Skip to main content

10.11.2018 | Original Article

Clinical evaluation of CT radiation dose in whole-body 18F-FDG PET/CT in relation to scout imaging direction and arm position

verfasst von: Yusuke Inoue, Kazunori Nagahara, Yuri Inoki, Toshimasa Hara, Hiroki Miyatake

Erschienen in: Annals of Nuclear Medicine

Einloggen, um Zugang zu erhalten

Abstract

Objective

Radiation exposure in CT is modulated by automatic exposure control (AEC) mainly based on scout images. We evaluated CT radiation dose in whole-body PET/CT in relation to scout imaging direction and arm position, and investigated the behavior of AEC.

Methods

Eighty adult patients who underwent whole-body 18F-FDG PET/CT were divided into groups A, B, C, and D. The posteroanterior scout image alone (PA scout) was used for AEC-based dose modulation in groups A and B, while the posteroanterior and lateral scout images (PA + Lat scout) were used in groups C and D. Patients in groups A and C were imaged with their arms beside the head, while those in groups B and D were imaged with their arms at the sides of the trunk. Dose-length product provided by the scanner was recorded. The tube current value, a determinant of radiation dose, for each slice was plotted against slice location to produce a tube current modulation curve. The scan range was divided into seven anatomical regions, and regional tube current was defined as average tube current for each region. Effective dose was calculated for each region and then summed together.

Results

Regional tube current was higher in the body trunk and proximal thigh using the PA scout than using the PA + Lat scout, resulting in higher dose-length product and effective dose using the PA scout. A marked dose increase was shown in the shoulder especially using the PA scout. Spike-like high current at the top of the head was often observed in tube current modulation curves using the PA scout but not using the PA + Lat scout. Raising the arms increased tube current in the head and neck and decreased it in the chest and abdomen. Although dose-length product did not differ significantly depending on arm position, raising the arms decreased effective dose significantly.

Conclusions

AEC-based CT dose modulation in whole-body PET/CT is affected by scout imaging direction and arm position, which should be considered to determine an optimal imaging protocol for whole-body PET/CT.
Literatur
1.
Zurück zum Zitat Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Res. 2017;7:37.CrossRefPubMedPubMedCentral Martí-Climent JM, Prieto E, Morán V, Sancho L, Rodríguez-Fraile M, Arbizu J, et al. Effective dose estimation for oncological and neurological PET/CT procedures. EJNMMI Res. 2017;7:37.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Jallow N, Christian P, Sunderland J, Graham M, Hoffman JM, Nye JA. Diagnostic reference levels of CT radiation dose in whole-body PET/CT. J Nucl Med. 2016;57:238–41.CrossRefPubMed Jallow N, Christian P, Sunderland J, Graham M, Hoffman JM, Nye JA. Diagnostic reference levels of CT radiation dose in whole-body PET/CT. J Nucl Med. 2016;57:238–41.CrossRefPubMed
3.
Zurück zum Zitat Inoue Y, Nagahara K, Tanaka Y, Miyatake H, Hata H, Hara T. Methods of CT dose estimation in whole-body 18F-FDG PET/CT. J Nucl Med. 2015;56:695–700.CrossRefPubMed Inoue Y, Nagahara K, Tanaka Y, Miyatake H, Hata H, Hara T. Methods of CT dose estimation in whole-body 18F-FDG PET/CT. J Nucl Med. 2015;56:695–700.CrossRefPubMed
4.
Zurück zum Zitat Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosim. 2012;152:334–8.CrossRef Etard C, Celier D, Roch P, Aubert B. National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. Radiat Prot Dosim. 2012;152:334–8.CrossRef
5.
Zurück zum Zitat Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosim. 2010;141:50–5.CrossRef Khamwan K, Krisanachinda A, Pasawang P. The determination of patient dose from 18F-FDG PET/CT examination. Radiat Prot Dosim. 2010;141:50–5.CrossRef
6.
Zurück zum Zitat Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.PubMed Brix G, Lechel U, Glatting G, Ziegler SI, Münzing W, Müller SP, et al. Radiation exposure of patients undergoing whole-body dual-modality 18F-FDG PET/CT examinations. J Nucl Med. 2005;46:608–13.PubMed
7.
Zurück zum Zitat Alenezi A, Soliman K. Trends in radiation protection of positron emission tomography/computed tomography imaging. Ann ICRP. 2015;44:259–75.CrossRefPubMed Alenezi A, Soliman K. Trends in radiation protection of positron emission tomography/computed tomography imaging. Ann ICRP. 2015;44:259–75.CrossRefPubMed
8.
Zurück zum Zitat Söderberg M, Gunnarsson M. Automatic exposure control in computed tomography–an evaluation of systems from different manufacturers. Acta Radiol. 2010;51:625–34.CrossRefPubMed Söderberg M, Gunnarsson M. Automatic exposure control in computed tomography–an evaluation of systems from different manufacturers. Acta Radiol. 2010;51:625–34.CrossRefPubMed
9.
Zurück zum Zitat Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28:1451–9.CrossRefPubMed Lee CH, Goo JM, Ye HJ, Ye SJ, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics. 2008;28:1451–9.CrossRefPubMed
10.
Zurück zum Zitat Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649–57.CrossRefPubMed Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL, Morgan HT, et al. Techniques and applications of automatic tube current modulation for CT. Radiology. 2004;233:649–57.CrossRefPubMed
11.
Zurück zum Zitat Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRefPubMed Boellaard R, Delgado-Bolton R, Oyen WJ, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. Eur J Nucl Med Mol Imaging. 2015;42:328–54.CrossRefPubMed
12.
Zurück zum Zitat Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.PubMed Delbeke D, Coleman RE, Guiberteau MJ, Brown ML, Royal HD, Siegel BA, et al. Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med. 2006;47:885–95.PubMed
13.
Zurück zum Zitat Seong JH, Park SK, Kim JS, Jung WY, Kim HS, Dong KR, et al. A comparative study on the CT effective dose for various positions of the patient’s arm. J Korean Phys Soc. 2012;61:1137–42.CrossRef Seong JH, Park SK, Kim JS, Jung WY, Kim HS, Dong KR, et al. A comparative study on the CT effective dose for various positions of the patient’s arm. J Korean Phys Soc. 2012;61:1137–42.CrossRef
14.
Zurück zum Zitat Inoue Y, Nagahara K, Kudo H, Itoh H. CT dose modulation using automatic exposure control in whole-body PET/CT: effects of scout imaging direction and arm positioning. Am J Nucl Med Mol Imaging. 2018;8:143–52.PubMedPubMedCentral Inoue Y, Nagahara K, Kudo H, Itoh H. CT dose modulation using automatic exposure control in whole-body PET/CT: effects of scout imaging direction and arm positioning. Am J Nucl Med Mol Imaging. 2018;8:143–52.PubMedPubMedCentral
15.
Zurück zum Zitat Peng W, Li Z, Xia C, Guo Y, Zhang J, Zhang K, et al. A CONSORT-compliant prospective randomized controlled trial: radiation dose reducing in computed tomography using an additional lateral scout view combined with automatic tube current modulation: Phantom and patient study. Medicine (Baltimore). 2017;96:e7324.CrossRef Peng W, Li Z, Xia C, Guo Y, Zhang J, Zhang K, et al. A CONSORT-compliant prospective randomized controlled trial: radiation dose reducing in computed tomography using an additional lateral scout view combined with automatic tube current modulation: Phantom and patient study. Medicine (Baltimore). 2017;96:e7324.CrossRef
16.
Zurück zum Zitat Franck C, Bacher K. Influence of localizer and scan direction on the dose-reducing effect of automatic tube current modulation in computed tomography. Radiat Prot Dosim. 2016;169:136–42.CrossRef Franck C, Bacher K. Influence of localizer and scan direction on the dose-reducing effect of automatic tube current modulation in computed tomography. Radiat Prot Dosim. 2016;169:136–42.CrossRef
17.
Zurück zum Zitat Söderberg M. Overview, practical tips and potential pitfalls of using automatic exposure control in CT: siemens CARE Dose 4D. Radiat Prot Dosim. 2016;169:84–91.CrossRef Söderberg M. Overview, practical tips and potential pitfalls of using automatic exposure control in CT: siemens CARE Dose 4D. Radiat Prot Dosim. 2016;169:84–91.CrossRef
18.
Zurück zum Zitat Singh S, Petrovic D, Jamnik E, Aran S, Pourjabbar S, Kave ML, et al. Effect of localizer radiograph on radiation dose associated with automatic exposure control: human cadaver and patient study. J Comput Assist Tomogr. 2014;38:293–8.CrossRefPubMed Singh S, Petrovic D, Jamnik E, Aran S, Pourjabbar S, Kave ML, et al. Effect of localizer radiograph on radiation dose associated with automatic exposure control: human cadaver and patient study. J Comput Assist Tomogr. 2014;38:293–8.CrossRefPubMed
19.
Zurück zum Zitat Papadakis AE, Perisinakis K, Damilakis J. Automatic exposure control in pediatric and adult multidetector CT examinations: a phantom study on dose reduction and image quality. Med Phys. 2008;35:4567–76.CrossRefPubMed Papadakis AE, Perisinakis K, Damilakis J. Automatic exposure control in pediatric and adult multidetector CT examinations: a phantom study on dose reduction and image quality. Med Phys. 2008;35:4567–76.CrossRefPubMed
20.
Zurück zum Zitat Suntharalingam S, Wetter A, Guberina N, Theysohn J, Ringelstein A, Schlosser T, et al. Impact of the scout view orientation on the radiation exposure and image quality in thoracic and abdominal CT. Eur Radiol. 2016;26:4072–9.CrossRefPubMed Suntharalingam S, Wetter A, Guberina N, Theysohn J, Ringelstein A, Schlosser T, et al. Impact of the scout view orientation on the radiation exposure and image quality in thoracic and abdominal CT. Eur Radiol. 2016;26:4072–9.CrossRefPubMed
21.
Zurück zum Zitat Saltybaeva N, Alkadhi H. Vertical off-centering affects organ dose in chest CT: evidence from Monte Carlo simulations in anthropomorphic phantoms. Med Phys. 2017;44:5697–704.CrossRefPubMed Saltybaeva N, Alkadhi H. Vertical off-centering affects organ dose in chest CT: evidence from Monte Carlo simulations in anthropomorphic phantoms. Med Phys. 2017;44:5697–704.CrossRefPubMed
22.
Zurück zum Zitat Lambert JW, Kumar S, Chen JS, Wang ZJ, Gould RG, Yeh BM. Investigating the CT localizer radiograph: acquisition parameters, patient centring and their combined influence on radiation dose. Br J Radiol. 2015;88:20140730.CrossRefPubMedPubMedCentral Lambert JW, Kumar S, Chen JS, Wang ZJ, Gould RG, Yeh BM. Investigating the CT localizer radiograph: acquisition parameters, patient centring and their combined influence on radiation dose. Br J Radiol. 2015;88:20140730.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 2007;37. ICRP. The 2007 recommendations of the international commission on radiological protection. ICRP publication 103. Ann ICRP 2007;37.
24.
Zurück zum Zitat ICRP. Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Ann ICRP 2007;37. ICRP. Managing patient dose in multi-detector computed tomography (MDCT). ICRP Publication 102. Ann ICRP 2007;37.
25.
Zurück zum Zitat ICRP Statement on Tissue. Reactions/early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. ICRP Publication Ann ICRP 2012; 118:41 ICRP Statement on Tissue. Reactions/early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. ICRP Publication Ann ICRP 2012; 118:41
27.
Zurück zum Zitat Iball GR, Tout D. Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning. Nucl Med Commun. 2014;35:372–81.CrossRefPubMed Iball GR, Tout D. Computed tomography automatic exposure control techniques in 18F-FDG oncology PET-CT scanning. Nucl Med Commun. 2014;35:372–81.CrossRefPubMed
Metadaten
Titel
Clinical evaluation of CT radiation dose in whole-body 18F-FDG PET/CT in relation to scout imaging direction and arm position
verfasst von
Yusuke Inoue
Kazunori Nagahara
Yuri Inoki
Toshimasa Hara
Hiroki Miyatake
Publikationsdatum
10.11.2018
Verlag
Springer Singapore
Erschienen in
Annals of Nuclear Medicine
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-018-1318-0