Skip to main content
Erschienen in: Journal of Translational Medicine 1/2016

Open Access 01.12.2016 | Research

Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer

verfasst von: Avaniyapuram Kannan Murugan, Ebtesam Qasem, Hindi Al-Hindi, Yufei Shi, Ali S. Alzahrani

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2016

Abstract

Background

BRAF is the most frequently mutated gene in differentiated thyroid cancer (DTC). Previous studies on DTC have well documented high rates of the BRAF V600E mutation in patients of mixed ages. Previous studies either included a mix of pediatric and adult patients or pediatric patients only. However, the prevalence of hotspot and non-hotspot BRAF mutations and its significance in pure adult DTCs is not yet well determined. In this study we determine the frequency of this classical BRAF mutation and other rare BRAF mutations in pure adult DTCs.

Methods

A total of 204 adult DTC samples (Age >18 years) were analyzed for mutations in exon 15 of the BRAF gene by performing polymerase chain reaction (PCR) amplification of tumor genomic DNAs and direct sequencing of amplicons using Sanger sequencing. Obtained results were correlated to clinical and pathological characteristics of DTCs. Statistical analyses were performed using SPSS (The Statistical Package for Social Sciences) version 20 software.

Results

Overall, BRAF mutations were identified in 48.5 % (99/204) of adult DTCs. Three rare non-hotspot mutations (T599I, T599dup and K601E) were detected in four tumor samples (2 %). One (K601E) of these non-hotspot mutations occurred in conventional papillary thyroid cancer (CPTC) and other three (T599I, T599dup and K601E) were found in follicular variant PTC. We found significant association between BRAF V600E mutation and age (P < 0.0001), extrathyroidal invasion (P = 0.017), lymph node metastasis (P = 0.038) and TNM stage III/IV (P = 0.001).

Conclusions

Our study is the first to report BRAF mutations in a pure adult sample of DTCs of Saudi Arabian ethnicity. Our results show a high rate and a strong prognostic role of the classical BRAF V600E mutation and also suggest a common occurrence of non-hot spot mutations in adult DTC from this highly inbred population.
Abkürzungen
DTC
differentiated thyroid cancer
PDTC
poorly differentiated thyroid cancer
CPTC
conventional papillary thyroid cancer
FVPTC
follicular variant thyroid cancer
TC-PTC
tall cell papillary thyroid cancer
HCC
hurthle cell carcinoma
DSC
diffuse sclerosing type papillary thyroid cancer
FTC
follicular thyroid cancer
FFPT
formalin fixed and paraffin embedded tissue
PCR
polymerase chain reaction
MAPK
mitogen activated protein kinase
PI3K
phosphatidylinositol-3-kinase

Background

Thyroid cancer is the most common malignant endocrine tumor. Its incidence has been considerably increasing over the last 4 decades [1, 2]. Thyroid cancer usually arises from follicular epithelial cell or parafollicular cells [3]. The latter is the cell of origin of medullary thyroid cancer [3]. Follicular cell-derived thyroid cancer is by far the most common type (95 %) and is classified to differentiated thyroid cancer (DTC), poorly differentiated (PDTC) and undifferentiated (anaplastic) subtypes [3]. DTC is further classified to papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC) [28]. In Saudi Arabia, DTC is the fourth most common type of cancer in general and the second most common cancer in women [4]. Over the last decade, there has been a significant progress in our understanding of DTC pathogenesis [5]. Genetic alterations in genes of key cellular signaling pathways, particularly mitogen activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) signaling pathways are the main genetic mechanisms of thyroid carcinogenesis [5, 6].
PTC is the most common subtype of thyroid cancer accounting for about 90–95 % of cases. BRAF V600E mutation is the most prevalent genetic alteration in PTC (~45 %) [5]. This transversion mutation results in thymine-to-adenine (T > A) change at nucleotide position 1799 (T1799A) substituting valine by glutamic acid at amino acid position 600 (V600E). When present, this mutation results in constitutive activation of the BRAF protein with consequent activation of the downstream mediators [5, 7, 8].
A large number of studies from different ethnic backgrounds reported BRAF V600E mutation in 29–83 % of PTC [7]. These studies were mostly undertaken in patients with DTC of various ages. To our knowledge, no previous study reported BRAF V600E mutation in a pure adult population. The relationship of BRAF V600E mutation and age of the patient at diagnosis has been inconsistent. Some studies showed significant correlation [9, 10] while others didn’t demonstrate such a correlation [11]. We and others have found a much lower rate of BRAF V600E mutation in DTC from pediatric and adolescent patients [12, 13]. Furthermore, we also found a much lower rate of the recently described TERT mutations in pediatric compared to adult DTC [13]. We speculated that the adult and pediatric DTCs are likely to have different molecular signatures as suggested by these findings and also the significantly different clinical and pathological phenotype [1416]. Saudi population is highly inbred with high rate of consanguinity [17, 18]. Although BRAF V600E is somatic in nature, one may wonder whether this high rate of consanguinity may have an impact on the prevalence of BRAF V600E mutation and prevalence of other non-spot BRAF mutations. Although BRAF V600E mutation has been previously reported from Saudi Arabian population of various ages [19, 20], it has not been investigated in purely adult population. In the course of this study, we also found a relatively high rate of non-hot spot BRAF mutations. Our aim in this study is to determine the prevalence of the BRAF V600E mutation and other non-conventional exon 15 BRAF mutations in pure adult patients (>18 years) with DTC in this highly inbred population.

Methods

Tumor samples and DNA extraction

We studied a sample consisting of 204 sporadic DTCs. The clinical and pathological data of these patients are summarized in Table 1. The only exclusion criterion was age at diagnosis of ≤18 years. DTC samples included 114 (55.9 %) conventional papillary thyroid cancer (CPTC), 55 (27 %) follicular variant papillary thyroid cancer (FVPTC), 29 (14.2 %) tall cell papillary thyroid cancer (TC-PTC), 3 (1.5 %) hurthle cell carcinomas (HCC), and 3 (1.5 %) diffuse sclerosing type papillary thyroid cancer (DSC) collected from the pathology Department of the King Faisal Specialist Hospital and Research Centre (KFSH&RC), Riyadh, Saudi Arabia (Table 1). The patients did not have family history of thyroid cancer. Histological diagnosis was confirmed by an experienced endocrine pathologist (H.A) who also carefully selected the tumor samples from paraffin blocks to ensure that tumor tissue was dissected for DNA extraction. Slices of 10-micron thickness of tumor samples were dissected from formalin fixed and paraffin embedded tissue (FFPT). Genomic DNA was extracted from the tumor tissues as previously described [21] using the Gentra Puregene DNA extraction kit (Qiagen, Valencia, CA).
Table 1
Clinical and histopathological characteristic features of 204 cases of adult DTC
Characteristics
Number/total (percentage)
Median age in years (range)
35.5 (19–75)
Sex female:male (ratio)
154:50
Median tumor size in cm (range)
2.2 (1–12)
Tumor sub-types (%)
Conventional papillary thyroid cancer (CPTC)
114 (55.9)
Follicular variant papillary thyroid cancer (FV-PTC)
55 (27)
Tall cell variant papillary thyroid cancer (TC-PTC)
29 (14.2)
Hurthle cell cancer (HCC)
3 (1.5)
Diffuse sclerosing type papillary thyroid cancer (DSC)
3 (1.5)
Pathological characteristics (%)
Tumor multifocality
97 (47.5)
Extrathyroidal invasion
95 (46.6)
Lymph node metastasis
91 (44.6)
Distant metastasis
15 (7.4)
TNM staging (%)
Stage I/II
160 (78.4)
Stage III/IV
44 (21.6)

Ethical approval

This study was approved by the Ethical Committee and Institutional Review Board of King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia (RAC-2130015).

PCR amplification and sequencing

Exon 15 of the BRAF gene was PCR amplified using genomic DNA from the tumor samples. The forward and reverse primers and the PCR conditions were as described previously [22]. We limited our search to exon 15 as the previously described mutations were mostly described in this exon. The PCR amplicons were confirmed on 2 % agarose gel and directly sequenced using the Big Dye terminator v3.1 cycle sequencing ready reaction kit (Applied Biosystems) and by ABI PRISM 3730X1, genetic analyzer (Applied Biosystems). Identified mutations were confirmed in both forward and reverse directions by an independent PCR amplification and sequencing reaction. For the confirmed mutations, matched normal tissue samples were further analyzed to check whether the mutations are somatic or germline in nature. The sequencing results were read against the BRAF gene (GeneBank No.: NM_004333.4).

Statistical analysis

Statistical analyses were performed using SPSS (The Statistical Package for Social Sciences) version 20 software (IBM Corp., NY USA). Data were expressed as median and range for numerical values and numbers and percentages for categorical data. The T test was used to analyze continuous variables and Fisher exact and χ2 tests were used for categorical data. In all analyses, a two-tailed P < 0.05 was considered statistically significant.

Availability of data and supporting materials

Paraffin embedded tumor tissues, genomic DNAs and data of tumor molecular genetics. The SPSS (The Statistical Package for Social Sciences) version 20 software was obtained from IBM Corp., NY USA. The protein molecules can be downloaded from http://​www.​rcsb.​org/​pdb/​home/​home.​do using the PDB ID and can be viewed using SWISS PDB and Jmol viewer downloaded freely from http://​www.​spdbv.​vital-it.​ch/​ and http://​www.​jmol.​sourceforge.​net/​, respectively.

Results

Prevalence of BRAF mutation and identification of rare, non-hotspot BRAF mutation in adult DTCs

Of 204 DTCs, 99 samples (48.5 %) harbored a BRAF mutation (Table 2). The hotspot BRAF V600E mutation was found in 95 cases (46.5 %). As shown in Table 3, four samples pertaining to 4 unrelated patients harbored other non-hotspot BRAF mutations. One sample harbored C > T transition mutation at nucleotide position 1796 resulting in a T599I amino acid change. The tumor was a follicular variant papillary thyroid cancer (FV-PTC) from a female patient. The other sample harbored a very rare 3-base insertion mutation at nucleotide position 1798 resulting in duplication of threonine 599 (T599dup) and this mutation was identified in a tumor from a 44-year old lady with a 3-cm FV-PTC without extrathyroidal invasion, lymph node or distant metastases. Two samples, one in a 30-year old lady with CPTC without extrathyroidal invasion, lymph node or distant metastases and the other was in a 30-year old lady with 1 cm FV-PTC without extrathyroidal extension, lymph node or distant metastases, harbored an A > G point mutation at nucleotide position 1801 resulting in a K601E amino acid change (Fig. 1). These mutations were confirmed to be somatic in nature as they were absent in matched normal tissue samples. These three non-hot spot mutations have already been recorded in the COSMIC (Catalogue of Somatic Mutations in Cancer) database, UK.
Table 2
Summary of exon 15 BRAF mutations identified in 204 cases of adult DTC
Tumor subtype
BRAFV600E
BRAF K601E/T599I/T599dup
Mutated/total sample (%)
CPTC
55
1
56/114 (49.1)
FV-PTC
13
3
16/55 (29)
TPTC
27
0
27/29 (93.1)
HCC
0
0
0/3 (0)
DSC
0
0
0/3 (0)
 
95/204 (46.5 %)
4/204 (1.96 %)
99/204 (48.5)
Table 3
Various non-hotspot BRAF mutations identified in four out of 204 cases of adult DTC
Tumor no
Sex
Histology
Exon
Nucleotide
Codon
Amino acid
Mutation
Status
AZ 274
F
FV-PTC
15
C1796T
ACA-ATA
T599I
Missense
Heterozygous
AZ 152
F
FV-PTC
15
1798inTAC
 
T599dup
Insertion
In frame
AZ 40
F
CPTC
15
A1801G
AAA-GAA
K601E
Missense
Heterozygous
AZ 172
F
FV-PTC
15
A1801G
AAA-GAA
K601E
Missense
Heterozygous
F female; FV-PTC follicular variant papillary thyroid cancer; CPTC conventional papillary thyroid cancer

Association of BRAFV600E mutation with clinicopathological features and outcome of DTC

Patients included in this study were all adults and the mean ± SD age was 43.5 ± 15 years in patients with BRAF V600E mutation and 36.2 ± 13.3 years in patients with wild type BRAF (P 0.0001). Extrathyroidal invasion was more frequently observed in tumors with BRAF V600E mutation occurring in 54 tumors (56.8 %) compared to only 41 (39 %) tumors with wild type BRAF (P = 0.017). Lymph node metastasis was more commonly found in 51 tumors (53.7 %) with BRAF V600E mutation compared to 40 tumors (38.1 %) with wild type BRAF (P = 0.038). Similarly, BRAF V600E mutation was more common in higher stage tumors (stage III/IV) occurring in 31 patients (32.6 %) compared with only 13 (12.4 %) in the wild type BRAF (P = 0.001). BRAF V600E mutation was not associated with gender, tumor size, tumor multifocality, distant-metastasis, and persistent/recurrent disease at 6–12 months after initial management and at the last follow up (Table 4).
Table 4
Comparison of clinical and histopathological characteristics between patients with positive and negative BRAF V600E mutation in adult DTCs
Characteristics
BRAF V600E mutation
BRAF wild type
P value
(95 cases)
(105 cases)
Age mean ± SD (years)
43.5 ± 15
36.2 ± 13.3
0.0001*
Sex (female:male)
71:24
79:26
1.00
Tumor size
3.05 ± 1.97
3.31 ± 2.43
0.42
Tumor multifocality
49 (51.6 %)
48 (45.7 %)
0.49
Extrathyroidal invasion
54 (56.8 %)
41 (39 %)
0.017*
Lymph node metastasis
51 (53.7 %)
40 (38.1 %)
0.038*
Distant metastasis
6 (6.3 %)
9 (8.6 %)
0.74
TNM stage III/IV
31 (32.6 %)
13 (12.4 %)
0.001*
Persistent disease (6–12 months after initial management)
47 (49.5 %)
43 (40.96 %)
0.29
Persistent/recurrent disease (At last follow up)
37 (38.9 %)
30 (28.6 %)
0.16
* Statistically significant

Discussion

In this study, we analyzed exclusively a sample of adult DTC patients for BRAF mutations as it has been reported that adult DTCs harbor higher frequencies of BRAF mutations than pediatric DTC [13, 23, 24] and previous data showed significant differences in the clinical, pathological and molecular basis of pediatric compared with adult DTCs [15, 16, 2528]. We report here 48.5 % (99/204) of BRAF mutations in adult DTC from Saudi Arabia. As expected, the vast majority of the identified mutations were the well described mutation, BRAF V600E (95/204, 46.5 %). In addition, we also found three rare, non-hotspot BRAF mutations (T599I, T599dup and K601E) in four cases (4/204, 2 %). Although these non-hot spot mutations were previously described, their rate in this study seems higher than expected. Consanguinity is common in Saudi Arabia [17, 18] and although these mutations are somatic in nature, it is possible that there might be a genetic predisposition to their occurrence as inheritance of certain SNPs in the DNA repairing machinery genes may theoretically predispose to the development of BRAF and other driver mutations in PTC.
Detailed analyses of the previously reported BRAF mutations in PTCs showed that in addition to the most common BRAF V600E mutation, many unique and rare non-hotspot mutations have been detected in the exon 15 of the BRAF gene and these mutations have recently been compiled in a report [29]. In our study, we found three rare, non-hotspot BRAF mutations in four cases. In a tumor from a 47-year old female with FV-PTC, we found the rare non-hotspot missense T599I mutation. This mutation has also been previously reported in a follicular variant [30] and in a solid variant [31] PTC. In both cases, the T599I mutation was originally identified as a concomitant mutation with a complex BRAF mutation V600delinsAL (replacement of valine with an alanine and a leucine) in the same allele, and VKSRdel (deletion of valine 600, lysine 601, serine 602, and arginine 603), respectively [30, 31]. However, we did not find any co-existing mutation with the T599I mutation in our patient’s tumor sample. Previously reported functional analysis of this mutation revealed that the T599I mutant had a moderately increased kinase activity but with dramatically increased phosphorylation and activation of ERK [8]. This phenomenon might be related to the effect of dimerization which is likely achieved via complexing with wild-type BRAF and RAF1 [32]. As illustrated in Fig. 2, this mutation is located in the core region of the kinase domain and more specifically in the activation loop that is encoded by the nucleotides of the BRAF exon 15. Moreover, the rare non-hotspot mutation T599I resides in one of the two critical phosphorylation sites (T599 and S602) in the activation loop. As BRAF is a serine/threonine kinase, it has been hypothesized that phosphorylation of Threonine 599 and Serine 602 residues disturb the hydrophobic interaction of P-loop (phosphate binding loop) with the A-loop (activation loop) [8]. Therefore, it is likely that phosphorylating either the S/T residues would substantially result in destabilization of inactive BRAF protein and constitutively switching to active conformation. In a previous report from Saudi Arabia, deletion of threonine at this position (T599del) was described in 1 out of 69 benign follicular adenomas, and 1 of 115 PTC harbored an insertion of additional threonine at this position (T599dup) [20]. This latter mutation was also detected in another patient from our series. This mutation was previously described in a pilocytic astrocytoma [33] and in anaplastic thyroid cancer (ATC) samples with tall cell like phenotypes [34, 35]. It has been demonstrated that the T599dup displays an increased kinase activity and enhanced MEK phosphorylation followed by ERK activation and potentially comparable to those of the hotspot BRAF V600E mutation [33]. In addition, this insertion mutation has also been shown to transform the NIH3T3 and MCF-10A cells in culture. It has been speculated that insertion of an additional amino acid at this T599 residue of the protein backbone destabilizes the inactive conformation of the kinase domain which may result in its conversion to an active mutant BRAF [33].
We also identified another rare non-hotspot mutation (K601E) in two tumor samples of adult DTC, one from a CPTC and the other from a FV-PTC. This mutation has been well documented in DTC and is considered the second most common BRAF mutation in DTC after BRAF V600E. Furthermore, it also has been found to be associated with tumor cells with histological features of FVPTC [10], more specifically in the encapsulated follicular variant of PTC. Recently, it has been shown that this K601E mutation may also be found rarely in other sub-types of thyroid cancer including follicular thyroid carcinoma (FTC) [36]. In the study by Schulten et al. this mutation was found in three cases, an FTC, a PTC and a FV-PTC [20]. Transient transfection mediated functional characterization of this mutation in HEK 293T cells showed enhanced kinase activity resulting in subsequent strong MEK phosphorylation and activation of ERK1/2 kinases in the absence of TSH [30] suggesting that this is a typical gain-of-function mutation and likely to drive cell proliferation and thyroid carcinogenesis in a kinase dependent fashion. We found that all of these three rare non-hotspot mutations were in cases of FV-PTC and the K601E was also found in one case of CPTC. Interestingly, the histopathological features and the outcome of patients with those mutations were favorable. In all cases, the tumor size was relatively small (1–3 cm) and there was no evidence of extrathyroidal invasion, lymph node or distant metastases. All patients were in remission after the initial management.
Apart from these rare non-hot spot BRAF mutations, BRAF V600E was common in this series of adult DTCs. Similar to previous studies, we found a statistically significant association between the BRAF V600E mutation and age (P < 0.0001), extrathyroidal invasion (P = 0.017), lymph node metastasis (P = 0.038) and TNM stage III/IV (P = 0.001) but not with other clinical and histopathological features such as gender, tumor size, tumor multifocality, distant metastasis, persistent and persistent/recurrent disease. This might be due to the relatively small sample size. To the best of our knowledge, this study is the first to determine the frequency of BRAF mutation exclusively in a pure sample of adult DTC patients. The previously reported studies were a mixture of adult and pediatric cases [19, 20]. BRAF V600E mutation has been detected with a frequency ranging between ~30–85 % in classical PTC. On the other hand, in case of FVPTC, the frequency ranges between ~0 and 35 % [7, 11, 37]. The frequency of the BRAF mutations identified in our study is comparable to that of the other studies in the Middle East region [19, 20, 38].

Conclusions

We have reported the frequency of exon 15 BRAF mutations (48.5 %) in a pure sample of adult DTC patients from an ethnically different population with a high rate of consanguinity and high rate of thyroid cancer. In addition to the common occurrence of BRAF V600E mutation, we describe a relatively high rate of non-hotspot BRAF mutations (T599I, T599dup and K601E). These mutations were detected in 4 out of 204 cases (2 %) of DTC in our study. Our results show a high rate and a strong prognostic role of the classical BRAF V600E mutation and also suggest a common occurrence of non-hot spot mutations in adult DTC from this highly inbred population.

Authors’ contributions

AKM and EQ carried out the molecular genetic studies, aligned the sequence, analyzed the data and AKM drafted the manuscript. HH carefully selected tumor and normal samples and sectioned tissues. HH and YS participated in the sequence alignment. AKM and AA conceived of the study, participated in its design and coordination. AA directed the whole study, performed the statistical analysis, verfied the results and reviewed and edited the manuscript. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia (12-BIO2952-20).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.CrossRefPubMed Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295:2164–7.CrossRefPubMed
2.
Zurück zum Zitat Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
3.
Zurück zum Zitat Pathology and genetics of tumours of endocrine organs. In: IARC WHO classification of tumours. World Health Organization; 2004. Pathology and genetics of tumours of endocrine organs. In: IARC WHO classification of tumours. World Health Organization; 2004.
4.
Zurück zum Zitat National Cancer Registry. Riyadh: 2007. National Cancer Registry. Riyadh: 2007.
6.
Zurück zum Zitat Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.CrossRefPubMed Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7:569–80.CrossRefPubMed
8.
Zurück zum Zitat Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.CrossRefPubMed Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116:855–67.CrossRefPubMed
9.
Zurück zum Zitat Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:399–404. Nikiforova MN, Kimura ET, Gandhi M, Biddinger PW, Knauf JA, Basolo F, Zhu Z, Giannini R, Salvatore G, Fusco A, Santoro M, Fagin JA, Nikiforov YE. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:399–404.
10.
Zurück zum Zitat Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P, Maximo V, Botelho T, Moreira S, Meireles AM, Magalhães J, Abrosimov A, Cameselle-Teijeiro J, Sobrinho-Simões M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005;446:589–95.CrossRefPubMed Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P, Maximo V, Botelho T, Moreira S, Meireles AM, Magalhães J, Abrosimov A, Cameselle-Teijeiro J, Sobrinho-Simões M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch. 2005;446:589–95.CrossRefPubMed
11.
Zurück zum Zitat Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V, Cavaliere A, Faviana P, Mannavola D, Moretti S, Rossi S, Sculli M, Bottici V, Beck-Peccoz P, Pacini F, Pinchera A, Santeusanio F, Elisei R. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer. 2006;13:455–64.CrossRefPubMed Fugazzola L, Puxeddu E, Avenia N, Romei C, Cirello V, Cavaliere A, Faviana P, Mannavola D, Moretti S, Rossi S, Sculli M, Bottici V, Beck-Peccoz P, Pacini F, Pinchera A, Santeusanio F, Elisei R. Correlation between B-RAFV600E mutation and clinico-pathologic parameters in papillary thyroid carcinoma: data from a multicentric Italian study and review of the literature. Endocr Relat Cancer. 2006;13:455–64.CrossRefPubMed
12.
Zurück zum Zitat Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, Aigner T, Trejster E, Krohn K, Bösenberg E, Paschke R. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Mol Cell Endocrinol. 2014;393:39–45.CrossRefPubMed Eszlinger M, Niedziela M, Typlt E, Jaeschke H, Huth S, Schaarschmidt J, Aigner T, Trejster E, Krohn K, Bösenberg E, Paschke R. Somatic mutations in 33 benign and malignant hot thyroid nodules in children and adolescents. Mol Cell Endocrinol. 2014;393:39–45.CrossRefPubMed
13.
Zurück zum Zitat Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, Alkhafaji DM, Almohanna M, Xing M, Alhomaidah D, Alswailem M. Uncommon TERT promoter mutations in pediatric thyroid cancer. Thyroid. 2015;26:235–41.CrossRef Alzahrani AS, Qasem E, Murugan AK, Al-Hindi HN, Alkhafaji DM, Almohanna M, Xing M, Alhomaidah D, Alswailem M. Uncommon TERT promoter mutations in pediatric thyroid cancer. Thyroid. 2015;26:235–41.CrossRef
14.
Zurück zum Zitat Alzahrani AS, Alkhafaji D, Tuli M, Al-Hindi H, Sadiq BB. Comparison of differentiated thyroid cancer in children and adolescents (≤20 years) with young adults. Clin Endocrinol (Oxf). 2015. doi:10.1111/cen.12845. Alzahrani AS, Alkhafaji D, Tuli M, Al-Hindi H, Sadiq BB. Comparison of differentiated thyroid cancer in children and adolescents (≤20 years) with young adults. Clin Endocrinol (Oxf). 2015. doi:10.​1111/​cen.​12845.
15.
Zurück zum Zitat Kim SS, Kim SJ, Kim IJ, Kim BH, Jeon YK, Kim YK. Comparison of clinical outcomes in differentiated thyroid carcinoma between children and young adult patients. Clin Nucl Med. 2012;37:850–3.CrossRefPubMed Kim SS, Kim SJ, Kim IJ, Kim BH, Jeon YK, Kim YK. Comparison of clinical outcomes in differentiated thyroid carcinoma between children and young adult patients. Clin Nucl Med. 2012;37:850–3.CrossRefPubMed
16.
Zurück zum Zitat Sassolas G, Hafdi-Nejjari Z, Casagranda L, Berger C, Bournaud C, Decaussin-Petrucci M, Berger N, Borson-Chazot F. Thyroid cancers in children, adolescents, and young adults with and without a history of childhood exposure to therapeutic radiation for other cancers. Thyroid. 2013;23:805–10.CrossRefPubMed Sassolas G, Hafdi-Nejjari Z, Casagranda L, Berger C, Bournaud C, Decaussin-Petrucci M, Berger N, Borson-Chazot F. Thyroid cancers in children, adolescents, and young adults with and without a history of childhood exposure to therapeutic radiation for other cancers. Thyroid. 2013;23:805–10.CrossRefPubMed
17.
Zurück zum Zitat El-Mouzan MI, Al-Salloum AA, Al-Herbish AS, Qurachi MM, Al-Omar AA. Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi Med J. 2007;28:1881–4.PubMed El-Mouzan MI, Al-Salloum AA, Al-Herbish AS, Qurachi MM, Al-Omar AA. Regional variations in the prevalence of consanguinity in Saudi Arabia. Saudi Med J. 2007;28:1881–4.PubMed
18.
Zurück zum Zitat Kari JA, Bockenhauer D, Stanescu H, Gari M, Kleta R, Singh AK. Consanguinity in Saudi Arabia: a unique opportunity for pediatric kidney research. Am J Kidney Dis. 2014;63:304–10.CrossRefPubMed Kari JA, Bockenhauer D, Stanescu H, Gari M, Kleta R, Singh AK. Consanguinity in Saudi Arabia: a unique opportunity for pediatric kidney research. Am J Kidney Dis. 2014;63:304–10.CrossRefPubMed
19.
Zurück zum Zitat Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T, Al-Fehaily M, Al-Sanea O, Al-Dayel F, Uddin S, Al-Kuraya KS. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab. 2008;93:611–8.CrossRefPubMed Abubaker J, Jehan Z, Bavi P, Sultana M, Al-Harbi S, Ibrahim M, Al-Nuaim A, Ahmed M, Amin T, Al-Fehaily M, Al-Sanea O, Al-Dayel F, Uddin S, Al-Kuraya KS. Clinicopathological analysis of papillary thyroid cancer with PIK3CA alterations in a Middle Eastern population. J Clin Endocrinol Metab. 2008;93:611–8.CrossRefPubMed
20.
Zurück zum Zitat Schulten HJ, Salama S, Al-Mansouri Z, Alotibi R, Al-Ghamdi K, Al-Hamour OA, Sayadi H, Al-Aradati H, Al-Johari A, Huwait E, Gari M, Al-Qahtani MH, Al-Maghrabi J, Sayadi H. BRAF mutations in thyroid tumors from an ethnically diverse group. Hered Cancer Clin Pract. 2012;10:10.CrossRefPubMedPubMedCentral Schulten HJ, Salama S, Al-Mansouri Z, Alotibi R, Al-Ghamdi K, Al-Hamour OA, Sayadi H, Al-Aradati H, Al-Johari A, Huwait E, Gari M, Al-Qahtani MH, Al-Maghrabi J, Sayadi H. BRAF mutations in thyroid tumors from an ethnically diverse group. Hered Cancer Clin Pract. 2012;10:10.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Murugan AK, Humudh EA, Qasem E, Al-Hindi H, Almohanna M, Hassan ZK, Alzahrani AS. Absence of somatic mutations of the mTOR gene in differentiated thyroid cancer. Meta Gene. 2015;6:69–71.CrossRefPubMedPubMedCentral Murugan AK, Humudh EA, Qasem E, Al-Hindi H, Almohanna M, Hassan ZK, Alzahrani AS. Absence of somatic mutations of the mTOR gene in differentiated thyroid cancer. Meta Gene. 2015;6:69–71.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.CrossRefPubMed Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B, Beller U, Westra WH, Ladenson PW, Sidransky D. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.CrossRefPubMed
23.
Zurück zum Zitat Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124:E389–93.CrossRefPubMed Givens DJ, Buchmann LO, Agarwal AM, Grimmer JF, Hunt JP. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124:E389–93.CrossRefPubMed
24.
Zurück zum Zitat Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61:1168–72.CrossRefPubMed Henke LE, Perkins SM, Pfeifer JD, Ma C, Chen Y, DeWees T, Grigsby PW. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61:1168–72.CrossRefPubMed
25.
Zurück zum Zitat Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S. The American thyroid association guidelines task force on pediatric thyroid cancer. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25:716–59.CrossRefPubMedPubMedCentral Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, Dinauer CA, Hamilton J, Hay ID, Luster M, Parisi MT, Rachmiel M, Thompson GB, Yamashita S. The American thyroid association guidelines task force on pediatric thyroid cancer. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25:716–59.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Rivera G, Lugo-Vicente H. Thyroid cancer in children. Bol Asoc Med P R. 2014;106:48–54. Rivera G, Lugo-Vicente H. Thyroid cancer in children. Bol Asoc Med P R. 2014;106:48–54.
27.
Zurück zum Zitat Vaisman F, Corbo R, Vaisman M. Thyroid carcinoma in children and adolescents-systematic review of the literature. J Thyroid Res. 2011;2011:845362.CrossRefPubMedPubMedCentral Vaisman F, Corbo R, Vaisman M. Thyroid carcinoma in children and adolescents-systematic review of the literature. J Thyroid Res. 2011;2011:845362.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Wang JT, Huang R, Kuang AR. Comparison of presentation and clinical outcome between children and young adults with differentiated thyroid cancer. Asian Pac J Cancer Prev. 2014;15:7271–5.CrossRefPubMed Wang JT, Huang R, Kuang AR. Comparison of presentation and clinical outcome between children and young adults with differentiated thyroid cancer. Asian Pac J Cancer Prev. 2014;15:7271–5.CrossRefPubMed
29.
Zurück zum Zitat Matsuse M, Mitsutake N, Tanimura S, Ogi T, Nishihara E, Hirokawa M, Fuziwara CS, Saenko VA, Suzuki K, Miyauchi A, Yamashita S. Functional characterization of the novel BRAF complex mutation, BRAF(V600delinsYM), identified in papillary thyroid carcinoma. Int J Cancer. 2013;132:738–43.CrossRefPubMed Matsuse M, Mitsutake N, Tanimura S, Ogi T, Nishihara E, Hirokawa M, Fuziwara CS, Saenko VA, Suzuki K, Miyauchi A, Yamashita S. Functional characterization of the novel BRAF complex mutation, BRAF(V600delinsYM), identified in papillary thyroid carcinoma. Int J Cancer. 2013;132:738–43.CrossRefPubMed
30.
Zurück zum Zitat De Falco V, Giannini R, Tamburrino A, Ugolini C, Lupi C, Puxeddu E, Santoro M, Basolo F. Functional characterization of the novel T599I-VKSRdel BRAF mutation in a follicular variant papillary thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:4398–402.CrossRefPubMed De Falco V, Giannini R, Tamburrino A, Ugolini C, Lupi C, Puxeddu E, Santoro M, Basolo F. Functional characterization of the novel T599I-VKSRdel BRAF mutation in a follicular variant papillary thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:4398–402.CrossRefPubMed
31.
Zurück zum Zitat Chiosea S, Nikiforova M, Zuo H, Ogilvie J, Gandhi M, Seethala RR, Ohori NP, Nikiforov Y. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol. 2009;20:122–6.CrossRefPubMed Chiosea S, Nikiforova M, Zuo H, Ogilvie J, Gandhi M, Seethala RR, Ohori NP, Nikiforov Y. A novel complex BRAF mutation detected in a solid variant of papillary thyroid carcinoma. Endocr Pathol. 2009;20:122–6.CrossRefPubMed
32.
Zurück zum Zitat Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun. 2010;399:313–7.CrossRefPubMed Roskoski R Jr. RAF protein-serine/threonine kinases: structure and regulation. Biochem Biophys Res Commun. 2010;399:313–7.CrossRefPubMed
33.
Zurück zum Zitat Eisenhardt AE, Olbrich H, Roring M, Janzarik W, Anh TN, Cin H, Remke M, Witt H, Korshunov A, Pfister SM, Omran H, Brummer T. Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer. 2011;129:2297–303.CrossRefPubMed Eisenhardt AE, Olbrich H, Roring M, Janzarik W, Anh TN, Cin H, Remke M, Witt H, Korshunov A, Pfister SM, Omran H, Brummer T. Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer. 2011;129:2297–303.CrossRefPubMed
34.
Zurück zum Zitat Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28:2119–23.CrossRefPubMedPubMedCentral Jones DT, Kocialkowski S, Liu L, Pearson DM, Ichimura K, Collins VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene. 2009;28:2119–23.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Gauchotte G, Philippe C, Lacomme S, Leotard B, Wissler MP, Allou L, Toussaint B, Klein M, Vignaud JM, Bressenot A. BRAF, p53 and SOX2 in anaplastic thyroid carcinoma: evidence for multistep carcinogenesis. Pathology. 2011;43:447–52.CrossRefPubMed Gauchotte G, Philippe C, Lacomme S, Leotard B, Wissler MP, Allou L, Toussaint B, Klein M, Vignaud JM, Bressenot A. BRAF, p53 and SOX2 in anaplastic thyroid carcinoma: evidence for multistep carcinogenesis. Pathology. 2011;43:447–52.CrossRefPubMed
36.
Zurück zum Zitat Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE, Coyne C. Histopathologic and clinical characterization of thyroid tumors carrying the BRAF mutation. Thyroid. 2015. doi:10.1089/thy.2015.0227.PubMed Afkhami M, Karunamurthy A, Chiosea S, Nikiforova MN, Seethala R, Nikiforov YE, Coyne C. Histopathologic and clinical characterization of thyroid tumors carrying the BRAF mutation. Thyroid. 2015. doi:10.​1089/​thy.​2015.​0227.PubMed
37.
Zurück zum Zitat Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, Garcia-Rostan G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2008;68:618–34.CrossRef Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, Garcia-Rostan G. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf). 2008;68:618–34.CrossRef
38.
Zurück zum Zitat Frasca F, Nucera C, Pellegriti G, Gangemi P, Attard M, Stella M, Loda M, Vella V, Giordano C, Trimarchi F, Mazzon E, Belfiore A, Vigneri R. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205.CrossRefPubMed Frasca F, Nucera C, Pellegriti G, Gangemi P, Attard M, Stella M, Loda M, Vella V, Giordano C, Trimarchi F, Mazzon E, Belfiore A, Vigneri R. BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocr Relat Cancer. 2008;15:191–205.CrossRefPubMed
Metadaten
Titel
Classical V600E and other non-hotspot BRAF mutations in adult differentiated thyroid cancer
verfasst von
Avaniyapuram Kannan Murugan
Ebtesam Qasem
Hindi Al-Hindi
Yufei Shi
Ali S. Alzahrani
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2016
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-016-0958-x

Weitere Artikel der Ausgabe 1/2016

Journal of Translational Medicine 1/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.