Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2017

04.04.2017 | NON-THEMATIC REVIEW

Cleavage and phosphorylation: important post-translational modifications of galectin-3

verfasst von: Xiaoge Gao, Jingjie Liu, Xiangye Liu, Liantao Li, Junnian Zheng

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

As the unique chimeric member of the β-galactoside-binding protein family, galectin-3 is a multivalent and multifunctional oncogenic protein involved in multiple physiological and pathological processes, including cell growth, cell differentiation, cell adhesion, RNA splicing, cell apoptosis, and malignant transformation. Post-translational modifications can effectively increase a protein’s functional diversity, either by degradation or adding chemical modifications, thus regulating activity, localization, and ligand interaction. In order to clearly understand the functional mechanisms of galectin-3 involved in normal cell biology and pathogenesis, here, we have summarized the previously reported post-translational modifications of galectin-3, including cleavage and phosphorylation. Cleavage of galectin-3 by MMPs, PSA, and proteases from parasites generated intact carbohydrate-recognition domain and N-terminal peptides of varying lengths that retained lectin binding activity but lost multivalence. Serine and tyrosine phosphorylation of galectin-3 by c-Abl, CKI, and GSK-3β could regulate its localization and associated signal transduction. Accordingly, cleavage and phosphorylation play an important role in regulating galectin-3 function via altering its multivalence, localization, and ligand interaction.
Literatur
1.
Zurück zum Zitat Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate Journal, 19, 433–440.CrossRef Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., & Poirier, F. (2004). Introduction to galectins. Glycoconjugate Journal, 19, 433–440.CrossRef
2.
Zurück zum Zitat Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.CrossRefPubMed Yang, R. Y., Rabinovich, G. A., & Liu, F. T. (2008). Galectins: Structure, function and therapeutic potential. Expert Reviews in Molecular Medicine, 10, e17.CrossRefPubMed
3.
Zurück zum Zitat Dumic, J., Dabelic, S., & Flögel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta - General Subjects, 1760, 616–635.CrossRef Dumic, J., Dabelic, S., & Flögel, M. (2006). Galectin-3: An open-ended story. Biochimica et Biophysica Acta - General Subjects, 1760, 616–635.CrossRef
4.
Zurück zum Zitat Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., & Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry, 268, 26712–26718.PubMed Huflejt, M. E., Turck, C. W., Lindstedt, R., Barondes, S. H., & Leffler, H. (1993). L-29, a soluble lactose-binding lectin, is phosphorylated on serine 6 and serine 12 in vivo and by casein kinase I. Journal of Biological Chemistry, 268, 26712–26718.PubMed
5.
Zurück zum Zitat Gao, X., Liu, D., Fan, Y., Li, X., Xue, H., Ma, Y., Zhou, Y., & Tai, G. (2012). The two Endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PloS One, 7, e52430.CrossRefPubMedPubMedCentral Gao, X., Liu, D., Fan, Y., Li, X., Xue, H., Ma, Y., Zhou, Y., & Tai, G. (2012). The two Endocytic pathways mediated by the carbohydrate recognition domain and regulated by the collagen-like domain of galectin-3 in vascular endothelial cells. PloS One, 7, e52430.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Ochieng, J., Furtak, V., & Lukyanov, P. (2002). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.CrossRefPubMed Ochieng, J., Furtak, V., & Lukyanov, P. (2002). Extracellular functions of galectin-3. Glycoconjugate Journal, 19, 527–535.CrossRefPubMed
7.
Zurück zum Zitat Menon, R. P., & Hughes, R. C. (1999). Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. European Journal of Biochemistry, 264, 569–576.CrossRefPubMed Menon, R. P., & Hughes, R. C. (1999). Determinants in the N-terminal domains of galectin-3 for secretion by a novel pathway circumventing the endoplasmic reticulum-Golgi complex. European Journal of Biochemistry, 264, 569–576.CrossRefPubMed
8.
Zurück zum Zitat Zhu, W. Q., & Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Research, 61, 1869–1873.PubMed Zhu, W. Q., & Ochieng, J. (2001). Rapid release of intracellular galectin-3 from breast carcinoma cells by fetuin. Cancer Research, 61, 1869–1873.PubMed
9.
Zurück zum Zitat Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B. C., Macaluso, F., & Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. Journal of Biological Chemistry, 279, 10841–10847.CrossRefPubMed Ahmad, N., Gabius, H. J., Andre, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B. C., Macaluso, F., & Brewer, C. F. (2004). Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. Journal of Biological Chemistry, 279, 10841–10847.CrossRefPubMed
10.
Zurück zum Zitat Lepur, A., Salomonsson, E., Nilsson, U. J., & Leffler, H. (2012). Ligand induced galectin-3 protein self-association. Journal of Biological Chemistry, 287, 21751–21756.CrossRefPubMedPubMedCentral Lepur, A., Salomonsson, E., Nilsson, U. J., & Leffler, H. (2012). Ligand induced galectin-3 protein self-association. Journal of Biological Chemistry, 287, 21751–21756.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.CrossRefPubMed Shimura, T., Takenaka, Y., Tsutsumi, S., Hogan, V., Kikuchi, A., & Raz, A. (2004). Galectin-3, a novel binding partner of beta-catenin. Cancer Research, 64, 6363–6367.CrossRefPubMed
12.
Zurück zum Zitat Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. C., & Raz, A. (1997). Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research, 57, 5272–5276.PubMed Akahani, S., Nangia-Makker, P., Inohara, H., Kim, H. R. C., & Raz, A. (1997). Galectin-3: A novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Research, 57, 5272–5276.PubMed
13.
Zurück zum Zitat Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., & Kloog, Y. (2008). K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68, 6608–6616.CrossRefPubMedPubMedCentral Shalom-Feuerstein, R., Plowman, S. J., Rotblat, B., Ariotti, N., Tian, T., Hancock, J. F., & Kloog, Y. (2008). K-Ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Research, 68, 6608–6616.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Liu, F. T., Patterson, R. J., & Wang, J. L. (2002). Intracellular functions of galectins. Biochimica et Biophysica Acta - General Subjects, 1572, 263–273.CrossRef Liu, F. T., Patterson, R. J., & Wang, J. L. (2002). Intracellular functions of galectins. Biochimica et Biophysica Acta - General Subjects, 1572, 263–273.CrossRef
15.
Zurück zum Zitat Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 8, 33–41.CrossRefPubMed Jensen, O. N. (2004). Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Current Opinion in Chemical Biology, 8, 33–41.CrossRefPubMed
16.
17.
Zurück zum Zitat Rundhaug, J. E. (2003). Matrix Metalloproteinases, angiogenesis, and cancer. Clinical Cancer Research, 9, 551.PubMed Rundhaug, J. E. (2003). Matrix Metalloproteinases, angiogenesis, and cancer. Clinical Cancer Research, 9, 551.PubMed
18.
Zurück zum Zitat Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–573.CrossRefPubMed Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–573.CrossRefPubMed
19.
Zurück zum Zitat Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562.CrossRefPubMed Nagase, H., Visse, R., & Murphy, G. (2006). Structure and function of matrix metalloproteinases and TIMPs. Cardiovascular Research, 69, 562.CrossRefPubMed
20.
Zurück zum Zitat Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., & Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.CrossRefPubMed Ochieng, J., Fridman, R., Nangia-Makker, P., Kleiner, D. E., Liotta, L. A., Stetler-Stevenson, W. G., & Raz, A. (1994). Galectin-3 is a novel substrate for human matrix metalloproteinases-2 and -9. Biochemistry, 33, 14109–14114.CrossRefPubMed
21.
Zurück zum Zitat Ochieng, J., Green, B., Evans, S., James, O., & Warfield, P. (1998). Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochimica et Biophysica Acta - General Subjects, 1379, 97–106.CrossRef Ochieng, J., Green, B., Evans, S., James, O., & Warfield, P. (1998). Modulation of the biological functions of galectin-3 by matrix metalloproteinases. Biochimica et Biophysica Acta - General Subjects, 1379, 97–106.CrossRef
22.
Zurück zum Zitat Nangia-Makker, P., Raz, T., Tait, L., Hogan, V., Fridman, R., & Raz, A. (2007). Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Research, 67, 11760–11768.CrossRefPubMedPubMedCentral Nangia-Makker, P., Raz, T., Tait, L., Hogan, V., Fridman, R., & Raz, A. (2007). Galectin-3 cleavage: A novel surrogate marker for matrix metalloproteinase activity in growing breast cancers. Cancer Research, 67, 11760–11768.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Balan, V., Nangia-Makker, P., Schwartz, A. G., Young, S. J., Tait, L., Hogan, V., Raz, T., Wang, Y., Zeng, Q. Y., Gen, S. W., Guo, Y., Li, H., Abrams, J., Couch, F. J., Lingle, W. L., Lloyd, R. V., Ethier, S. P., Tainsky, M. A., & Raz, A. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): A pilot study. Cancer Research, 68, 10045–10050.CrossRefPubMedPubMedCentral Balan, V., Nangia-Makker, P., Schwartz, A. G., Young, S. J., Tait, L., Hogan, V., Raz, T., Wang, Y., Zeng, Q. Y., Gen, S. W., Guo, Y., Li, H., Abrams, J., Couch, F. J., Lingle, W. L., Lloyd, R. V., Ethier, S. P., Tainsky, M. A., & Raz, A. (2008). Racial disparity in breast cancer and functional germ line mutation in galectin-3 (rs4644): A pilot study. Cancer Research, 68, 10045–10050.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., & Raz, A. (2010). Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. International Journal of Cancer. Journal International du Cancer, 127, 2530–2541.CrossRefPubMedPubMedCentral Nangia-Makker, P., Wang, Y., Raz, T., Tait, L., Balan, V., Hogan, V., & Raz, A. (2010). Cleavage of galectin-3 by matrix metalloproteases induces angiogenesis in breast cancer. International Journal of Cancer. Journal International du Cancer, 127, 2530–2541.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. W., & Werb, Z. (2005). Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during Endochondral bone formation. Molecular Biology of the Cell, 16, 3028–3039.CrossRefPubMedPubMedCentral Ortega, N., Behonick, D. J., Colnot, C., Cooper, D. N. W., & Werb, Z. (2005). Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during Endochondral bone formation. Molecular Biology of the Cell, 16, 3028–3039.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Dange, M. C., Agarwal, A. K., & Kalraiya, R. D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Molecular and Cellular Biochemistry, 404, 79–86.CrossRefPubMed Dange, M. C., Agarwal, A. K., & Kalraiya, R. D. (2015). Extracellular galectin-3 induces MMP9 expression by activating p38 MAPK pathway via lysosome-associated membrane protein-1 (LAMP1). Molecular and Cellular Biochemistry, 404, 79–86.CrossRefPubMed
27.
Zurück zum Zitat Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Experimental & Molecular Medicine, 44, 387–393.CrossRef Wang, Y. G., Kim, S. J., Baek, J. H., Lee, H. W., Jeong, S. Y., & Chun, K. H. (2012). Galectin-3 increases the motility of mouse melanoma cells by regulating matrix metalloproteinase-1 expression. Experimental & Molecular Medicine, 44, 387–393.CrossRef
28.
Zurück zum Zitat Mauris, J., Woodward, A. M., Cao, Z., Panjwani, N., & Argueso, P. (2014). Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3. Journal of Cell Science, 127, 3141–3148.CrossRefPubMedPubMedCentral Mauris, J., Woodward, A. M., Cao, Z., Panjwani, N., & Argueso, P. (2014). Molecular basis for MMP9 induction and disruption of epithelial cell–cell contacts by galectin-3. Journal of Cell Science, 127, 3141–3148.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K. J., & Kwon, J. H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflammatory Bowel Diseases, 17, 260–267.CrossRefPubMed Puthenedam, M., Wu, F., Shetye, A., Michaels, A., Rhee, K. J., & Kwon, J. H. (2011). Matrilysin-1 (MMP7) cleaves galectin-3 and inhibits wound healing in intestinal epithelial cells. Inflammatory Bowel Diseases, 17, 260–267.CrossRefPubMed
30.
Zurück zum Zitat McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., Fridman, R., & Rempel, S. A. (2007). SPARC Upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG Glioma cells. Neuroscience Letters, 419, 172–177.CrossRefPubMedPubMedCentral McClung, H. M., Thomas, S. L., Osenkowski, P., Toth, M., Menon, P., Raz, A., Fridman, R., & Rempel, S. A. (2007). SPARC Upregulates MT1-MMP expression, MMP-2 activation, and the secretion and cleavage of galectin-3 in U87MG Glioma cells. Neuroscience Letters, 419, 172–177.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F., Richard, M., Fernandes, J., Pelletier, J., & Reboul, P. (2004). Galectin-3 surface expression on human adult chondrocytes: A potential substrate for collagenase-3. Annals of the Rheumatic Diseases, 63, 636–643.CrossRefPubMedPubMedCentral Guevremont, M., Martel-Pelletier, J., Boileau, C., Liu, F., Richard, M., Fernandes, J., Pelletier, J., & Reboul, P. (2004). Galectin-3 surface expression on human adult chondrocytes: A potential substrate for collagenase-3. Annals of the Rheumatic Diseases, 63, 636–643.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yokoyama, Y., Grunebach, F., Schmidt, S. M., Heine, A., Hantschel, M., Stevanovic, S., Rammensee, H. G., & Brossart, P. (2008). Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clinical Cancer Research, 14, 5503–5511.CrossRefPubMed Yokoyama, Y., Grunebach, F., Schmidt, S. M., Heine, A., Hantschel, M., Stevanovic, S., Rammensee, H. G., & Brossart, P. (2008). Matrilysin (MMP-7) is a novel broadly expressed tumor antigen recognized by antigen-specific T cells. Clinical Cancer Research, 14, 5503–5511.CrossRefPubMed
33.
Zurück zum Zitat Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.CrossRefPubMed Itoh, Y., & Seiki, M. (2006). MT1-MMP: A potent modifier of pericellular microenvironment. Journal of Cellular Physiology, 206, 1–8.CrossRefPubMed
34.
Zurück zum Zitat Jones, J. L., Saraswati, S., Block, A. S., Lichti, C. F., Mahadevan, M., & Diekman, A. B. (2010). Galectin-3 is associated with Prostasomes in human semen. Glycoconjugate Journal, 27, 227–236.CrossRefPubMed Jones, J. L., Saraswati, S., Block, A. S., Lichti, C. F., Mahadevan, M., & Diekman, A. B. (2010). Galectin-3 is associated with Prostasomes in human semen. Glycoconjugate Journal, 27, 227–236.CrossRefPubMed
36.
Zurück zum Zitat Saraswati, S., Block, A. S., Davidson, M. K., Rank, R. G., Mahadevan, M., & Diekman, A. B. (2011). Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. The Prostate, 71, 197–208.CrossRefPubMedPubMedCentral Saraswati, S., Block, A. S., Davidson, M. K., Rank, R. G., Mahadevan, M., & Diekman, A. B. (2011). Galectin-3 is a substrate for prostate specific antigen (PSA) in human seminal plasma. The Prostate, 71, 197–208.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Balan, V., Wang, Y., Nangia-Makker, P., Kho, D., Bajaj, M., Smith, D., Heilbrun, L., Raz, A., & Heath, E. (2013). Galectin-3: A possible complementary marker to the PSA blood test. Oncotarget, 4, 542–549.CrossRefPubMedPubMedCentral Balan, V., Wang, Y., Nangia-Makker, P., Kho, D., Bajaj, M., Smith, D., Heilbrun, L., Raz, A., & Heath, E. (2013). Galectin-3: A possible complementary marker to the PSA blood test. Oncotarget, 4, 542–549.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends in Immunology, 23, 313–320.CrossRefPubMed Rabinovich, G. A., Baum, L. G., Tinari, N., Paganelli, R., Natoli, C., Liu, F. T., & Iacobelli, S. (2002). Galectins and their ligands: Amplifiers, silencers or tuners of the inflammatory response? Trends in Immunology, 23, 313–320.CrossRefPubMed
39.
Zurück zum Zitat Hsu, D. K., Chen, H. Y., & Liu, F. T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews, 230, 114–127.CrossRefPubMed Hsu, D. K., Chen, H. Y., & Liu, F. T. (2009). Galectin-3 regulates T-cell functions. Immunological Reviews, 230, 114–127.CrossRefPubMed
40.
Zurück zum Zitat Debierre-Grockiego, F., Niehus, S., Coddeville, B., Elass, E., Poirier, F., Weingart, R., Schmidt, R. R., Mazurier, J., Guerardel, Y., & Schwarz, R. T. (2010). Binding of toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. Journal of Biological Chemistry, 285, 32744–32750.CrossRefPubMedPubMedCentral Debierre-Grockiego, F., Niehus, S., Coddeville, B., Elass, E., Poirier, F., Weingart, R., Schmidt, R. R., Mazurier, J., Guerardel, Y., & Schwarz, R. T. (2010). Binding of toxoplasma gondii glycosylphosphatidylinositols to galectin-3 is required for their recognition by macrophages. Journal of Biological Chemistry, 285, 32744–32750.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Van Den Berg, T. K., Honing, H., Franke, N., Van Remoortere, A., Schiphorst, W. E. C. M., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., & Van Die, I. (2004). LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. Journal of Immunology, 173, 1902–1907.CrossRef Van Den Berg, T. K., Honing, H., Franke, N., Van Remoortere, A., Schiphorst, W. E. C. M., Liu, F. T., Deelder, A. M., Cummings, R. D., Hokke, C. H., & Van Die, I. (2004). LacdiNAc-glycans constitute a parasite pattern for galectin-3-mediated immune recognition. Journal of Immunology, 173, 1902–1907.CrossRef
42.
Zurück zum Zitat Pelletier, I., & Sato, S. (2002). Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. The Journal of Biological Chemistry, 277, 17663–17670.CrossRefPubMed Pelletier, I., & Sato, S. (2002). Specific recognition and cleavage of galectin-3 by Leishmania major through species-specific polygalactose epitope. The Journal of Biological Chemistry, 277, 17663–17670.CrossRefPubMed
43.
Zurück zum Zitat Yamazaki, K., Kawai, A., Kawaguchi, M., Hibino, Y., Li, F., Sasahara, M., Tsukada, K., & Hiraga, K. (2001). Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochemical and Biophysical Research Communications, 280, 1077–1084.CrossRefPubMed Yamazaki, K., Kawai, A., Kawaguchi, M., Hibino, Y., Li, F., Sasahara, M., Tsukada, K., & Hiraga, K. (2001). Simultaneous induction of galectin-3 phosphorylated on tyrosine residue, p21WAF1/Cip1/Sdi1, and the proliferating cell nuclear antigen at a distinctive period of repair of hepatocytes injured by CCl4. Biochemical and Biophysical Research Communications, 280, 1077–1084.CrossRefPubMed
44.
Zurück zum Zitat Menon, S., Kang, C. M., & Beningo, K. A. (2011). Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochemical and Biophysical Research Communications, 410, 91–96.CrossRefPubMedPubMedCentral Menon, S., Kang, C. M., & Beningo, K. A. (2011). Galectin-3 secretion and tyrosine phosphorylation is dependent on the calpain small subunit, Calpain 4. Biochemical and Biophysical Research Communications, 410, 91–96.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Balan, V., Nangia-Makker Pratima, P., Jung, Y. S., Wang, Y., & Raz, A. (2010). Galectin-3: A novel substrate for c-Abl kinase. Biochimica et Biophysica Acta - Molecular Cell Research, 1803, 1198–1205.CrossRef Balan, V., Nangia-Makker Pratima, P., Jung, Y. S., Wang, Y., & Raz, A. (2010). Galectin-3: A novel substrate for c-Abl kinase. Biochimica et Biophysica Acta - Molecular Cell Research, 1803, 1198–1205.CrossRef
46.
Zurück zum Zitat Shaul, Y. (2000). C-Abl: Activation and nuclear targets. Cell Death and Differentiation, 7, 10–16.CrossRefPubMed Shaul, Y. (2000). C-Abl: Activation and nuclear targets. Cell Death and Differentiation, 7, 10–16.CrossRefPubMed
47.
Zurück zum Zitat Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., Wang, Y., Jin, Y., Zeng, J., Li, J., Song, L., Li, P., Qian, X., & Cao, C. (2010). C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death and Differentiation, 17, 1277–1287.CrossRefPubMed Li, X., Ma, Q., Wang, J., Liu, X., Yang, Y., Zhao, H., Wang, Y., Jin, Y., Zeng, J., Li, J., Song, L., Li, P., Qian, X., & Cao, C. (2010). C-Abl and Arg tyrosine kinases regulate lysosomal degradation of the oncoprotein galectin-3. Cell Death and Differentiation, 17, 1277–1287.CrossRefPubMed
48.
Zurück zum Zitat Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in Cell Biology, 3, 8–13.CrossRefPubMed Mayer, B. J., & Baltimore, D. (1993). Signalling through SH2 and SH3 domains. Trends in Cell Biology, 3, 8–13.CrossRefPubMed
49.
Zurück zum Zitat Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., & Pawson, T. (1991). SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science, 252, 668–674.CrossRefPubMed Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., & Pawson, T. (1991). SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins. Science, 252, 668–674.CrossRefPubMed
50.
Zurück zum Zitat Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., & Stoter, M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 17, 675–689.CrossRefPubMed Knippschild, U., Gocht, A., Wolff, S., Huber, N., Lohler, J., & Stoter, M. (2005). The casein kinase 1 family: Participation in multiple cellular processes in eukaryotes. Cellular Signalling, 17, 675–689.CrossRefPubMed
51.
Zurück zum Zitat Agrwal, N., Cowles, E. A., Anderson, R. L., & Wang, J. L. (1990). Carbohydrate-binding protein 35: Isoelectric points of the polypeptide and a phosphorylated derivative. The Journal of Biological Chemistry, 265, 17706–17712.PubMed Agrwal, N., Cowles, E. A., Anderson, R. L., & Wang, J. L. (1990). Carbohydrate-binding protein 35: Isoelectric points of the polypeptide and a phosphorylated derivative. The Journal of Biological Chemistry, 265, 17706–17712.PubMed
52.
Zurück zum Zitat Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry, 275, 36311–36315.CrossRefPubMed Mazurek, N., Conklin, J., Byrd, J. C., Raz, A., & Bresalier, R. S. (2000). Phosphorylation of the beta-galactoside-binding protein galectin-3 modulates binding to its ligands. Journal of Biological Chemistry, 275, 36311–36315.CrossRefPubMed
53.
Zurück zum Zitat Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R. C., & Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. Journal of Biological Chemistry, 277, 6852–6857.CrossRefPubMed Yoshii, T., Fukumori, T., Honjo, Y., Inohara, H., Kim, H. R. C., & Raz, A. (2002). Galectin-3 phosphorylation is required for its anti-apoptotic function and cell cycle arrest. Journal of Biological Chemistry, 277, 6852–6857.CrossRefPubMed
54.
55.
Zurück zum Zitat Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.PubMed Kim, H. R., Lin, H. M., Biliran, H., & Raz, A. (1999). Cell cycle arrest and inhibition of anoikis by galectin-3 in human breast epithelial cells. Cancer Research, 59, 4148–4154.PubMed
56.
Zurück zum Zitat Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Hyeong-Reh, C. K., Bresalier, R. S., & Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and Cellular Biology, 24, 4395–4406.CrossRefPubMedPubMedCentral Takenaka, Y., Fukumori, T., Yoshii, T., Oka, N., Inohara, H., Hyeong-Reh, C. K., Bresalier, R. S., & Raz, A. (2004). Nuclear export of phosphorylated galectin-3 regulates its antiapoptotic activity in response to chemotherapeutic drugs. Molecular and Cellular Biology, 24, 4395–4406.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Chiarugi, P., & Giannoni, E. (2008). Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 76, 1352–1364.CrossRefPubMed Chiarugi, P., & Giannoni, E. (2008). Anoikis: A necessary death program for anchorage-dependent cells. Biochemical Pharmacology, 76, 1352–1364.CrossRefPubMed
58.
Zurück zum Zitat Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., & Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 288, 21–34.CrossRefPubMed Lee, Y. J., Song, Y. K., Song, J. J., Siervo-Sassi, R. R., Kim, H. R., Li, L., Spitz, D. R., Lokshin, A., & Kim, J. H. (2003). Reconstitution of galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Experimental Cell Research, 288, 21–34.CrossRefPubMed
59.
Zurück zum Zitat Suliman, A., Lam, A., Datta, R., & Srivastava, R. K. (2001). Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 20, 2122–2133.CrossRefPubMed Suliman, A., Lam, A., Datta, R., & Srivastava, R. K. (2001). Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene, 20, 2122–2133.CrossRefPubMed
60.
Zurück zum Zitat Mazurek, N., Yun, J. S., Liu, K. F., Gilcrease, M. Z., Schober, W., Nangia-Makker, P., Raz, A., & Bresalier, R. S. (2007). Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. Journal of Biological Chemistry, 282, 21337–21348.CrossRefPubMed Mazurek, N., Yun, J. S., Liu, K. F., Gilcrease, M. Z., Schober, W., Nangia-Makker, P., Raz, A., & Bresalier, R. S. (2007). Phosphorylated galectin-3 mediates tumor necrosis factor-related apoptosis-inducing ligand signaling by regulating phosphatase and tensin homologue deleted on chromosome 10 in human breast carcinoma cells. Journal of Biological Chemistry, 282, 21337–21348.CrossRefPubMed
61.
Zurück zum Zitat Mazurek, N., Sun, Y. J., Price, J. E., Ramdas, L., Schober, W., Nangia-Makker, P., Byrd, J. C., Raz, A., & Bresalier, R. S. (2005). Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes. Cancer Research, 65, 10767–10775.CrossRefPubMed Mazurek, N., Sun, Y. J., Price, J. E., Ramdas, L., Schober, W., Nangia-Makker, P., Byrd, J. C., Raz, A., & Bresalier, R. S. (2005). Phosphorylation of galectin-3 contributes to malignant transformation of human epithelial cells via modulation of unique sets of genes. Cancer Research, 65, 10767–10775.CrossRefPubMed
62.
Zurück zum Zitat Díez-Revuelta, N., Velasco, S., André, S., Kaltner, H., Kübler, D., Gabius, H. J., & Abad-Rodríguez, J. (2010). Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. Journal of Cell Science, 123, 671–681.CrossRefPubMed Díez-Revuelta, N., Velasco, S., André, S., Kaltner, H., Kübler, D., Gabius, H. J., & Abad-Rodríguez, J. (2010). Phosphorylation of adhesion- and growth-regulatory human galectin-3 leads to the induction of axonal branching by local membrane L1 and ERM redistribution. Journal of Cell Science, 123, 671–681.CrossRefPubMed
63.
Zurück zum Zitat Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., & Woodgett, J. R. (1992). Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochimica et Biophysica Acta - Reviews on Cancer, 1114, 147–162.CrossRef Plyte, S. E., Hughes, K., Nikolakaki, E., Pulverer, B. J., & Woodgett, J. R. (1992). Glycogen synthase kinase-3: Functions in oncogenesis and development. Biochimica et Biophysica Acta - Reviews on Cancer, 1114, 147–162.CrossRef
64.
Zurück zum Zitat Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.CrossRefPubMedPubMedCentral Ikeda, S., Kishida, S., Yamamoto, H., Murai, H., Koyama, S., & Kikuchi, A. (1998). Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. The EMBO Journal, 17, 1371–1384.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Rao, T. P., & Kuhl, M. (2010). An updated overview on Wnt signaling pathways: A prelude for more. Circulation Research, 106, 1798–1806.CrossRefPubMed Rao, T. P., & Kuhl, M. (2010). An updated overview on Wnt signaling pathways: A prelude for more. Circulation Research, 106, 1798–1806.CrossRefPubMed
66.
Zurück zum Zitat Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., & Raz, A. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.CrossRefPubMed Shimura, T., Takenaka, Y., Fukumori, T., Tsutsumi, S., Okada, K., Hogan, V., Kikuchi, A., Kuwano, H., & Raz, A. (2005). Implication of galectin-3 in Wnt signaling. Cancer Research, 65, 3535–3537.CrossRefPubMed
67.
Zurück zum Zitat Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C., & Bresalier, R. S. (2009). Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Research, 69, 1343–1349.CrossRefPubMedPubMedCentral Song, S., Mazurek, N., Liu, C., Sun, Y., Ding, Q. Q., Liu, K., Hung, M. C., & Bresalier, R. S. (2009). Galectin-3 mediates nuclear beta-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3beta activity. Cancer Research, 69, 1343–1349.CrossRefPubMedPubMedCentral
68.
69.
Zurück zum Zitat Yu, L. G., Andrews, N., Zhao, Q., McKean, D., Williams, J. F., Connor, L. J., Gerasimenko, O. V., Hilkens, J., Hirabayashi, J., Kasai, K., & Rhodes, J. M. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. Journal of Biological Chemistry, 282, 773–781.CrossRefPubMed Yu, L. G., Andrews, N., Zhao, Q., McKean, D., Williams, J. F., Connor, L. J., Gerasimenko, O. V., Hilkens, J., Hirabayashi, J., Kasai, K., & Rhodes, J. M. (2007). Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. Journal of Biological Chemistry, 282, 773–781.CrossRefPubMed
70.
Zurück zum Zitat Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., & Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology, 12, 329–337.CrossRefPubMed Davidson, P. J., Davis, M. J., Patterson, R. J., Ripoche, M. A., Poirier, F., & Wang, J. L. (2002). Shuttling of galectin-3 between the nucleus and cytoplasm. Glycobiology, 12, 329–337.CrossRefPubMed
71.
Zurück zum Zitat Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R. C., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.PubMed Fukumori, T., Takenaka, Y., Yoshii, T., Kim, H. R. C., Hogan, V., Inohara, H., Kagawa, S., & Raz, A. (2003). CD29 and CD7 mediate galectin-3-induced type II T-cell apoptosis. Cancer Research, 63, 8302–8311.PubMed
72.
Zurück zum Zitat Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236.CrossRefPubMed Hunter, T. (1995). Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. Cell, 80, 225–236.CrossRefPubMed
Metadaten
Titel
Cleavage and phosphorylation: important post-translational modifications of galectin-3
verfasst von
Xiaoge Gao
Jingjie Liu
Xiangye Liu
Liantao Li
Junnian Zheng
Publikationsdatum
04.04.2017
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2017
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-017-9666-0

Weitere Artikel der Ausgabe 2/2017

Cancer and Metastasis Reviews 2/2017 Zur Ausgabe

ReviewPaper

Preface

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.