22.02.2021 | Retinal Disorders
Wichtige Hinweise
Nam Yeo Kang and Ho Ra contributed equally to this work.
This article is part of a topical collection on Breakthroughs in artificial intelligence for ophthalmology.
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Pachychoroid is characterized by dilated Haller vessels and choriocapillaris attenuation that are seen on optical coherence tomography (OCT) B-scans. This study investigated the feasibility of using deep learning (DL) models to classify pachychoroid and non-pachychoroid eyes from OCT B-scan images.
In total, 1898 OCT B-scan images were collected from eyes with macular diseases. Images were labeled as pachychoroid or non-pachychoroid based on strict quantitative and qualitative criteria for multimodal imaging analysis by two retina specialists. DL models were trained (80%) and validated (20%) using pretrained convolutional neural networks (CNNs). Model performance was assessed using an independent test set of 50 non-pachychoroid and 50 pachychoroid images.
The final accuracy of AlexNet and VGG-16 was 57.52% for both models. ResNet50, Inception-v3, Inception-ResNet-v2, and Xception showed a final accuracy of 96.31%, 95.25%, 93.40%, and 92.61%, respectively, for the validation set. These models demonstrated accuracy on an independent test set of 78.00%, 86.00%, 90.00%, and 92.00%, and an F1 score of 0.718, 0.841, 0.894, and 0.920, respectively.
DL models classified pachychoroid and non-pachychoroid images with good performance. Accurate classification can be achieved using CNN models with deep rather than shallow neural networks.
×
Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten
★ PREMIUM-INHALT
e.Med Interdisziplinär
Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag als Mediziner
Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.
*
Sie können e.Med Interdisziplinär 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.
Anzeige
1.
Zurück zum Zitat Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062 CrossRef Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062
CrossRef
2.
Zurück zum Zitat Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33:1659–1672. https://doi.org/10.1097/IAE.0b013e3182953df4 CrossRefPubMed Warrow DJ, Hoang QV, Freund KB (2013) Pachychoroid pigment epitheliopathy. Retina 33:1659–1672.
https://doi.org/10.1097/IAE.0b013e3182953df4
CrossRefPubMed
3.
Zurück zum Zitat Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35:1–9. https://doi.org/10.1097/IAE.0000000000000331 CrossRefPubMed Pang CE, Freund KB (2015) Pachychoroid neovasculopathy. Retina 35:1–9.
https://doi.org/10.1097/IAE.0000000000000331
CrossRefPubMed
4.
Zurück zum Zitat Fung AT, Yannuzzi LA, Freund KB (2012) Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina 32:1829–1837. https://doi.org/10.1097/IAE.0b013e3182680a66 CrossRefPubMed Fung AT, Yannuzzi LA, Freund KB (2012) Type 1 (sub-retinal pigment epithelial) neovascularization in central serous chorioretinopathy masquerading as neovascular age-related macular degeneration. Retina 32:1829–1837.
https://doi.org/10.1097/IAE.0b013e3182680a66
CrossRefPubMed
5.
Zurück zum Zitat Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB (2016) Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 36(Suppl 1):S73–s82. https://doi.org/10.1097/iae.0000000000001346 CrossRefPubMed Lee WK, Baek J, Dansingani KK, Lee JH, Freund KB (2016) Choroidal morphology in eyes with polypoidal choroidal vasculopathy and normal or subnormal subfoveal choroidal thickness. Retina 36(Suppl 1):S73–s82.
https://doi.org/10.1097/iae.0000000000001346
CrossRefPubMed
6.
Zurück zum Zitat Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36:499–516. https://doi.org/10.1097/IAE.0000000000000742 CrossRefPubMed Dansingani KK, Balaratnasingam C, Naysan J, Freund KB (2016) En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. Retina 36:499–516.
https://doi.org/10.1097/IAE.0000000000000742
CrossRefPubMed
7.
Zurück zum Zitat Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500. https://doi.org/10.1016/j.ajo.2008.05.032 CrossRefPubMed Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500.
https://doi.org/10.1016/j.ajo.2008.05.032
CrossRefPubMed
8.
Zurück zum Zitat Zhao J, Wang YX, Zhang Q, Wei WB, Xu L, Jonas JB (2018) Macular choroidal small-vessel layer, Sattler's layer and Haller's layer thicknesses: the Beijing Eye Study. Sci Rep 8:4411. https://doi.org/10.1038/s41598-018-22745-4 CrossRefPubMedPubMedCentral Zhao J, Wang YX, Zhang Q, Wei WB, Xu L, Jonas JB (2018) Macular choroidal small-vessel layer, Sattler's layer and Haller's layer thicknesses: the Beijing Eye Study. Sci Rep 8:4411.
https://doi.org/10.1038/s41598-018-22745-4
CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Chung YR, Kim JW, Choi SY, Park SW, Kim JH, Lee K (2018) Subfoveal choroidal thickness and vascular diameter in active and resolved central serous chorioretinopathy. Retina 38:102–107. https://doi.org/10.1097/iae.0000000000001502 CrossRefPubMed Chung YR, Kim JW, Choi SY, Park SW, Kim JH, Lee K (2018) Subfoveal choroidal thickness and vascular diameter in active and resolved central serous chorioretinopathy. Retina 38:102–107.
https://doi.org/10.1097/iae.0000000000001502
CrossRefPubMed
10.
Zurück zum Zitat Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118:840–845. https://doi.org/10.1016/j.ophtha.2010.09.012 CrossRefPubMed Chung SE, Kang SW, Lee JH, Kim YT (2011) Choroidal thickness in polypoidal choroidal vasculopathy and exudative age-related macular degeneration. Ophthalmology 118:840–845.
https://doi.org/10.1016/j.ophtha.2010.09.012
CrossRefPubMed
11.
Zurück zum Zitat Lai K, Zhou L, Zhong X, Huang C, Gong Y, Xu F, Ma L, Chen G, Cheng L, Lu L, Jin C (2018) Morphological difference of choroidal vasculature between polypoidal choroidal vasculopathy and neovascular AMD on OCT: from the perspective of pachychoroid. Ophthalmic Surg Lasers Imaging Retina 49:e114–e121. https://doi.org/10.3928/23258160-20181002-13 CrossRefPubMed Lai K, Zhou L, Zhong X, Huang C, Gong Y, Xu F, Ma L, Chen G, Cheng L, Lu L, Jin C (2018) Morphological difference of choroidal vasculature between polypoidal choroidal vasculopathy and neovascular AMD on OCT: from the perspective of pachychoroid. Ophthalmic Surg Lasers Imaging Retina 49:e114–e121.
https://doi.org/10.3928/23258160-20181002-13
CrossRefPubMed
12.
Zurück zum Zitat Flores-Moreno I, Arcos-Villegas G, Sastre M, Ruiz-Medrano J, Arias-Barquet L, Duker JS, Ruiz-Moreno JM (2020) Changes in choriocapillaris, Sattler, and Haller layer thicknesses in central serous chorioretinopathy after half-fluence photodynamic therapy. Retina. https://doi.org/10.1097/iae.0000000000002764 Flores-Moreno I, Arcos-Villegas G, Sastre M, Ruiz-Medrano J, Arias-Barquet L, Duker JS, Ruiz-Moreno JM (2020) Changes in choriocapillaris, Sattler, and Haller layer thicknesses in central serous chorioretinopathy after half-fluence photodynamic therapy. Retina.
https://doi.org/10.1097/iae.0000000000002764
13.
Zurück zum Zitat Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM (2017) Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 135:1170–1176. https://doi.org/10.1001/jamaophthalmol.2017.3782 CrossRefPubMedPubMedCentral Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM (2017) Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol 135:1170–1176.
https://doi.org/10.1001/jamaophthalmol.2017.3782
CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124:962–969. https://doi.org/10.1016/j.ophtha.2017.02.008 CrossRefPubMed Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124:962–969.
https://doi.org/10.1016/j.ophtha.2017.02.008
CrossRefPubMed
15.
Zurück zum Zitat Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223. https://doi.org/10.1001/jama.2017.18152 CrossRefPubMedPubMedCentral Ting DSW, Cheung CY, Lim G, Tan GSW, Quang ND, Gan A, Hamzah H, Garcia-Franco R, San Yeo IY, Lee SY, Wong EYM, Sabanayagam C, Baskaran M, Ibrahim F, Tan NC, Finkelstein EA, Lamoureux EL, Wong IY, Bressler NM, Sivaprasad S, Varma R, Jonas JB, He MG, Cheng CY, Cheung GCM, Aung T, Hsu W, Lee ML, Wong TY (2017) Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318:2211–2223.
https://doi.org/10.1001/jama.2017.18152
CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Yanagi Y (2020) Pachychoroid disease: a new perspective on exudative maculopathy. Jpn J Ophthalmol. https://doi.org/10.1007/s10384-020-00740-5 Yanagi Y (2020) Pachychoroid disease: a new perspective on exudative maculopathy. Jpn J Ophthalmol.
https://doi.org/10.1007/s10384-020-00740-5
17.
Zurück zum Zitat Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103:167–175. https://doi.org/10.1136/bjophthalmol-2018-313173 CrossRefPubMed Ting DSW, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, Tan GSW, Schmetterer L, Keane PA, Wong TY (2019) Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol 103:167–175.
https://doi.org/10.1136/bjophthalmol-2018-313173
CrossRefPubMed
18.
Zurück zum Zitat Véstias MP (2019) A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms 12:154. https://doi.org/10.3390/a12080154 CrossRef Véstias MP (2019) A survey of convolutional neural networks on edge with reconfigurable computing. Algorithms 12:154.
https://doi.org/10.3390/a12080154
CrossRef
19.
Zurück zum Zitat Baek J, Lee JH, Lee K, Chung BJ, Lee WK (2019) Clinical outcome of polypoidal choroidal vasculopathy/aneurysmal type 1 neovascularization according to choroidal vascular morphology. Retina. https://doi.org/10.1097/IAE.0000000000002723 Baek J, Lee JH, Lee K, Chung BJ, Lee WK (2019) Clinical outcome of polypoidal choroidal vasculopathy/aneurysmal type 1 neovascularization according to choroidal vascular morphology. Retina.
https://doi.org/10.1097/IAE.0000000000002723
20.
Zurück zum Zitat Chang YC, Cheng CK (2019) Difference between pachychoroid and nonpachychoroid polypoidal choroidal vasculopathy and their response to anti-vascular endothelial growth factor therapy. Retina. https://doi.org/10.1097/IAE.0000000000002583 Chang YC, Cheng CK (2019) Difference between pachychoroid and nonpachychoroid polypoidal choroidal vasculopathy and their response to anti-vascular endothelial growth factor therapy. Retina.
https://doi.org/10.1097/IAE.0000000000002583
21.
Zurück zum Zitat Forte R, Coscas F, Serra R, Cabral D, Colantuono D, Souied EH (2019) Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-315189 Forte R, Coscas F, Serra R, Cabral D, Colantuono D, Souied EH (2019) Long-term follow-up of quiescent choroidal neovascularisation associated with age-related macular degeneration or pachychoroid disease. Br J Ophthalmol.
https://doi.org/10.1136/bjophthalmol-2019-315189
22.
Zurück zum Zitat Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, Ueda-Arakawa N, Oishi A, Nakanishi H, Tamura H, Tsujikawa A, Yoshimura N (2015) Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 5:16204. https://doi.org/10.1038/srep16204 CrossRefPubMedPubMedCentral Miyake M, Ooto S, Yamashiro K, Takahashi A, Yoshikawa M, Akagi-Kurashige Y, Ueda-Arakawa N, Oishi A, Nakanishi H, Tamura H, Tsujikawa A, Yoshimura N (2015) Pachychoroid neovasculopathy and age-related macular degeneration. Sci Rep 5:16204.
https://doi.org/10.1038/srep16204
CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Morimoto M, Matsumoto H, Mimura K, Akiyama H (2017) Two-year results of a treat-and-extend regimen with aflibercept for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 255:1891–1897. https://doi.org/10.1007/s00417-017-3718-6 Morimoto M, Matsumoto H, Mimura K, Akiyama H (2017) Two-year results of a treat-and-extend regimen with aflibercept for polypoidal choroidal vasculopathy. Graefes Arch Clin Exp Ophthalmol 255:1891–1897.
https://doi.org/10.1007/s00417-017-3718-6
24.
Zurück zum Zitat Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito A, Akiyama H (2018) Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol 62:144–150. https://doi.org/10.1007/s10384-018-0562-0 CrossRefPubMed Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito A, Akiyama H (2018) Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and type 1 neovascular age-related macular degeneration. Jpn J Ophthalmol 62:144–150.
https://doi.org/10.1007/s10384-018-0562-0
CrossRefPubMed
25.
Zurück zum Zitat Bressem KK, Adams LC, Erxleben C, Hamm B, Niehues SM, Vahldiek JL (2020) Comparing different deep learning architectures for classification of chest radiographs. Sci Rep 10:13590. https://doi.org/10.1038/s41598-020-70479-z CrossRefPubMedPubMedCentral Bressem KK, Adams LC, Erxleben C, Hamm B, Niehues SM, Vahldiek JL (2020) Comparing different deep learning architectures for classification of chest radiographs. Sci Rep 10:13590.
https://doi.org/10.1038/s41598-020-70479-z
CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Feng D, Chen X, Zhou Z, Liu H, Wang Y, Bai L, Zhang S, Mou X (2020) A preliminary study of predicting effectiveness of anti-VEGF injection using OCT images based on deep learning. Annu Int Conf IEEE Eng Med Biol Soc 2020:5428–5431. https://doi.org/10.1109/embc44109.2020.9176743 CrossRefPubMed Feng D, Chen X, Zhou Z, Liu H, Wang Y, Bai L, Zhang S, Mou X (2020) A preliminary study of predicting effectiveness of anti-VEGF injection using OCT images based on deep learning. Annu Int Conf IEEE Eng Med Biol Soc 2020:5428–5431.
https://doi.org/10.1109/embc44109.2020.9176743
CrossRefPubMed
27.
Zurück zum Zitat Yu C, Xie S, Niu S, Ji Z, Fan W, Yuan S, Liu Q, Chen Q (2019) Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Med Phys 46:4502–4519. https://doi.org/10.1002/mp.13728 CrossRefPubMed Yu C, Xie S, Niu S, Ji Z, Fan W, Yuan S, Liu Q, Chen Q (2019) Hyper-reflective foci segmentation in SD-OCT retinal images with diabetic retinopathy using deep convolutional neural networks. Med Phys 46:4502–4519.
https://doi.org/10.1002/mp.13728
CrossRefPubMed
28.
Zurück zum Zitat Park K, Kim J, Kim S, Shin J (2020) Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms. Graefes Arch Clin Exp Ophthalmol. https://doi.org/10.1007/s00417-020-04909-z Park K, Kim J, Kim S, Shin J (2020) Prediction of visual field from swept-source optical coherence tomography using deep learning algorithms. Graefes Arch Clin Exp Ophthalmol.
https://doi.org/10.1007/s00417-020-04909-z
29.
Zurück zum Zitat Kim IK, Lee K, Park JH, Baek J, Lee WK (2020) Classification of pachychoroid disease on ultrawide-field indocyanine green angiography using auto-machine learning platform. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2020-316108 Kim IK, Lee K, Park JH, Baek J, Lee WK (2020) Classification of pachychoroid disease on ultrawide-field indocyanine green angiography using auto-machine learning platform. Br J Ophthalmol.
https://doi.org/10.1136/bjophthalmol-2020-316108
30.
Zurück zum Zitat Pang CE, Shah VP, Sarraf D, Freund KB (2014) Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 158:362–371.e362. https://doi.org/10.1016/j.ajo.2014.04.021 CrossRefPubMed Pang CE, Shah VP, Sarraf D, Freund KB (2014) Ultra-widefield imaging with autofluorescence and indocyanine green angiography in central serous chorioretinopathy. Am J Ophthalmol 158:362–371.e362.
https://doi.org/10.1016/j.ajo.2014.04.021
CrossRefPubMed
31.
Zurück zum Zitat Lee A, Ra H, Baek J (2020) Choroidal vascular densities of macular disease on ultra-widefield indocyanine green angiography. Graefes Arch Clin Exp Ophthalmol 258:1921–1929. https://doi.org/10.1007/s00417-020-04772-y CrossRefPubMed Lee A, Ra H, Baek J (2020) Choroidal vascular densities of macular disease on ultra-widefield indocyanine green angiography. Graefes Arch Clin Exp Ophthalmol 258:1921–1929.
https://doi.org/10.1007/s00417-020-04772-y
CrossRefPubMed
32.
Zurück zum Zitat Chirco KR, Sohn EH, Stone EM, Tucker BA, Mullins RF (2017) Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye (Lond) 31:10–25. https://doi.org/10.1038/eye.2016.216 CrossRef Chirco KR, Sohn EH, Stone EM, Tucker BA, Mullins RF (2017) Structural and molecular changes in the aging choroid: implications for age-related macular degeneration. Eye (Lond) 31:10–25.
https://doi.org/10.1038/eye.2016.216
CrossRef
- Titel
- Classification of pachychoroid on optical coherence tomography using deep learning
- Autoren:
-
Nam Yeo Kang
Ho Ra
Kook Lee
Jun Hyuk Lee
Won Ki Lee
Jiwon Baek
- Publikationsdatum
- 22.02.2021
- DOI
- https://doi.org/10.1007/s00417-021-05104-4
- Verlag
- Springer Berlin Heidelberg
- Zeitschrift
-
Graefe's Archive for Clinical and Experimental Ophthalmology
Incorporating German Journal of Ophthalmology
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
Anzeige