Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 13/2017

16.08.2017 | Review Article

Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors

verfasst von: Sabrina Rossi, Luca Toschi, Angelo Castello, Fabio Grizzi, Luigi Mansi, Egesta Lopci

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 13/2017

Einloggen, um Zugang zu erhalten

Abstract

The rapidly evolving knowledge on tumor immunology and the continuous implementation of immunotherapy in cancer have recently led to the FDA and EMA approval of several checkpoint inhibitors as immunotherapic agents in clinical practice. Anti-CTLA-4, anti-PD-1, and anti-PDL-1 antibodies are becoming standard of care in advanced melanoma, as well as in relapsed or metastatic lung and kidney cancer, demonstrating higher and longer response compared to standard chemotherapy. These encouraging results have fostered the evaluation of these antibodies either alone or in combination with other therapies in several dozen clinical trials for the treatment of multiple tumor types. However, not all patients respond to immune checkpoint inhibitors, hence, specific biomarkers are necessary to guide and monitor therapy. The utility of PD-L1 expression as a biomarker has varied in different clinical trials, but, to date, no consensus has been reached on whether PD-L1 expression is an ideal marker for response and patient selection; approximately 20–25% of patients will respond to immunotherapy with checkpoint inhibitors despite a negative PD-L1 staining. On the other hand, major issues concern the evaluation of objective response in patients treated with immunotherapy. Pure morphological criteria as commonly used in solid tumors (i.e. RECIST) are not sufficient because change in size is not an early and reliable marker of tumor response to biological therapies. Thus, the scientific community has required a continuous adaptation of immune-related response criteria (irRC) to overcome the problem. In this context, metabolic information and antibody-based imaging with positron emission tomography (PET) have been investigated, providing a powerful approach for an optimal stratification of patients at staging and during the evaluation of the response to therapy. In the present review we provide an overview on the clinical characteristics of patient selection when using imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors.
Literatur
3.
Zurück zum Zitat Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMed Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26.CrossRefPubMed
4.
Zurück zum Zitat Margolin K, Wong SL, Penrod JR, et al. Effectiveness and safety of first-line ipilimumab (IPI) 3mg/kg therapy for advanced melanoma (AM): Evidence from a U.S. multisite retrospective chart review. Presented at: The European Cancer Congress. 2013; September 27–October 1; Amsterdam, The Netherlands (P488). Margolin K, Wong SL, Penrod JR, et al. Effectiveness and safety of first-line ipilimumab (IPI) 3mg/kg therapy for advanced melanoma (AM): Evidence from a U.S. multisite retrospective chart review. Presented at: The European Cancer Congress. 2013; September 27–October 1; Amsterdam, The Netherlands (P488).
5.
Zurück zum Zitat Patt D, Wong SL, Juday T, et al. Community-based, real-world, study of treatment-naïve advanced melanoma (AM) patients treated with 3mg/kg ipilimumab (IPI) in the United States. Presented at: The European Cancer Congress. 2013; September 27–October 1; Amsterdam, The Netherlands (P497). Patt D, Wong SL, Juday T, et al. Community-based, real-world, study of treatment-naïve advanced melanoma (AM) patients treated with 3mg/kg ipilimumab (IPI) in the United States. Presented at: The European Cancer Congress. 2013; September 27–October 1; Amsterdam, The Netherlands (P497).
6.
7.
Zurück zum Zitat Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.CrossRefPubMed Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015;372:320–30.CrossRefPubMed
8.
Zurück zum Zitat Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMed Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med. 2015;373:23–34.CrossRefPubMed
9.
Zurück zum Zitat Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefPubMedPubMedCentral Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med. 2015;373(2):123–35.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMed Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373(17):1627–39.CrossRefPubMed
11.
Zurück zum Zitat Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.CrossRefPubMed Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13.CrossRefPubMed
12.
Zurück zum Zitat Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.CrossRefPubMed Ribas A, Puzanov I, Dummer R, et al. Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): A randomised, controlled, phase 2 trial. Lancet Oncol. 2015;16:908–18.CrossRefPubMed
13.
Zurück zum Zitat Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMed Garon EB, Rizvi NA, Hui R, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372:2018–28.CrossRefPubMed
14.
Zurück zum Zitat Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMed Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.CrossRefPubMed
15.
Zurück zum Zitat Ghiotto M, Gauthier L, Serriari N, et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. 2010;22:651–60.CrossRefPubMedPubMedCentral Ghiotto M, Gauthier L, Serriari N, et al. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol. 2010;22:651–60.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.CrossRefPubMedPubMedCentral Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: A single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMed Fehrenbacher L, Spira A, Ballinger M, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46.CrossRefPubMed
18.
Zurück zum Zitat Rittmeyer A, Barlesi F, Waterkamp D, et al. OAK study group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefPubMed Rittmeyer A, Barlesi F, Waterkamp D, et al. OAK study group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefPubMed
19.
Zurück zum Zitat Rittmeyer A, Barlesi F, Waterkamp D, Park K, et al. OAK study group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefPubMed Rittmeyer A, Barlesi F, Waterkamp D, Park K, et al. OAK study group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.CrossRefPubMed
20.
Zurück zum Zitat Goldman JW, Crino L, Vokes EE, et al. Nivolumab (nivo) in patients (pts) with advanced (adv) NSCLC and central nervous system (CNS) metastases (mets): Track: Immunotherapy. J Thorac Oncol. 2016;11(10S):S238–9.CrossRefPubMed Goldman JW, Crino L, Vokes EE, et al. Nivolumab (nivo) in patients (pts) with advanced (adv) NSCLC and central nervous system (CNS) metastases (mets): Track: Immunotherapy. J Thorac Oncol. 2016;11(10S):S238–9.CrossRefPubMed
21.
Zurück zum Zitat Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefPubMed Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016;387(10027):1540–50.CrossRefPubMed
22.
Zurück zum Zitat Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.CrossRefPubMedPubMedCentral Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. 2016;16(5):275–87.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy. Mol Imaging. 2017;16:1536012117718459.CrossRefPubMed Chatterjee S, Lesniak WG, Nimmagadda S. Noninvasive imaging of immune checkpoint ligand PD-L1 in tumors and metastases for guiding immunotherapy. Mol Imaging. 2017;16:1536012117718459.CrossRefPubMed
24.
Zurück zum Zitat Nicolazzo C, Raimondi C, Mancini M, et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep. 2016;6:31726.CrossRefPubMedPubMedCentral Nicolazzo C, Raimondi C, Mancini M, et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor Nivolumab. Sci Rep. 2016;6:31726.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Anantharaman A, Friedlander T, Lu D, et al. Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients. BMC Cancer. 2016;16(1):744.CrossRefPubMedPubMedCentral Anantharaman A, Friedlander T, Lu D, et al. Programmed death-ligand 1 (PD-L1) characterization of circulating tumor cells (CTCs) in muscle invasive and metastatic bladder cancer patients. BMC Cancer. 2016;16(1):744.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Kelderman S, Heemskerk B, van Tinteren H, et al. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol Immunother. 2014;63:449–58.PubMed Kelderman S, Heemskerk B, van Tinteren H, et al. Lactate dehydrogenase as a selection criterion for ipilimumab treatment in metastatic melanoma. Cancer Immunol Immunother. 2014;63:449–58.PubMed
27.
Zurück zum Zitat Simeone E, Gentilcore G, Giannarelli D, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 2014;63:675–83.CrossRefPubMed Simeone E, Gentilcore G, Giannarelli D, et al. Immunological and biological changes during ipilimumab treatment and their potential correlation with clinical response and survival in patients with advanced melanoma. Cancer Immunol Immunother. 2014;63:675–83.CrossRefPubMed
28.
Zurück zum Zitat Delyon J, Mateus C, Lefeuvre D, et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: An early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann Oncol. 2013;24:1697–703.CrossRefPubMed Delyon J, Mateus C, Lefeuvre D, et al. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: An early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann Oncol. 2013;24:1697–703.CrossRefPubMed
29.
Zurück zum Zitat Yuan J, Adamow M, Ginsberg BA, et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A. 2011;108:16723–8.CrossRefPubMedPubMedCentral Yuan J, Adamow M, Ginsberg BA, et al. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A. 2011;108:16723–8.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Ferrucci PF, Gandini S, Battaglia A, et al. Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer. 2015;112(12):1904–10.CrossRefPubMedPubMedCentral Ferrucci PF, Gandini S, Battaglia A, et al. Baseline neutrophil-to-lymphocyte ratio is associated with outcome of ipilimumab-treated metastatic melanoma patients. Br J Cancer. 2015;112(12):1904–10.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Bagley SJ, Kothari S, Aggarwal C, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017;106:1–7.CrossRefPubMed Bagley SJ, Kothari S, Aggarwal C, et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer. 2017;106:1–7.CrossRefPubMed
32.
Zurück zum Zitat D’Angelo SP, Larkin J, Weber J, et al. Efficacy and safety of nivolumab vs investigator’s choice chemotherapy (ICC) in subgroups of patients with advanced melanoma after prior anti-CTLA-4 therapy. Presented at the Society for Melanoma Research (SMR). 2014 Congress; November 13–16, 2014; Zurich, Switzerland. D’Angelo SP, Larkin J, Weber J, et al. Efficacy and safety of nivolumab vs investigator’s choice chemotherapy (ICC) in subgroups of patients with advanced melanoma after prior anti-CTLA-4 therapy. Presented at the Society for Melanoma Research (SMR). 2014 Congress; November 13–16, 2014; Zurich, Switzerland.
33.
Zurück zum Zitat Larkin J, Lao CD, Urba WJ, et al. Efficacy and safety of Nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: A pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40.CrossRefPubMed Larkin J, Lao CD, Urba WJ, et al. Efficacy and safety of Nivolumab in patients with BRAF V600 mutant and BRAF wild-type advanced melanoma: A pooled analysis of 4 clinical trials. JAMA Oncol. 2015;1(4):433–40.CrossRefPubMed
34.
Zurück zum Zitat Ackerman A, Klein O, McDermott DF. Waet al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer. 2014;120(11):1695–701.CrossRefPubMed Ackerman A, Klein O, McDermott DF. Waet al. Outcomes of patients with metastatic melanoma treated with immunotherapy prior to or after BRAF inhibitors. Cancer. 2014;120(11):1695–701.CrossRefPubMed
35.
Zurück zum Zitat Johnson DB, Pectasides E, Feld E, et al. Sequencing treatment in BRAFV600 mutant melanoma: Anti-PD-1 before and after BRAF inhibition. J Immunother. 2017;40(1):31–5.CrossRefPubMed Johnson DB, Pectasides E, Feld E, et al. Sequencing treatment in BRAFV600 mutant melanoma: Anti-PD-1 before and after BRAF inhibition. J Immunother. 2017;40(1):31–5.CrossRefPubMed
36.
Zurück zum Zitat Robert C, Schachter J, Long GV, et al. KEYNOTE-006 investigators. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMed Robert C, Schachter J, Long GV, et al. KEYNOTE-006 investigators. Pembrolizumab versus Ipilimumab in advanced melanoma. N Engl J Med. 2015;372(26):2521–32.CrossRefPubMed
37.
Zurück zum Zitat Lee CK, Man J, Lord S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 2017;12(2):403–7.CrossRefPubMed Lee CK, Man J, Lord S, et al. Checkpoint inhibitors in metastatic EGFR-mutated non-small cell lung cancer-a meta-analysis. J Thorac Oncol. 2017;12(2):403–7.CrossRefPubMed
38.
Zurück zum Zitat Chan TA, Wolchok JD, Snyder A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2015;373:1984.CrossRefPubMed Chan TA, Wolchok JD, Snyder A. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2015;373:1984.CrossRefPubMed
39.
Zurück zum Zitat Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRefPubMedPubMedCentral Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Spigel DR, Schrock AB, Fabrizio D, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol. 2016;34:9017. Spigel DR, Schrock AB, Fabrizio D, et al. Total mutation burden (TMB) in lung cancer (LC) and relationship with response to PD-1/PD-L1 targeted therapies. J Clin Oncol. 2016;34:9017.
41.
Zurück zum Zitat Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene. 2016;35(24):3209–16.CrossRefPubMed Schabath MB, Welsh EA, Fulp WJ, et al. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene. 2016;35(24):3209–16.CrossRefPubMed
42.
Zurück zum Zitat Skoulidis F, Byers LA, Diao L. Paet al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77.CrossRefPubMedPubMedCentral Skoulidis F, Byers LA, Diao L. Paet al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Nelson D, Fisher S, Robinson B. The “Trojan horse” approach to tumor immunotherapy: Targeting the tumor microenvironment. J Immunol Res. 2014;2014:789069.PubMedPubMedCentral Nelson D, Fisher S, Robinson B. The “Trojan horse” approach to tumor immunotherapy: Targeting the tumor microenvironment. J Immunol Res. 2014;2014:789069.PubMedPubMedCentral
44.
Zurück zum Zitat Kluger HM, Zito CR, Barr ML, et al. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 2015;21:3052–60.CrossRefPubMedPubMedCentral Kluger HM, Zito CR, Barr ML, et al. Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 2015;21:3052–60.CrossRefPubMedPubMedCentral
45.
Zurück zum Zitat Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.CrossRefPubMedPubMedCentral
46.
47.
Zurück zum Zitat Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.CrossRefPubMedPubMedCentral Herbst RS, Soria J-C, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–7.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.CrossRefPubMedPubMedCentral Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74.CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells – A new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;1:10.CrossRefPubMedPubMedCentral Wesolowski R, Markowitz J, Carson WE. Myeloid derived suppressor cells – A new therapeutic target in the treatment of cancer. J Immunother Cancer. 2013;1:10.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 2010;11:889–96.CrossRefPubMed Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol. 2010;11:889–96.CrossRefPubMed
52.
Zurück zum Zitat Redente EF, Dwyer-Nield LD, Merrick DT, et al. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol. 2010;176:2972–85.CrossRefPubMedPubMedCentral Redente EF, Dwyer-Nield LD, Merrick DT, et al. Tumor progression stage and anatomical site regulate tumor-associated macrophage and bone marrow-derived monocyte polarization. Am J Pathol. 2010;176:2972–85.CrossRefPubMedPubMedCentral
55.
Zurück zum Zitat Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–90.CrossRefPubMedPubMedCentral Noman MZ, Desantis G, Janji B, et al. PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med. 2014;211:781–90.CrossRefPubMedPubMedCentral
56.
Zurück zum Zitat Weber JS, Kudchadkar RR, Yu B, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.CrossRefPubMedPubMedCentral Weber JS, Kudchadkar RR, Yu B, et al. Safety, efficacy, and biomarkers of nivolumab with vaccine in ipilimumab-refractory or -naive melanoma. J Clin Oncol. 2013;31(34):4311–8.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.CrossRefPubMed Miller AB, Hoogstraten B, Staquet M, Winkler A. Reporting results of cancer treatment. Cancer. 1981;47:207–14.CrossRefPubMed
58.
Zurück zum Zitat Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. JNCI: J Natl Cancer Inst. 2000;92(3):205–16.CrossRefPubMed Therasse P, Arbuck SG, Eisenhauer EA, et al. New guidelines to evaluate the response to treatment in solid tumors. JNCI: J Natl Cancer Inst. 2000;92(3):205–16.CrossRefPubMed
59.
Zurück zum Zitat Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed
60.
Zurück zum Zitat Subbiah V, Chuang HH, Gambhire D, Kairemo K. Defining clinical response criteria and early response criteria for precision oncology: Current state-of-the-art and future perspectives. Diagnostics (Basel). 2017;7(1):E10.CrossRef Subbiah V, Chuang HH, Gambhire D, Kairemo K. Defining clinical response criteria and early response criteria for precision oncology: Current state-of-the-art and future perspectives. Diagnostics (Basel). 2017;7(1):E10.CrossRef
61.
Zurück zum Zitat Wong AN, McArthur GA, Hofman MS, et al. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging. 2017; doi:10.1007/s00259-017-3691-7. Wong AN, McArthur GA, Hofman MS, et al. The advantages and challenges of using FDG PET/CT for response assessment in melanoma in the era of targeted agents and immunotherapy. Eur J Nucl Med Mol Imaging. 2017; doi:10.​1007/​s00259-017-3691-7.
62.
Zurück zum Zitat Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab for metastatic renal cell carcinoma: Results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430–7.CrossRefPubMed Motzer RJ, Rini BI, McDermott DF, et al. Nivolumab for metastatic renal cell carcinoma: Results of a randomized phase II trial. J Clin Oncol. 2015;33(13):1430–7.CrossRefPubMed
63.
64.
Zurück zum Zitat Hodi FS, Hwu WJ, Kefford R, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with Pembrolizumab. J Clin Oncol. 2016;34(13):1510–7.CrossRefPubMedPubMedCentral Hodi FS, Hwu WJ, Kefford R, et al. Evaluation of immune-related response criteria and RECIST v1.1 in patients with advanced melanoma treated with Pembrolizumab. J Clin Oncol. 2016;34(13):1510–7.CrossRefPubMedPubMedCentral
65.
Zurück zum Zitat Daud A, Ribas A, Robert C, et al. Long-term efficacy of pembrolizumab (pembro; MK-3475) in a pooled analysis of 655 patients (pts) with advanced melanoma (MEL) enrolled in KEYNOTE-001. J Clin Oncol. 2015;33 (suppl; abstr 9005). Daud A, Ribas A, Robert C, et al. Long-term efficacy of pembrolizumab (pembro; MK-3475) in a pooled analysis of 655 patients (pts) with advanced melanoma (MEL) enrolled in KEYNOTE-001. J Clin Oncol. 2015;33 (suppl; abstr 9005).
66.
Zurück zum Zitat Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.CrossRefPubMed Robert C, Ribas A, Wolchok JD, et al. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: A randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014;384(9948):1109–17.CrossRefPubMed
67.
Zurück zum Zitat Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.CrossRefPubMed Powles T, Eder JP, Fine GD, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515(7528):558–62.CrossRefPubMed
68.
Zurück zum Zitat Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefPubMedPubMedCentral Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMed Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.CrossRefPubMed
70.
Zurück zum Zitat Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.CrossRefPubMed Weber JS, D’Angelo SP, Minor D, et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015;16(4):375–84.CrossRefPubMed
71.
Zurück zum Zitat Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.CrossRefPubMedPubMedCentral Topalian SL, Sznol M, McDermott DF, et al. Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab. J Clin Oncol. 2014;32(10):1020–30.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.CrossRefPubMed Rizvi NA, Mazieres J, Planchard D, et al. Activity and safety of nivolumab, an anti-PD-1 immune checkpoint inhibitor, for patients with advanced, refractory squamous non-small-cell lung cancer (CheckMate 063): A phase 2, single-arm trial. Lancet Oncol. 2015;16(3):257–65.CrossRefPubMed
73.
Zurück zum Zitat Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.CrossRefPubMedPubMedCentral
74.
Zurück zum Zitat Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.CrossRefPubMedPubMedCentral Brahmer JR, Drake CG, Wollner I, et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: Safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol. 2010;28(19):3167–75.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat De Wolf K, Kruse V, Sundahl N, et al. A phase II trial of stereotactic body radiotherapy with concurrent anti-PD1 treatment in metastatic melanoma: Evaluation of clinical and immunologic response. J Transl Med. 2017;15(1):21.CrossRefPubMedPubMedCentral De Wolf K, Kruse V, Sundahl N, et al. A phase II trial of stereotactic body radiotherapy with concurrent anti-PD1 treatment in metastatic melanoma: Evaluation of clinical and immunologic response. J Transl Med. 2017;15(1):21.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. Eur J Cancer. 1999;35(13):1773–82.CrossRefPubMed Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: Review and 1999 EORTC recommendations. Eur J Cancer. 1999;35(13):1773–82.CrossRefPubMed
77.
Zurück zum Zitat Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.ù.CrossRefPubMedPubMedCentral Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: Evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.ù.CrossRefPubMedPubMedCentral
78.
Zurück zum Zitat Pinker K, Riedl C, Weber WA. Evaluating tumor response with FDG PET: Updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur J Nucl Med Mol Imaging. 2017; doi:10.1007/s00259-017-3687-3. Pinker K, Riedl C, Weber WA. Evaluating tumor response with FDG PET: Updates on PERCIST, comparison with EORTC criteria and clues to future developments. Eur J Nucl Med Mol Imaging. 2017; doi:10.​1007/​s00259-017-3687-3.
79.
Zurück zum Zitat Sachpekidis C, Larribere L, Pan L, et al. Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: Preliminary results of an ongoing study. Eur J Nucl Med Mol Imaging. 2015;42(3):386–96.CrossRefPubMed Sachpekidis C, Larribere L, Pan L, et al. Predictive value of early 18F-FDG PET/CT studies for treatment response evaluation to ipilimumab in metastatic melanoma: Preliminary results of an ongoing study. Eur J Nucl Med Mol Imaging. 2015;42(3):386–96.CrossRefPubMed
80.
Zurück zum Zitat Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–96.CrossRefPubMed Cheson BD, Ansell S, Schwartz L, et al. Refinement of the Lugano classification lymphoma response criteria in the era of immunomodulatory therapy. Blood. 2016;128:2489–96.CrossRefPubMed
81.
Zurück zum Zitat Cho SY, Lipson EJ, Im HJ, ROwe SP, et al. Prediction of response to immune checkpoint inhibitor therapy early time-point FDG-PET/CT imaging in patients with advanced melanoma. J Nucl Med 2017. Cho SY, Lipson EJ, Im HJ, ROwe SP, et al. Prediction of response to immune checkpoint inhibitor therapy early time-point FDG-PET/CT imaging in patients with advanced melanoma. J Nucl Med 2017.
83.
Zurück zum Zitat Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.CrossRefPubMedPubMedCentral Chang CH, Qiu J, O’Sullivan D, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Lopci E, Toschi L, Grizzi F, et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patienst with non-small cell lung cancer (NSCLC) who are candidate for upfront surgery. Eur J Nucl Med Mol Imaging. 2016;43(11):1954–61.CrossRefPubMed Lopci E, Toschi L, Grizzi F, et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patienst with non-small cell lung cancer (NSCLC) who are candidate for upfront surgery. Eur J Nucl Med Mol Imaging. 2016;43(11):1954–61.CrossRefPubMed
85.
Zurück zum Zitat Higashikawa K, Yagi K, Watanabe K, et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866.CrossRefPubMedPubMedCentral Higashikawa K, Yagi K, Watanabe K, et al. 64Cu-DOTA-anti-CTLA-4 mAb enabled PET visualization of CTLA-4 on the T-cell infiltrating tumor tissues. PLoS One. 2014;9(11):e109866.CrossRefPubMedPubMedCentral
86.
Zurück zum Zitat Ehlerding EB, England CG, Majewski RL, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14(5):1782–9.CrossRefPubMed Ehlerding EB, England CG, Majewski RL, et al. ImmunoPET imaging of CTLA-4 expression in mouse models of non-small cell lung cancer. Mol Pharm. 2017;14(5):1782–9.CrossRefPubMed
87.
Zurück zum Zitat Natarajan A, Mayer AT, Reeves RE, et al. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol Imaging Biol. 2017. Natarajan A, Mayer AT, Reeves RE, et al. Development of Novel ImmunoPET Tracers to Image Human PD-1 Checkpoint Expression on Tumor-Infiltrating Lymphocytes in a Humanized Mouse Model. Mol Imaging Biol. 2017.
88.
Zurück zum Zitat England CG, Ehlerding EB, Hernandez R, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled Pembrolizumab. J Nucl Med. 2017;58(1):162–16.CrossRefPubMedPubMedCentral England CG, Ehlerding EB, Hernandez R, et al. Preclinical pharmacokinetics and biodistribution studies of 89Zr-labeled Pembrolizumab. J Nucl Med. 2017;58(1):162–16.CrossRefPubMedPubMedCentral
89.
Zurück zum Zitat Natarajan A, Mayer At XL, et al. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26(10):2062–9.CrossRefPubMed Natarajan A, Mayer At XL, et al. Novel radiotracer for ImmunoPET imaging of PD-1 checkpoint expression on tumor infiltrating lymphocytes. Bioconjug Chem. 2015;26(10):2062–9.CrossRefPubMed
90.
Zurück zum Zitat Hettich M, Braun F, Bartholoma MD, et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40.CrossRefPubMedPubMedCentral Hettich M, Braun F, Bartholoma MD, et al. High-resolution PET imaging with therapeutic antibody-based PD-1/PD-L1 checkpoint tracers. Theranostics. 2016;6(10):1629–40.CrossRefPubMedPubMedCentral
91.
Zurück zum Zitat Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A. 2015;112(47):E6506–14.CrossRefPubMedPubMedCentral Maute RL, Gordon SR, Mayer AT, et al. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc Natl Acad Sci U S A. 2015;112(47):E6506–14.CrossRefPubMedPubMedCentral
92.
Zurück zum Zitat Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med. 2016;57(10):1607–11.CrossRefPubMedPubMedCentral Larimer BM, Wehrenberg-Klee E, Caraballo A, Mahmood U. Quantitative CD3 PET imaging predicts tumor growth response to anti-CTLA-4 therapy. J Nucl Med. 2016;57(10):1607–11.CrossRefPubMedPubMedCentral
93.
Zurück zum Zitat Tavare R, Escuin-Ordinas H, Mok S, et al. An effective Immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76(1):73–82.CrossRefPubMed Tavare R, Escuin-Ordinas H, Mok S, et al. An effective Immuno-PET imaging method to monitor CD8-dependent responses to immunotherapy. Cancer Res. 2016;76(1):73–82.CrossRefPubMed
94.
Zurück zum Zitat Knowles SM, Wu A. Advances in Immuno–positron emission tomography: Antibodies for molecular imaging in oncology. J Clin Oncol. 2012;30(31):3884–92.CrossRefPubMedPubMedCentral Knowles SM, Wu A. Advances in Immuno–positron emission tomography: Antibodies for molecular imaging in oncology. J Clin Oncol. 2012;30(31):3884–92.CrossRefPubMedPubMedCentral
95.
Zurück zum Zitat Verel I, Visser GW, Boellaard R, et al. 89Zr immuno-PET: Comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44(8):1271–81.PubMed Verel I, Visser GW, Boellaard R, et al. 89Zr immuno-PET: Comprehensive procedures for the production of 89Zr-labeled monoclonal antibodies. J Nucl Med. 2003;44(8):1271–81.PubMed
96.
Zurück zum Zitat Tolmachev V, Stone-Elander V. Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods. Biochim Biophys Acta. 2010;1800(5):487–510.CrossRefPubMed Tolmachev V, Stone-Elander V. Radiolabelled proteins for positron emission tomography: Pros and cons of labelling methods. Biochim Biophys Acta. 2010;1800(5):487–510.CrossRefPubMed
97.
Zurück zum Zitat Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: An inside-out view. Nucl Med Biol. 2007;34(7):757–78.CrossRefPubMedPubMedCentral Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: An inside-out view. Nucl Med Biol. 2007;34(7):757–78.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37(9):1557–62.PubMed Pentlow KS, Graham MC, Lambrecht RM, et al. Quantitative imaging of iodine-124 with PET. J Nucl Med. 1996;37(9):1557–62.PubMed
99.
Zurück zum Zitat Pentlow KS, Finn RD, Larson SM, et al. Quantitative imaging of yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging. 2000;3(3):85–90.CrossRefPubMed Pentlow KS, Finn RD, Larson SM, et al. Quantitative imaging of yttrium-86 with PET. The occurrence and correction of anomalous apparent activity in high density regions. Clin Positron Imaging. 2000;3(3):85–90.CrossRefPubMed
100.
Zurück zum Zitat Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.CrossRefPubMed Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol. 2011;22(6):868–76.CrossRefPubMed
101.
102.
Metadaten
Titel
Clinical characteristics of patient selection and imaging predictors of outcome in solid tumors treated with checkpoint-inhibitors
verfasst von
Sabrina Rossi
Luca Toschi
Angelo Castello
Fabio Grizzi
Luigi Mansi
Egesta Lopci
Publikationsdatum
16.08.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 13/2017
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-017-3802-5

Weitere Artikel der Ausgabe 13/2017

European Journal of Nuclear Medicine and Molecular Imaging 13/2017 Zur Ausgabe