologic differentiation, T classification, lymph node invasion, distant metastasis, tumor stage (according to the Union for International Cancer Control, UICC [18, 19]), tumor localization (proximal (right) and distal (left) to the splenic flexure), age, disease free survival and overall survival. The study was performed with the permission of the independent local ethics committee of the University of Ulm (approvals 112/2003, 268/2008, and 235/2015).

Quantification of gene expression by quantitative real-time PCR

RNeasy Mini Kit (Qiagen, Hilden, Germany) was used to isolate total RNA from frozen tumor tissue sections of CRC patients and 1 μg of total RNA was transcribed into cDNA using the AffinityScript cDNA Synthesis Kit (Agilent Technologies, Santa Clara, USA). PCR amplification of the β-actin housekeeping gene verified RNA integrity and fidelity of cDNA synthesis by using the exon/exon spanning β-actin primer pair β-actin_for (5’-GGC ATC CTC ACC CTG AAG TA-3′) and β-actin_rev (5-‘GTC AGG CAG CTC GTA GCT CT-3’), while the β-actin intron/exon spanning primer pair β-actin_I (5′-cga gca gga gat ggc cac tgC-3′) and β-actin_E (5′-GTG AGC TCT CTG GGT GCT GGG-3′) was used to detect contaminations with genomic DNA. Quantitative gene expression of CK1α (EC 2.7.11.1) was analyzed using the LC480 cycler (Roche, Mannheim, Germany), QuantiFast SYBR Green PCR Kit (Qiagen, Hilden, Germany), and validated QuantiTect Primer Assay (Hs_CSNK1A1_1_SG QT00999138, Qiagen, Hilden, Germany) guaranteeing highly specific and sensitive results in RT-PCR. An interval of Ct values from 18 to 35 was accepted. In order to exclude primer dimers and to guarantee reaction specificity, melting points were analyzed after amplification.
Primers for HPRT (Hs_HPRT1_1_SG QT00059066) were used as endogenous control for all target genes. All experiments were done in duplicates. Results are shown as ∆Ct values.

Western blot analysis

To detect CK1α protein levels in normal and tumor tissue of CRC patients, samples were lysed in NP40 lysis buffer containing 50 mM Tris-HCl, pH 8.0, 120 mM NaCl, 10% glycerol, 0.5% NP-40, 1 mM EGTA, 5 mM DTT, 200 mM PMSF, 1 mM benzamidine, and 25 μg/ml aprotinin. After clearing of lysates by centrifugation at 15,000 g for 30 min, protein concentrations were determined using the ‘BCA Protein Assay Kit’ (Pierce Biotechnology, Rockford, USA). In each case 20 μg protein lysate were separated on SDS gels, transferred to nitrocellulose membranes (Amersham™ Protran®, GE Healthcare, Munich, Germany) and probed with anti CK1α (C19, 1:1000) (SantaCruz Biotechnology, Heidelberg, Germany) or anti GAPDH (Glyceraldehyde-3-phosphate dehydrogenase; 1:5,000) (HighTest Ltd., Turku, Finland) specific primary antibodies overnight. Detection was performed by using horseradish peroxidase-conjugated anti-goat (1:10,000) (abcam, ab6741, Cambrigde, UK) or anti-mouse IgG (1:10,000) (GE Healthcare, UK) as secondary antibodies, followed by chemiluminescence detection on films. Densitometric analysis was performed by the use of ImageJ software. After background subtraction, density was calculated in comparison to the loading control. Difference between relative density of tumor tissue and normal tissue was calculated and the entirety of values separated by the median in protein expression of tumor tissue lower/equal and higher, respectively, to normal tissue.

Statistical analysis

SPSS 24 (SPSS Inc., USA) was used performing exploratory data analysis for investigation of the obtained data (raw data is supplied as Additional file 1). Kaplan-Meier estimation was created for statistical analysis of overall survival and significance was tested using log-rank test. Independent prognostic factors were identified by fitting Cox proportional hazards regression models. Inclusion of covariates into the model was based on the forward stepwise likelihood-ratio procedure of the COXREG command in SPSS. The variable with the smallest p-value was included into the model of the next step. The inclusion procedure was stopped if no variable had a p-value smaller than 0.05. Covariates under consideration were UICC score, patient gender and age, risk factors smoking and alcohol consumption, categorical indicator variables for post-surgery chemotherapy, tumor location (left, right colon or transverse colon) and tumor recurrence. The CK1α expression level was encoded as an indicator variable with a value of 1 if the expression value was above a threshold. The threshold was set to 2.6, a value at which there was a significant difference in the survival rate between the separated groups in the study population (see Additional file 2). Group comparisons were performed by applying Wilcoxon test. p-values < 0.05 were considered statistically significant (a = 0.05). No correction for multiple testing was done.

Results

Study population

The clinical and histopathological parameters of the CRC patient cohort are listed in Table 1. Tumor tissue of 283 CRC patients (160 male, 123 female), with a median age of 70.13 years (range 29.81–89.68 years) was analyzed in the study. The classification by tumor grade results in dissimilar groups of 209 patients with low-grade (Grade 1, Grade 2; 73.9%) and 71 patients with high-grade (Grade 3, Grade 4; 25.1%) tumors. Among these cases, 74 patients had T1 or T2 status (26.1%), and 205 patients exhibited T3 or T4 status (72.5%). In 135 patients lymph node metastases were evident (47.7%) but only 71 patients had distant metastasis (25.1%). In summary, 62 patients were diagnosed at stage I according to the UICC classification (21.9%), 68 patients at stage II (24.0%), 78 patients at stage III (27.6%), and 71 patients in stage IV (25.1%). Furthermore, distinction into right- and left-sided colon cancer splits groups into 119 patients with tumors localized in right colon (42.1%) and 160 patients with tumors grown in left colon (56.5%). The median overall survival was 28.19 months ranging from 0.13 to 141.38 months. The 5-year survival was 52.9%.
Table 1
CRC patients’ characteristics
Variable
N = 283
%
Gender
Male
160
56.5
Female
123
43.5
Differentiation
Grade 1
18
6.4
Grade 2
191
67.5
Grade 3
64
22.6
Grade 4
7
2.5
n.d.
3
1.1
T classification
T1
19
6.7
T2
55
19.4
T3
159
56.2
T4
46
16.3
cis
4
1.4
Lymph node invasion
No
148
52.3
Yes
135
47.7
Distant metastasis
No
212
74.9
Yes
71
25.1
Stage (UICC)
0
4
1.4
I
62
21.9
II
68
24.0
III
78
27.6
IV
71
25.1
Tumor localization
Left colon
160
56.5
Right colon
119
42.1
n.d.
4
1.4
5-year survival
 
52.9
Age (years)
Median
70.13
 
Range
29.81–89.68
 
Overall survival (months)
Median
28.16
 
Range
0.13–141.38
 
Abbreviations: n.d not determined, cis carcinoma in situ

CK1α is overexpressed in colorectal tumor tissue

Evidence has been provided in the last decade emphasizing the crucial role of CK1 isoforms in cancer development in different tumor entities. For instance, microarray data-base analyses from tumor cell lines and tissues indicate that CK1α is overexpressed on RNA level in many tumor types, including CRC (CellMiner™ database [20]). Initially, to investigate if CK1α could be a potential biomarker in colorectal cancer expression levels in healthy and carcinogenic colorectal tissue were compared in a randomly chosen subset of 68 CRC patients performing quantitative real-time PCR. Results revealed significantly increased CK1α RNA expression levels in tumor tissue compared to healthy samples (p = 0.013; Fig. 1A). Furthermore, to confirm a correlation between CK1α RNA and protein expression levels, several patients of the cohort were chosen on a random basis for the detection of CK1α protein levels in Western Blot analysis (Fig. 1D). Indeed, we found equal or lower CK1α expression levels in tumors compared to normal tissue in patients with low CK1α RNA levels (RQ < 2.6; Fig. 1B) as well as strong CK1α immunoreactivity in patients with high CK1α RNA levels (RQ > =2.6; Fig. 1B).

CK1α is a negative prognostic marker in CRC

In order to investigate CK1α transcript expression as a prognostic factor of CRC, Kaplan-Meier survival plots were generated by correlating low (RQ < 2.6) and high (RQ > = 2.6) CK1α RNA expression levels with 283 patients’ overall survival rates. This threshold separates the study population into two groups with significant different hazard rates. There is no linear dose-response relationship between CK1α expression and survival rate (data not shown) but a tendency for an increasing hazard with expression values up to 1.6 (Additional file 3). Firstly, CK1α RNA expression levels in tumors of the whole patient cohort were investigated, relinquishing significantly increased survival rates of patients suffering from tumors expressing low levels of CK1α (p = 0.044, Fig. 1B). After 10-year follow up disease free survival (DFS) was better in CRC patients with low CK1α levels (Fig. 1C).
Next, possible gender-specific differences were analyzed by correlating the survival rates for males and females to the expression levels of the kinase. Neither in females, nor in males results revealed a significant correlation of CK1α RNA expression with overall survival rates (p = 0.185 and p = 0.128, respectively; Additional file 4). Furthermore, within the subgroup of gender no significant differences in median CK1α expression could be observed (p = 0.364; Table 2). Differentiating the cohort into two subgroups of low (Grade 1, Grade 2)- and high-grade (Grade 3, Grade 4) classified tumors revealed significantly increased CK1α expression levels in high-grade tumors (p < 0.001; Fig. 2A). In addition, as shown in Fig. 2B, patients within the high-grade tumor-subgroup had significantly prolonged survival rates when CK1α expression is decreased (p = 0.042). In contrast, in patients with low-grade neoplasms overall survival did not correlate with the level of CK1α RNA expression (p = 0.393; Additional file 5).
Table 2
Correlation of CK1α RNA expression levels with clinical parameters
 
Total N
low CK1α expression [RQ < 2.6] N (median RQ)
high CK1α expression [RQ > =2.6] N (median RQ)
median CK1α expression RQ (min-max)
p value
Overall Survival
 Dead
120
46 (1.69)
74 (4.70)
3.23 (0.49–59.92)
0.036*
 Alive
163
88 (1.61)
75 (5.06)
2.46 (0.34–67.42)
Gender
 Male
160
71 (1.66)
89 (4.87)
2.89 (0.49–67.42)
0.364
 Female
123
63 (1.63)
60 (4.85)
2.54 (0.34–59.92)
Differentiation
 Low-grade (G1, G2)
209
115 (1.65)
94 (4.58)
2.43 (0.34–67.42)
< 0.001**
 High-grade (G3, G4)
71
19 (1.67)
52 (5.38)
4.17 (0.77–53.30)
 n.d.
3
3 (8.11)
8.11 (3.24–8.31)
 
Stage (UICC)
 0
4
1 (1.71)
3 (8.31)
6.38 (1.71–10.09)
 
 I
62
27 (1.69)
35 (4.84)
2.78 (0.64–67.42)
0.611
 II, III
146
74 (1.63)
72 (4.76)
2.50 (0.34–59.92)
 IV
71
32 (1.61)
39 (5.07)
2.98 (0.53–53.30)
Localization
 Left colon
160
76 (1.70)
84 (4.90)
2.71 (0.34–67.42)
0.523
 Right colon
119
57 (1.63)
62 (4.70)
2.84 (0.53–15.58)
 n.d.
4
1 (2.39)
3 (7.03)
5.21 (2.39–9.72)
 
 Total
283
134 (1.66)
149 (4.87)
2.76 (0.34–67.42)
 
Clinical parameters referring to CK1α RNA expression levels, calculated as relative quantification (RQ) by qPCR using HPRT as reference gene
Statistical analysis was performed using median test. *p < 0.05; ***p < 0.001
Abbreviations: G Grade, n.d not determined
Summarizing the subgroups of patients assigned to UICC II and UICC III stage revealed significantly decreased overall survival rates when CK1α RNA expression levels are elevated (p = 0.031; Fig. 3A). Subdividing patients according to tumor localization in right colon cancer (RCC) and left colon cancer (LCC) patients exhibited significantly increased survival rates in RCC patients with tumors expressing low CK1α RNA levels (p = 0.033; Fig. 3B). In contrast, no significant correlation between overall survival rates and CK1α expression levels could be observed in LCC patients (p = 0.470; Additional file 6). Within this subgroup of tumor localization no significant differences in median CK1α expression occurred (p = 0.523; Table 2).

Correlations between CK1α RNA expression and survival analysis

The results of Cox univariate and multivariate analyses (UVA and MVA, respectively) (Table 3) revealed that low survival rates significantly correlate with high CK1α RNA expression levels (UVA p = 0.045, hazard ratio HR = 1.46 and MVA p = 0.010, HR = 1.63) and UICC stage (UVA p < 106, HR = 1.70 and MVA p < 10− 6, HR = 1.78). Furthermore, female sex (UVA p = 0.037, HR = 0.82 and MVA p = 0.025, HR = 0.65) significantly decreases risk of CRC related death. Additionally, older age (UVA p = 0.002, HR = 1.02 and MVA p < 10− 5, HR = 1.03) is a significant predictor of a low overall survival rate. Other variables (anamnestic raised indications for smoking or excessive alcohol consumption, tumor localization, occurrence of relapses and treatment with chemotherapy) did not contribute significantly according to forward and backward stepwise likelihood-ratio procedures for model comparison (see supplemental Fig. 2).
Table 3
Multivariate and univariate analysis of survival rate in CRC
 
Multivariate
Univariate
Variable
HR
95% CI
p value
HR
95% CI
p value
CK1α expression
 Low
1.00
1.123–2.351
0.010*
1.00
1.008–2.105
0.045*
 High
1.63
1.46
UICC Stage
 I < II < III < IV
1.78
1.480–2.145
< 10−6***
1.70
1.417–2.046
< 10−6***
Gender
 Male
1.00
0.442–0.946
0.025*
1.00
0.679–0.988
0.037*
 Female
0.65
0.82
Age
 Ratio scale
1.03
1.016–1.050
< 10−3*
1.02
1.009–1.040
0.002**
p value was determined using Cox proportional hazards model. * p < 0.05; **p < 0.01; ***p < 0.001
Abbreviations: HR hazard ratio, 95% CI 95% confidence interval

Discussion

Colorectal cancer (CRC) is the fourth most common cancer globally and the third leading cause of cancer related deaths [1]. An increasing age can elevate the probability of developing CRC as well as polyps, inflammatory bowel diseases, and hereditary factors in the patients’ anamnesis. The best chance for cure is provided by complete surgical resection of the tumor. However, despite the fact that novel diagnostic tools as well as improved treatment strategies have been emerged in the past years, prognosis of CRC patients with advanced and metastatic tumor stage still remains poor with an average survival of less than 30 months [21]. Consequently, novel targeted therapeutic approaches are urgently needed. Therefore, it is essential to understand molecular mechanisms of CRC. Uncovering disease associated pathways as well as their regulation and interaction, and identifying prognostic biomarkers might provide starting points for targeted therapy with increased selectivity, efficiency and reduced toxicity. Research in CRC reveals potential target molecules including members of the CK1 family. CK1 family members have been described to influence the activity of key regulatory proteins and signal integration molecules including β-catenin, p53, and MDM2, thereby regulating Wnt-signaling, cell cycle progression, and apoptosis induction. Importantly, all these pathways are well known for their role in tumor development and progression. Accordingly, deregulation of CK1 expression and/or activity is directly linked to tumor development and progression and has already been reported in various tumor entities, highlighting CK1 isoforms as attractive targets in tumor therapy (reviewed in [15]).
Microarray data analyses from different cancer cell lines using CellMiner™ database indicate high-level expression of CK1α in various colon and rectum cancer cell lines [20]. However, so far, the role of CK1α as a prognostic marker in CRC has not been reported. In this study, we investigated CK1α RNA expression in CRC as a potential prognostic biomarker by comparing RNA expression levels in colorectal tumor tissue and healthy bowel tissue. Our results revealed that CK1α expression levels are significantly increased in tumor tissue compared to normal tissue, consequently indicating that CK1α is involved in developing and/or proceeding malignant characteristics of tumor cells. Since we found low expression levels in surviving individuals, it might be hypothesized that increased CK1α expression levels correlate with poor prognosis of CRC patients. Survival analyses, including Kaplan-Meier estimations and Cox regression analyses revealed that high CK1α expression levels in tumors are significantly associated with poor overall survival rates of CRC patients, indicating that CK1α is an independent negative prognostic factor in CRC. Interestingly, CK1α expression levels appear to vary in different cancer entities. Therefore, it remains to be shown whether our finding may be transferable to other cancers and if so, to which cancers. For example melanoma cells or lung cancer cells possess low-level expression [14]. Additionally, despite availability of comparable survival information a link between prognosis and CK1α expression levels cannot be transferred to every tumor entity. A significant influence of CK1α expression levels on survival rates is demonstrated amongst others in breast cancer, leukemia, multiple myeloma, lung cancer, and diffuse large B cell lymphoma. For instance, in diffuse large B cell lymphoma a prolonged survival is connected with low CK1α expression levels, whereas in lung cancer high-level expression of CK1α is linked to better outcome [14]. This indicates that CK1α expression levels cannot be used as a general prognostic marker and have to be determined individually in every tumor entity. Our study identifies that CK1α expression influences the overall survival of colorectal cancer patients since patients with short survival times show a statistically significant higher CK1α expression. Thus, we have identified CK1α expression as potential diagnostic or therapeutic applicability for colorectal cancer. However, our data do not provide evidence that CK1α expression may influence the outcome of a certain therapy and can therefore not be used as a predictive marker.
We previously reported a prognostic relevance of CK1δ expression in CRC patients, especially for those with low-grade tumors (Grade 1, Grade 2) [17]. In the present study we could show that high CK1α expression levels strongly correlate with poor survival in high-grade (Grade 3, Grade 4) CRC patients, indicating that CK1α might be used as a biomarker in poorly differentiated cancers, whereas CK1δ represents a prognostic marker in highly differentiated CRC.
Interestingly, we found lower levels of both CK1 isoforms in surviving patients, indicating an involvement of CK1α and CK1δ in malignancy-associated pathways resulting in poor prognosis. Since the APC/Wnt/β-catenin pathway is known to play a major role in colorectal carcinogenesis and since both CK1 isoforms play regulatory roles in Wnt signaling it can be speculated that overexpression of CK1α and δ leads to a Wnt/β-catenin-dependent malignant phenotype of colorectal tumor cells [15, 22, 23]. However, this hypothesis has to be investigated in future experiments unraveling the molecular mechanisms behind CK1α/δ related colorectal carcinogenesis.
Since increased expression levels are associated with poor survival rates, CK1α might represent an attractive drug target in new CRC therapy concepts. Intriguingly, the prognostic relevance of high CK1α expression was explicitly high in UICC II and UICC III stage CRC. This patient cohort usually undergoes surgical resection with a curative intent. However, these patients exhibit a high risk of tumor recurrence due to large primary tumors and/or lymph node metastases at time of diagnosis. Therefore, these patients usually received adjuvant treatment upon surgical resection to decrease risk of recurrence and prolong overall survival. Interestingly, within the cohort patients with poorer survival show higher CK1α expression. Consequently, patients with high CK1α expression are less likely to benefit from conventional adjuvant chemotherapy to prevent recurrence providing the chance for cure. Moreover, based on our findings it is important to characterize the effects of CK1α downregulation by CK1α specific inhibitors or biological tools to receive information whether these patients would benefit from a CK1α targeting therapy in regard to long-term survival, in particular in chemoresistant cancers. Recently, D4476 has been described as a potent inhibitor of CK1α [2426], although previously having been described as CK1δ/ε specific inhibitor [27, 28]. Furthermore, the effects of the anticancer drug lenalidomide are partially due to the initiation of proteasomal degradation of CK1α [29, 30]. Nevertheless, additional pre-clinical and clinical testing of CK1α inhibitors or agents inducing CK1α degradation or inhibiting the interaction of CK1α with cellular proteins [31] are urgently needed to further investigate their therapeutic potential.
In accordance with the published data a tumor localization-dependent correlation between survival and kinase expression was detected [17]. High-level CK1α expressing tumors of the right colon (right colon cancer, RCC) correlate with poor outcome of the patients, whereas overall survival is not affected by CK1α expression of left-sided tumors (left colon cancer, LCC). Several reports distinguish right and left colon by differences in their biological properties. It has been demonstrated that embryologic origin, vascular supply, as well as composition and density of immune cells and microbiota differ in right and in left colon [32]. Furthermore, genes involved in tumorigenesis-associated signaling pathways, cell cycle, proliferation, cell death, stress response, DNA replication, and damage repair have been reported to be differentially expressed, consequently leading to different oncogenic patterns [33]. According to Vogelstein’s adenoma-carcinoma sequence a stepwise pattern of mutational inactivation of tumor suppressors and activation of oncogenes initiates and proceeds to colorectal carcinogenesis [5]. So far, the role of CK1 isoforms within this sequence is unknown but several reports suggest a role of CK1 in regulating p53 activity, which in turn is inactivated in the majority of high-grade colorectal cancers [15, 34]. Furthermore, differences in the microenvironment, especially the release of pro-inflammatory cytokines, mainly released by immune cells (e.g. neutrophils and M1 macrophages), pro-inflammatory adipocytokines (e.g. leptin, visfatin) and fatty acids secreted by adipocytes accelerate adenoma carcinoma transition and can significantly promote migration and invasion of CRC cells via induction of epithelial mesenchymal transition [3538]. In this respect, it can be speculated that CK1α expression might be involved in regulating microenvironment and oncogenic pathways in particular important in right-sided colon carcinogenesis, especially against the background that CK1α expression is similar in LCC and RCC. In order to investigate the impact of CK1α on RCC tumorigenesis further studies are crucial.

Conclusion

In summary, we could show that CK1α RNA overexpression in colorectal tumor tissue significantly correlates with poor outcome. Especially in patients with poorly differentiated tumors CK1α might have prognostic relevance. Interestingly, UICC II and UICC III patients, a subset of patients that usually receive adjuvant chemotherapy upon surgical resection, did also show impaired survival when CK1α was elevated. Therefore, these patients might benefit from combining adjuvant chemotherapy with a CK1α inhibitor.

Acknowledgements

The authors would like to thank Dr. Pengfei Xu, Annette Blatz, Vanessa Alscher, and Nadine Süßner for their excellent technical assistance.

Funding

Work in the laboratory of UK is funded by the Deutsche Forschungsgemeinschaft (DFG) [KN356/6–1]. The funding body had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials

Evaluated Data and statistical analysis supporting the findings are included within the manuscript and as Additional files.
Ethical approval was obtained from the independent local ethics committee of the University of Ulm (approvals 112/2003, 268/2008 and 235/2015). Written consent was obtained from all patients prior to surgery.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Anhänge

Additional files

Literatur
1.
Zurück zum Zitat Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
Zurück zum Zitat Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7.CrossRefPubMedPubMedCentral Haggar FA, Boushey RP. Colorectal cancer epidemiology: incidence, mortality, survival, and risk factors. Clin Colon Rectal Surg. 2009;22(4):191–7.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.CrossRefPubMed Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–67.CrossRefPubMed
7.
Zurück zum Zitat Grady WM. Genetic testing for high-risk colon cancer patients. Gastroenterology. 2003;124(6):1574–94.CrossRefPubMed Grady WM. Genetic testing for high-risk colon cancer patients. Gastroenterology. 2003;124(6):1574–94.CrossRefPubMed
9.
Zurück zum Zitat Gatalica Z, Vranic S, Xiu J, Swensen J, Reddy S. High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Familial Cancer. 2016;15:405–12.CrossRefPubMedPubMedCentral Gatalica Z, Vranic S, Xiu J, Swensen J, Reddy S. High microsatellite instability (MSI-H) colorectal carcinoma: a brief review of predictive biomarkers in the era of personalized medicine. Familial Cancer. 2016;15:405–12.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Heinemann V, Douillard JY, Ducreux M, Peeters M. Targeted therapy in metastatic colorectal cancer -- an example of personalised medicine in action. Cancer Treat Rev. 2013;39(6):592–601.CrossRefPubMed Heinemann V, Douillard JY, Ducreux M, Peeters M. Targeted therapy in metastatic colorectal cancer -- an example of personalised medicine in action. Cancer Treat Rev. 2013;39(6):592–601.CrossRefPubMed
11.
Zurück zum Zitat Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMed Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin. 2014;64(1):9–29.CrossRefPubMed
12.
Zurück zum Zitat Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.CrossRefPubMed Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205(2):275–92.CrossRefPubMed
13.
Zurück zum Zitat Hammond WA, Swaika A, Mody K: Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016, 8(1):57–84. Hammond WA, Swaika A, Mody K: Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol 2016, 8(1):57–84.
14.
15.
Zurück zum Zitat Knippschild U, Krueger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol. 2014;4(96) Knippschild U, Krueger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 family: contribution to cellular stress response and its role in carcinogenesis. Front Oncol. 2014;4(96)
17.
Zurück zum Zitat Richter J, Rudeck S, Kretz AL, Kramer K, Just S, Henne-Bruns D, Hillenbrand A, Leithauser F, Lemke J, Knippschild U. Decreased CK1delta expression predicts prolonged survival in colorectal cancer patients. Tumour Biol. 2016; Richter J, Rudeck S, Kretz AL, Kramer K, Just S, Henne-Bruns D, Hillenbrand A, Leithauser F, Lemke J, Knippschild U. Decreased CK1delta expression predicts prolonged survival in colorectal cancer patients. Tumour Biol. 2016;
18.
Zurück zum Zitat Bosmann FT, Carneiro F, Hruban RH, Theise ND: World Health Organization Classification of Tumours, 4th edn. Lyon: International Agency for Research on Cancer (IARC); 2010. Bosmann FT, Carneiro F, Hruban RH, Theise ND: World Health Organization Classification of Tumours, 4th edn. Lyon: International Agency for Research on Cancer (IARC); 2010.
19.
Zurück zum Zitat Sobin LH, Gospodarowicz MK, Wittekind C: TNM classification of malignant tumours: John Wiley & Sons; 2011. Sobin LH, Gospodarowicz MK, Wittekind C: TNM classification of malignant tumours: John Wiley & Sons; 2011.
20.
Zurück zum Zitat Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC, Pommier Y, Weinstein JN. CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics. 2009;10:277.CrossRefPubMedPubMedCentral Shankavaram UT, Varma S, Kane D, Sunshine M, Chary KK, Reinhold WC, Pommier Y, Weinstein JN. CellMiner: a relational database and query tool for the NCI-60 cancer cell lines. BMC Genomics. 2009;10:277.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 2016; Aran V, Victorino AP, Thuler LC, Ferreira CG. Colorectal cancer: epidemiology, disease mechanisms and interventions to reduce onset and mortality. Clin Colorectal Cancer. 2016;
22.
23.
Zurück zum Zitat Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1(1):55–67.CrossRefPubMed Fodde R, Smits R, Clevers H. APC, signal transduction and genetic instability in colorectal cancer. Nat Rev Cancer. 2001;1(1):55–67.CrossRefPubMed
24.
Zurück zum Zitat Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene. 2010;29(23):3324–34.CrossRefPubMedPubMedCentral Honaker Y, Piwnica-Worms H. Casein kinase 1 functions as both penultimate and ultimate kinase in regulating Cdc25A destruction. Oncogene. 2010;29(23):3324–34.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Jaras M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, Al-Shahrour F, Pena P, Breyfogle LJ, Hartwell KA, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211(4):605–12.CrossRefPubMedPubMedCentral Jaras M, Miller PG, Chu LP, Puram RV, Fink EC, Schneider RK, Al-Shahrour F, Pena P, Breyfogle LJ, Hartwell KA, et al. Csnk1a1 inhibition has p53-dependent therapeutic efficacy in acute myeloid leukemia. J Exp Med. 2014;211(4):605–12.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lantermann AB, Chen D, McCutcheon K, Hoffmann G, Frias E, Ruddy D, Rakiec D, Korn J, McAllister G, Stegemeier F, et al. Inhibition of casein kinase 1 alpha prevents acquired drug resistance to Erlotinib in EGFR-mutant non-small cell lung cancer. Cancer Res. 2015;15:4937–48.CrossRef Lantermann AB, Chen D, McCutcheon K, Hoffmann G, Frias E, Ruddy D, Rakiec D, Korn J, McAllister G, Stegemeier F, et al. Inhibition of casein kinase 1 alpha prevents acquired drug resistance to Erlotinib in EGFR-mutant non-small cell lung cancer. Cancer Res. 2015;15:4937–48.CrossRef
27.
Zurück zum Zitat Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297–315.CrossRefPubMedPubMedCentral Bain J, Plater L, Elliott M, Shpiro N, Hastie CJ, McLauchlan H, Klevernic I, Arthur JS, Alessi DR, Cohen P. The selectivity of protein kinase inhibitors: a further update. Biochem J. 2007;408(3):297–315.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rena G, Bain J, Elliott M, Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004;5(1):60–5.CrossRefPubMed Rena G, Bain J, Elliott M, Cohen P. D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep. 2004;5(1):60–5.CrossRefPubMed
29.
Zurück zum Zitat Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Gandhi AK, Svinkina T, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;9:183–8.CrossRef Kronke J, Fink EC, Hollenbach PW, MacBeth KJ, Hurst SN, Udeshi ND, Chamberlain PP, Mani DR, Gandhi AK, Svinkina T, et al. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature. 2015;9:183–8.CrossRef
30.
Zurück zum Zitat Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH, Kim HJ, Lee JJ. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget. 2017;8:27252–62.PubMedPubMedCentral Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH, Kim HJ, Lee JJ. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget. 2017;8:27252–62.PubMedPubMedCentral
31.
Zurück zum Zitat Huart AS, MacLaine NJ, Narayan V, Hupp TR. Exploiting the MDM2-CK1alpha protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth. PLoS One. 2012;7(8):e43391.CrossRefPubMedPubMedCentral Huart AS, MacLaine NJ, Narayan V, Hupp TR. Exploiting the MDM2-CK1alpha protein-protein interface to develop novel biologics that induce UBL-kinase-modification and inhibit cell growth. PLoS One. 2012;7(8):e43391.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Bufill JA. Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med. 1990;113(10):779–88.CrossRefPubMed Bufill JA. Colorectal cancer: evidence for distinct genetic categories based on proximal or distal tumor location. Ann Intern Med. 1990;113(10):779–88.CrossRefPubMed
33.
Zurück zum Zitat Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, DeNobile J, Soballe P, Simon R, Wright G et al: distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev 2003, 12(8):755–762. Glebov OK, Rodriguez LM, Nakahara K, Jenkins J, Cliatt J, Humbyrd CJ, DeNobile J, Soballe P, Simon R, Wright G et al: distinguishing right from left colon by the pattern of gene expression. Cancer Epidemiol Biomark Prev 2003, 12(8):755–762.
34.
Zurück zum Zitat Zlobec I, Lugli A. Prognostic and predictive factors in colorectal cancer. J Clin Pathol. 2008;61(5):561–9.PubMed Zlobec I, Lugli A. Prognostic and predictive factors in colorectal cancer. J Clin Pathol. 2008;61(5):561–9.PubMed
35.
Zurück zum Zitat Zeng H, Ishaq SL, Zhao FQ, Wright AG. Colonic inflammation accompanies an increase of beta-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J Nutr Biochem. 2016;35:30–6.CrossRefPubMed Zeng H, Ishaq SL, Zhao FQ, Wright AG. Colonic inflammation accompanies an increase of beta-catenin signaling and Lachnospiraceae/Streptococcaceae bacteria in the hind gut of high-fat diet-fed mice. J Nutr Biochem. 2016;35:30–6.CrossRefPubMed
36.
Zurück zum Zitat Yang J, Zhang K, Song H, Wu M, Li J, Yong Z, Jiang S, Kuang X, Zhang T. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget. 2016; Yang J, Zhang K, Song H, Wu M, Li J, Yong Z, Jiang S, Kuang X, Zhang T. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget. 2016;
37.
Zurück zum Zitat Gong Y, Dou LJ, Liang J. Link between obesity and cancer: role of triglyceride/free fatty acid cycling. Eur Rev Med Pharmacol Sci. 2014;18(19):2808–20.PubMed Gong Y, Dou LJ, Liang J. Link between obesity and cancer: role of triglyceride/free fatty acid cycling. Eur Rev Med Pharmacol Sci. 2014;18(19):2808–20.PubMed
Metadaten
Titel
CK1α overexpression correlates with poor survival in colorectal cancer
verfasst von
Julia Richter
Anna-Laura Kretz
Johannes Lemke
Michael Fauler
Jens-Uwe Werner
Stephan Paschke
Frank Leithäuser
Doris Henne-Bruns
Andreas Hillenbrand
Uwe Knippschild
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2018
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-018-4019-0

Weitere Artikel der Ausgabe 1/2018

BMC Cancer 1/2018 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.