Skip to main content
Erschienen in:

01.03.2025 | Original Paper

Classification of Imagined Speech Signals Using Functional Connectivity Graphs and Machine Learning Models

verfasst von: Anand Mohan, R. S. Anand

Erschienen in: Brain Topography | Ausgabe 2/2025

Einloggen, um Zugang zu erhalten

Abstract

EEG involves recording electrical activity generated by the brain through electrodes placed on the scalp. Imagined speech classification has emerged as an essential area of research in brain–computer interfaces (BCIs). Despite significant advances, accurately classifying imagined speech signals remains challenging due to their complex and non-stationary nature. Existing approaches often struggle with low signal-to-noise ratios and high inter-subject variability. A proposed method named imagined speech functional connectivity graph (ISFCG) is implemented to deal with these issues. The functional connectivity graphs capture the complex relationships between brain regions during imagined speech tasks. These graphs are then used to extract features that serve as inputs to various machine-learning models. The ISFCG provides an alternative representation of imagined speech signals, focusing on brain connectivity features to enhance the analysis and classification process. Also, a convolutional neural network (CNN) is proposed to learn features from these complex graphs, leading to improved classification accuracy. Experimental results on a benchmark dataset demonstrate the effectiveness of our method.
Literatur
Zurück zum Zitat Cao J, Yang L, Sarrigiannis PG, Blackburn D, Zhao Y (2024) Dementia classification using a graph neural network on imaging of effective brain connectivity. Comput Biol Med 168:107701CrossRefPubMed Cao J, Yang L, Sarrigiannis PG, Blackburn D, Zhao Y (2024) Dementia classification using a graph neural network on imaging of effective brain connectivity. Comput Biol Med 168:107701CrossRefPubMed
Zurück zum Zitat Chakrabarti S, Sandberg HM, Brumberg JS (2015) Progress in speech decoding from the electrocorticogram. Biomed Eng Lett 5:10–21CrossRef Chakrabarti S, Sandberg HM, Brumberg JS (2015) Progress in speech decoding from the electrocorticogram. Biomed Eng Lett 5:10–21CrossRef
Zurück zum Zitat Dash S, Tripathy RK, Dash DK, Panda G, Pachori RB (2022) Multiscale domain gradient boosting models for the automated recognition of imagined vowels using multichannel EEG signals. IEEE Sens Lett 6(11):7004804CrossRef Dash S, Tripathy RK, Dash DK, Panda G, Pachori RB (2022) Multiscale domain gradient boosting models for the automated recognition of imagined vowels using multichannel EEG signals. IEEE Sens Lett 6(11):7004804CrossRef
Zurück zum Zitat Deng S, Srinivasan R, Lappas T, D’Zmura M (2010) EEG classification of imagined syllable rhythm using Hilbert spectrum methods. J Neural Eng 7(4):046006CrossRefPubMed Deng S, Srinivasan R, Lappas T, D’Zmura M (2010) EEG classification of imagined syllable rhythm using Hilbert spectrum methods. J Neural Eng 7(4):046006CrossRefPubMed
Zurück zum Zitat Gaxiola-Tirado JA, Salazar-Varas R, Gutiérrez D (2018) Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces. IEEE Trans Cogn Dev Syst 10(3):776–783CrossRef Gaxiola-Tirado JA, Salazar-Varas R, Gutiérrez D (2018) Using the partial directed coherence to assess functional connectivity in electroencephalography data for brain–computer interfaces. IEEE Trans Cogn Dev Syst 10(3):776–783CrossRef
Zurück zum Zitat Huang L, Xiao Y, Xu G (2021) Predicting human intention-behavior through EEG signal analysis using multi-scale CNN. IEEE/ACM Trans Comput Biol Bioinform 18(5):1722–1729CrossRefPubMed Huang L, Xiao Y, Xu G (2021) Predicting human intention-behavior through EEG signal analysis using multi-scale CNN. IEEE/ACM Trans Comput Biol Bioinform 18(5):1722–1729CrossRefPubMed
Zurück zum Zitat Jimenez-Guarneros M, Gomez-Gil P (2021) Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition. Pattern Recognit Let 141:54–60CrossRef Jimenez-Guarneros M, Gomez-Gil P (2021) Standardization-refinement domain adaptation method for cross-subject EEG-based classification in imagined speech recognition. Pattern Recognit Let 141:54–60CrossRef
Zurück zum Zitat Kamble A, Ghare P, Kumar V (2022) Machine-learning-enabled adaptive signal decomposition for a brain–computer interface using EEG. Biomed Signal Process Control 74:103526CrossRef Kamble A, Ghare P, Kumar V (2022) Machine-learning-enabled adaptive signal decomposition for a brain–computer interface using EEG. Biomed Signal Process Control 74:103526CrossRef
Zurück zum Zitat Kamble A, Ghare PH, Kumar V (2023a) Optimized rational dilation wavelet transform for automatic imagined speech recognition. IEEE Trans Instrum Meas 72:4002210CrossRef Kamble A, Ghare PH, Kumar V (2023a) Optimized rational dilation wavelet transform for automatic imagined speech recognition. IEEE Trans Instrum Meas 72:4002210CrossRef
Zurück zum Zitat Kamble A, Ghare PH, Kumar V (2023b) Deep-learning-based BCI for automatic imagined speech recognition using SPWVD. IEEE Trans Instrum Meas 72:4001110CrossRef Kamble A, Ghare PH, Kumar V (2023b) Deep-learning-based BCI for automatic imagined speech recognition using SPWVD. IEEE Trans Instrum Meas 72:4001110CrossRef
Zurück zum Zitat Kamble A, Ghare PH, Kumar V, Kothari A, Keskar AG (2023c) Spectral analysis of EEG signals for automatic imagined speech recognition. IEEE Trans Instrum Meas 72:1–9 Kamble A, Ghare PH, Kumar V, Kothari A, Keskar AG (2023c) Spectral analysis of EEG signals for automatic imagined speech recognition. IEEE Trans Instrum Meas 72:1–9
Zurück zum Zitat Kennedy PR, Adams KD (2003) A decision tree for brain–computer interface devices. IEEE Trans Neural Syst Rehabil Eng 11(2):148–150CrossRefPubMed Kennedy PR, Adams KD (2003) A decision tree for brain–computer interface devices. IEEE Trans Neural Syst Rehabil Eng 11(2):148–150CrossRefPubMed
Zurück zum Zitat King J-T et al (2022) Brain connectivity changes during bimanual and rotated motor imagery. IEEE J Transl Eng Health Med 10:2100408CrossRefPubMed King J-T et al (2022) Brain connectivity changes during bimanual and rotated motor imagery. IEEE J Transl Eng Health Med 10:2100408CrossRefPubMed
Zurück zum Zitat Kiss Huszár OM, Bodosi B, Eördegh G, Tót K, Nagy A, Kelemen A (2023) Automated preprocessing of 64 channel electroencephalograms recorded by biosemi instruments. MethodsX 11:102378CrossRefPubMed Kiss Huszár OM, Bodosi B, Eördegh G, Tót K, Nagy A, Kelemen A (2023) Automated preprocessing of 64 channel electroencephalograms recorded by biosemi instruments. MethodsX 11:102378CrossRefPubMed
Zurück zum Zitat Lawhern V, Solon A, Waytowich N, Gordon SM, Hung C, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):056013CrossRefPubMed Lawhern V, Solon A, Waytowich N, Gordon SM, Hung C, Lance BJ (2018) EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces. J Neural Eng 15(5):056013CrossRefPubMed
Zurück zum Zitat Lee TJ, Sim K-B (2015) Vowel classification of imagined speech in an electroencephalogram using the deep belief network. J Inst Control Robot Syst 21(1):59–64CrossRef Lee TJ, Sim K-B (2015) Vowel classification of imagined speech in an electroencephalogram using the deep belief network. J Inst Control Robot Syst 21(1):59–64CrossRef
Zurück zum Zitat Lee S-H, Lee M, Jeong J-H, Lee S-W (2019) Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery. In: Proceedings of IEEE international conference on systems, man and cybernetics (SMC), 2019, pp 4409–4414 Lee S-H, Lee M, Jeong J-H, Lee S-W (2019) Towards an EEG-based intuitive BCI communication system using imagined speech and visual imagery. In: Proceedings of IEEE international conference on systems, man and cybernetics (SMC), 2019, pp 4409–4414
Zurück zum Zitat Li J, Thakor N, Bezerianos A (2020) Brain functional connectivity in unconstrained walking with and without an exoskeleton. IEEE Trans Neural Syst Rehabil Eng 28(3):730–739CrossRefPubMed Li J, Thakor N, Bezerianos A (2020) Brain functional connectivity in unconstrained walking with and without an exoskeleton. IEEE Trans Neural Syst Rehabil Eng 28(3):730–739CrossRefPubMed
Zurück zum Zitat Lu Z, Li F, Cao S, Yuan R, Lv Y (2022) Crack localization in operating rotors based on multivariate higher order dynamic mode decomposition. Sensors 22(16):6131CrossRefPubMedPubMedCentral Lu Z, Li F, Cao S, Yuan R, Lv Y (2022) Crack localization in operating rotors based on multivariate higher order dynamic mode decomposition. Sensors 22(16):6131CrossRefPubMedPubMedCentral
Zurück zum Zitat Maddirala AK, Shaik RA (2015) Removal of EMG artifacts from single channel EEG signal using singular spectrum analysis. In: IEEE international circuits and systems symposium (ICSyS), Langkawi, Malaysia, 2015 Maddirala AK, Shaik RA (2015) Removal of EMG artifacts from single channel EEG signal using singular spectrum analysis. In: IEEE international circuits and systems symposium (ICSyS), Langkawi, Malaysia, 2015
Zurück zum Zitat Moghimi S, Kushki A, Guerguerian AM, Chau T (2013) A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities. Assist Technol 25(2):99–110CrossRefPubMed Moghimi S, Kushki A, Guerguerian AM, Chau T (2013) A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities. Assist Technol 25(2):99–110CrossRefPubMed
Zurück zum Zitat Mohan A, Anand RS (2023) Analysis of variation in electrode location and frequency on imagined speech task prediction. In: 7th International conference on computer applications in electrical engineering: recent advances (CERA), 2023, pp 1–6 Mohan A, Anand RS (2023) Analysis of variation in electrode location and frequency on imagined speech task prediction. In: 7th International conference on computer applications in electrical engineering: recent advances (CERA), 2023, pp 1–6
Zurück zum Zitat Nguyen CH, Karavas GK, Artemiadis P (2018) Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features. J Neural Eng 15(1):016002CrossRefPubMed Nguyen CH, Karavas GK, Artemiadis P (2018) Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features. J Neural Eng 15(1):016002CrossRefPubMed
Zurück zum Zitat Qureshi MNI, Min B, Park H-J, Cho D, Choi W, Lee B (2018) Multiclass classification of word imagination speech with hybrid connectivity features. IEEE Trans Biomed Eng 65(10):2168–2177CrossRefPubMed Qureshi MNI, Min B, Park H-J, Cho D, Choi W, Lee B (2018) Multiclass classification of word imagination speech with hybrid connectivity features. IEEE Trans Biomed Eng 65(10):2168–2177CrossRefPubMed
Zurück zum Zitat Shen M, Lin L, Chen J, Chang CQ (2010) A prediction approach for multichannel EEG signals modeling using local wavelet SVM. IEEE Trans Instrum Meas 59(5):1485–1492CrossRef Shen M, Lin L, Chen J, Chang CQ (2010) A prediction approach for multichannel EEG signals modeling using local wavelet SVM. IEEE Trans Instrum Meas 59(5):1485–1492CrossRef
Zurück zum Zitat Wang M, El-Fiqi H, Hu J, Abbass HA (2019) Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans Inf Forensics Secur 14(12):3259–3272CrossRef Wang M, El-Fiqi H, Hu J, Abbass HA (2019) Convolutional neural networks using dynamic functional connectivity for EEG-based person identification in diverse human states. IEEE Trans Inf Forensics Secur 14(12):3259–3272CrossRef
Zurück zum Zitat Zhang T, Chen W (2017) LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 25(8):1100–1108CrossRefPubMed Zhang T, Chen W (2017) LMD based features for the automatic seizure detection of EEG signals using SVM. IEEE Trans Neural Syst Rehabil Eng 25(8):1100–1108CrossRefPubMed
Zurück zum Zitat Zhang G, Davoodnia V, Sepas-Moghaddam A, Zhang Y, Etemad A (2020) Classification of hand movements from EEG using a deep attention-based LSTM network. IEEE Sens J 20(6):3113–3122CrossRef Zhang G, Davoodnia V, Sepas-Moghaddam A, Zhang Y, Etemad A (2020) Classification of hand movements from EEG using a deep attention-based LSTM network. IEEE Sens J 20(6):3113–3122CrossRef
Zurück zum Zitat Zhang S et al (2022) Whole-brain dynamic resting-state functional network analysis in benign epilepsy with centrotemporal spikes. IEEE J Biomed Health Inform 26(8):3813–3821CrossRefPubMed Zhang S et al (2022) Whole-brain dynamic resting-state functional network analysis in benign epilepsy with centrotemporal spikes. IEEE J Biomed Health Inform 26(8):3813–3821CrossRefPubMed
Zurück zum Zitat Zhang X, Nan J, Xu M, Chen L, Ni G, Ming D (2023) PSIs of EEG with refined frequency decomposition could prognose motor recovery before rehabilitation intervention. IEEE Trans Neural Syst Rehabil Eng 31:3760–3771CrossRefPubMed Zhang X, Nan J, Xu M, Chen L, Ni G, Ming D (2023) PSIs of EEG with refined frequency decomposition could prognose motor recovery before rehabilitation intervention. IEEE Trans Neural Syst Rehabil Eng 31:3760–3771CrossRefPubMed
Metadaten
Titel
Classification of Imagined Speech Signals Using Functional Connectivity Graphs and Machine Learning Models
verfasst von
Anand Mohan
R. S. Anand
Publikationsdatum
01.03.2025
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 2/2025
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-025-01100-7

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Schadet Schichtarbeit dem Gehirn?

Eine große Registerstudie bestätigt, dass Schichtarbeit mit einem erhöhten Risiko für psychische und neurologische Erkrankungen einhergeht, sowie mit einer Volumenabnahme in Gehirnarealen, die für Depression, Angst und kognitive Funktionen relevant sind.

Obstruktive Schlafapnoe: Das steht abseits von CPAP auf dem Plan

Die obstruktive Schlafapnoe kann durch verschiedene Verfahren behandelt werden wie Lagetherapie und chirurgische Interventionen. Eine medikamentöse Therapie kommt zwar (noch) nicht infrage. Auf dem Pneumologie-Kongress wurden aber erste vielversprechende Ansätze präsentiert. 

Was tun, wenn pneumologische Medikamente Psyche und Blutbild verändern?

Arzneimittel für Patienten mit Mukoviszidose oder pulmonaler arterieller Hypertonie wirken offenbar nicht nur auf die Lunge. Was es in der Praxis zu beachten gilt, wurde beim Pneumologie-Kongress erläutert.

Lösten In-Ear-Kopfhörer den Lagerungsschwindel aus?

Ein 43-jähriger Patient stellt sich wegen Anfällen von Drehschwindel in der Notaufnahme vor. Diese kämen immer nur dann, wenn er zuvor Musik über Kopfhörer gehört habe. Könnte ein Zusammenhang bestehen?

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.