Skip to main content
Erschienen in: Current Cardiovascular Risk Reports 6/2010

01.11.2010

Clinical Implications of Lipid Genetics for Cardiovascular Disease

verfasst von: Alanna Strong, Daniel J. Rader

Erschienen in: Current Cardiovascular Risk Reports | Ausgabe 6/2010

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular disease is the leading cause of morbidity and mortality in the developed world. Epidemiologic data support a strong relationship of atherosclerotic cardiovascular disease (ASCVD) with both elevated low-density lipoprotein cholesterol (LDL-C), and reduced high-density lipoprotein cholesterol (HDL-C). The study of the human genetics of plasma lipid traits, both rare Mendelian disorders as well as common variants, has illuminated multiple genes and pathways involved in the regulation of LDL-C and HDL-C levels. Mendelian disorders of extremes of LDL-C and Mendelian randomization studies of common gene variants associated with LDL-C strongly support a causal relationship between LDL-C and ASCVD, independent of mechanism. In contrast, Mendelian disorders of extremes of HDL-C and Mendelian randomization studies of common genetic variants for HDL-C are inconsistent in their support of a causal relationship between HDL-C and ASCVD. In contrast to LDL-C, a causal relationship between HDL-C and ASCVD may be dependent on the specific mechanism leading to variation in HDL-C levels.
Literatur
1.
Zurück zum Zitat Lloyd-Jones D, et al.: Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:948–954.CrossRefPubMed Lloyd-Jones D, et al.: Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 2010, 121:948–954.CrossRefPubMed
2.
Zurück zum Zitat Hobbs DJ: Disorders of lipoprotein metabolism. In Harrison’s Principles of Internal Medicine. Edited by Kasper DL, Braunwald E, Fauci AS, et al.: New York: McGraw Hill Publishers; 2007:2416–2429. Hobbs DJ: Disorders of lipoprotein metabolism. In Harrison’s Principles of Internal Medicine. Edited by Kasper DL, Braunwald E, Fauci AS, et al.: New York: McGraw Hill Publishers; 2007:2416–2429.
3.
Zurück zum Zitat Goldstein J, Hobbs H, Brown M: Familial hypercholesterolemia. In The metabolic and Molecular Bases of Inherited Disease. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 2001:2863–2913 Goldstein J, Hobbs H, Brown M: Familial hypercholesterolemia. In The metabolic and Molecular Bases of Inherited Disease. Edited by Scriver C, Beaudet A, Sly W, Valle D. New York: McGraw-Hill; 2001:2863–2913
4.
5.
Zurück zum Zitat Garcia CK, et al.: Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292:1394–1398.CrossRefPubMed Garcia CK, et al.: Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 2001, 292:1394–1398.CrossRefPubMed
6.
Zurück zum Zitat Mishra SK, Watkins SC, Traub LM: The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc Natl Acad Sci U S A 2002, 99:16099–16104.CrossRefPubMed Mishra SK, Watkins SC, Traub LM: The autosomal recessive hypercholesterolemia (ARH) protein interfaces directly with the clathrin-coat machinery. Proc Natl Acad Sci U S A 2002, 99:16099–16104.CrossRefPubMed
7.
Zurück zum Zitat Arca M, et al.: Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 2002, 359:841–847.CrossRefPubMed Arca M, et al.: Autosomal recessive hypercholesterolaemia in Sardinia, Italy, and mutations in ARH: a clinical and molecular genetic analysis. Lancet 2002, 359:841–847.CrossRefPubMed
8.
Zurück zum Zitat Abifadel M, et al.: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003, 34:154–156.CrossRefPubMed Abifadel M, et al.: Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003, 34:154–156.CrossRefPubMed
9.
Zurück zum Zitat Horton JD, et al.: Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007, 32:71–77.CrossRefPubMed Horton JD, et al.: Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 2007, 32:71–77.CrossRefPubMed
10.
Zurück zum Zitat Cunningham D, et al.: Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007, 14:413–419.CrossRefPubMed Cunningham D, et al.: Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat Struct Mol Biol 2007, 14:413–419.CrossRefPubMed
11.
Zurück zum Zitat Hansen PS: Familial defective apolipoprotein B-100. Dan Med Bull 1998, 45:370–382.PubMed Hansen PS: Familial defective apolipoprotein B-100. Dan Med Bull 1998, 45:370–382.PubMed
12.
Zurück zum Zitat Ejarque I, et al.: Evaluation of clinical diagnosis criteria of familial ligand defective apoB 100 and lipoprotein phenotype comparison between LDL receptor gene mutations affecting ligand-binding domain and the R3500Q mutation of the apoB gene in patients from a South European population. Transl Res 2008, 151:162–167.PubMed Ejarque I, et al.: Evaluation of clinical diagnosis criteria of familial ligand defective apoB 100 and lipoprotein phenotype comparison between LDL receptor gene mutations affecting ligand-binding domain and the R3500Q mutation of the apoB gene in patients from a South European population. Transl Res 2008, 151:162–167.PubMed
13.
Zurück zum Zitat Myant NB: Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis 1993, 104:1–18.CrossRefPubMed Myant NB: Familial defective apolipoprotein B-100: a review, including some comparisons with familial hypercholesterolaemia. Atherosclerosis 1993, 104:1–18.CrossRefPubMed
14.
Zurück zum Zitat Bhattacharyya AK, Connor WE: Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 1974, 53:1033–1043.CrossRefPubMed Bhattacharyya AK, Connor WE: Beta-sitosterolemia and xanthomatosis. A newly described lipid storage disease in two sisters. J Clin Invest 1974, 53:1033–1043.CrossRefPubMed
15.
Zurück zum Zitat Salen G, et al.: Sitosterolemia. J Lipid Res 1992, 33:945–955.PubMed Salen G, et al.: Sitosterolemia. J Lipid Res 1992, 33:945–955.PubMed
16.
Zurück zum Zitat Berge KE, et al: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290:1771–1775.CrossRefPubMed Berge KE, et al: Accumulation of dietary cholesterol in sitosterolemia caused by mutations in adjacent ABC transporters. Science 2000, 290:1771–1775.CrossRefPubMed
17.
Zurück zum Zitat Oram JF, Vaughan AM: ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res 2006. 99:1031–1043.CrossRefPubMed Oram JF, Vaughan AM: ATP-Binding cassette cholesterol transporters and cardiovascular disease. Circ Res 2006. 99:1031–1043.CrossRefPubMed
18.
Zurück zum Zitat Tarugi P, et al.: Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 2007, 195:e19–27.CrossRefPubMed Tarugi P, et al.: Molecular diagnosis of hypobetalipoproteinemia: an ENID review. Atherosclerosis 2007, 195:e19–27.CrossRefPubMed
19.
20.
Zurück zum Zitat Sankatsing RR, et al.: Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2005, 25:1979–1984.CrossRefPubMed Sankatsing RR, et al.: Hepatic and cardiovascular consequences of familial hypobetalipoproteinemia. Arterioscler Thromb Vasc Biol 2005, 25:1979–1984.CrossRefPubMed
21.
Zurück zum Zitat Sharp D, et al.: Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature 1993, 365:65–69.CrossRefPubMed Sharp D, et al.: Cloning and gene defects in microsomal triglyceride transfer protein associated with abetalipoproteinaemia. Nature 1993, 365:65–69.CrossRefPubMed
22.
Zurück zum Zitat Gordon DA, Jamil H: Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta 2000, 1486:72–83.PubMed Gordon DA, Jamil H: Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein-B lipoprotein assembly. Biochim Biophys Acta 2000, 1486:72–83.PubMed
23.
Zurück zum Zitat Dische MR, Porro RS: The cardiac lesions in Bassen-Kornzweig syndrome. Report of a case, with autopsy findings. Am J Med 1970, 49:568–571.CrossRefPubMed Dische MR, Porro RS: The cardiac lesions in Bassen-Kornzweig syndrome. Report of a case, with autopsy findings. Am J Med 1970, 49:568–571.CrossRefPubMed
24.
Zurück zum Zitat Cohen J, et al.: Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005, 37:161–165.CrossRefPubMed Cohen J, et al.: Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet 2005, 37:161–165.CrossRefPubMed
25.
Zurück zum Zitat Zhao Z, et al.: Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006, 79:514–523.CrossRefPubMed Zhao Z, et al.: Molecular characterization of loss-of-function mutations in PCSK9 and identification of a compound heterozygote. Am J Hum Genet 2006, 79:514–523.CrossRefPubMed
26.
Zurück zum Zitat Cohen JC, et al.: Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006, 354:1264–1272.CrossRefPubMed Cohen JC, et al.: Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006, 354:1264–1272.CrossRefPubMed
27.
Zurück zum Zitat Kathiresan S: A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 2008, 358:2299–2300.CrossRefPubMed Kathiresan S: A PCSK9 missense variant associated with a reduced risk of early-onset myocardial infarction. N Engl J Med 2008, 358:2299–2300.CrossRefPubMed
28.
Zurück zum Zitat Oram JF, Lawn RM: ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001, 42:1173–1179.PubMed Oram JF, Lawn RM: ABCA1. The gatekeeper for eliminating excess tissue cholesterol. J Lipid Res 2001, 42:1173–1179.PubMed
29.
Zurück zum Zitat Hobbs HH, Rader DJ: ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J Clin Invest 1999, 104:1015–1017.CrossRefPubMed Hobbs HH, Rader DJ: ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J Clin Invest 1999, 104:1015–1017.CrossRefPubMed
30.
Zurück zum Zitat • Frikke-Schmidt R, et al.: Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 2008, 299:2524–2532. This study addressed whether heterozygous individuals for four ABCA1 loss-of-function mutations were at increased risk for ischemic heart disease compared with non-carriers. Their data suggests that although carriers of loss-of-function ABCA1 mutations have a 17-mg/dL lower HDL-C level than non-carriers, they are not at increased risk for ischemic heart disease. • Frikke-Schmidt R, et al.: Association of loss-of-function mutations in the ABCA1 gene with high-density lipoprotein cholesterol levels and risk of ischemic heart disease. JAMA 2008, 299:2524–2532. This study addressed whether heterozygous individuals for four ABCA1 loss-of-function mutations were at increased risk for ischemic heart disease compared with non-carriers. Their data suggests that although carriers of loss-of-function ABCA1 mutations have a 17-mg/dL lower HDL-C level than non-carriers, they are not at increased risk for ischemic heart disease.
31.
Zurück zum Zitat Brousseau ME, et al.: Common variants in the gene encoding ATP-binding cassette transporter 1 in men with low HDL cholesterol levels and coronary heart disease. Atherosclerosis 2001, 154:607–611.CrossRefPubMed Brousseau ME, et al.: Common variants in the gene encoding ATP-binding cassette transporter 1 in men with low HDL cholesterol levels and coronary heart disease. Atherosclerosis 2001, 154:607–611.CrossRefPubMed
32.
Zurück zum Zitat Kuivenhoven JA, et al.: The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 1997, 38:191–205.PubMed Kuivenhoven JA, et al.: The molecular pathology of lecithin:cholesterol acyltransferase (LCAT) deficiency syndromes. J Lipid Res 1997, 38:191–205.PubMed
33.
Zurück zum Zitat Calabresi L, et al.: The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol 2005, 25:1972–1978.CrossRefPubMed Calabresi L, et al.: The molecular basis of lecithin:cholesterol acyltransferase deficiency syndromes: a comprehensive study of molecular and biochemical findings in 13 unrelated Italian families. Arterioscler Thromb Vasc Biol 2005, 25:1972–1978.CrossRefPubMed
34.
Zurück zum Zitat Hovingh GK, et al.: Compromised LCAT function is associated with increased atherosclerosis. Circulation 2005, 112:879–884.CrossRefPubMed Hovingh GK, et al.: Compromised LCAT function is associated with increased atherosclerosis. Circulation 2005, 112:879–884.CrossRefPubMed
35.
Zurück zum Zitat • Calabresi L, et al.: Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation 2009, 120:628–635. This study addressed whether low HDL due to heterozygosity for LCAT mutations is associated with increased risk of CVD compared with non-carriers, using IMT as a marker for preclinical atherosclerotic disease. This study found no association between increased IMT and heterozygosity for LCAT mutations, suggesting that low HDL due to LCAT deficiency is not associated with increased atherosclerotic disease. • Calabresi L, et al.: Functional lecithin: cholesterol acyltransferase is not required for efficient atheroprotection in humans. Circulation 2009, 120:628–635. This study addressed whether low HDL due to heterozygosity for LCAT mutations is associated with increased risk of CVD compared with non-carriers, using IMT as a marker for preclinical atherosclerotic disease. This study found no association between increased IMT and heterozygosity for LCAT mutations, suggesting that low HDL due to LCAT deficiency is not associated with increased atherosclerotic disease.
36.
Zurück zum Zitat Lambert G, et al.: Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem 2001, 276:15090–15098.CrossRefPubMed Lambert G, et al.: Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice. J Biol Chem 2001, 276:15090–15098.CrossRefPubMed
37.
Zurück zum Zitat Ng DS, et al.: Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem 2002, 277:11715–11720.CrossRefPubMed Ng DS, et al.: Oxidative stress is markedly elevated in lecithin:cholesterol acyltransferase-deficient mice and is paradoxically reversed in the apolipoprotein E knockout background in association with a reduction in atherosclerosis. J Biol Chem 2002, 277:11715–11720.CrossRefPubMed
38.
Zurück zum Zitat Furbee JW Jr, et al.: Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 2002, 277:3511–3519.CrossRefPubMed Furbee JW Jr, et al.: Lecithin:cholesterol acyltransferase deficiency increases atherosclerosis in the low density lipoprotein receptor and apolipoprotein E knockout mice. J Biol Chem 2002, 277:3511–3519.CrossRefPubMed
39.
Zurück zum Zitat Rader DJ: Lecithin: cholesterol acyltransferase and atherosclerosis: another high-density lipoprotein story that doesn’t quite follow the script. Circulation 2009, 120:549–552.CrossRefPubMed Rader DJ: Lecithin: cholesterol acyltransferase and atherosclerosis: another high-density lipoprotein story that doesn’t quite follow the script. Circulation 2009, 120:549–552.CrossRefPubMed
40.
Zurück zum Zitat Ng DS, et al.: Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest 1994, 93:223–229.CrossRefPubMed Ng DS, et al.: Apolipoprotein A-I Q[-2]X causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia. J Clin Invest 1994, 93:223–229.CrossRefPubMed
41.
Zurück zum Zitat Franceschini G, et al.: Apolipoprotein AIMilano. Disulfide-linked dimers increase high density lipoprotein stability and hinder particle interconversion in carrier plasma. J Biol Chem 1990, 265:12224–12231.PubMed Franceschini G, et al.: Apolipoprotein AIMilano. Disulfide-linked dimers increase high density lipoprotein stability and hinder particle interconversion in carrier plasma. J Biol Chem 1990, 265:12224–12231.PubMed
42.
Zurück zum Zitat Dastani Z, et al.: A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. Atherosclerosis 2006, 185:127–136.CrossRefPubMed Dastani Z, et al.: A novel nonsense apolipoprotein A-I mutation (apoA-I(E136X)) causes low HDL cholesterol in French Canadians. Atherosclerosis 2006, 185:127–136.CrossRefPubMed
43.
Zurück zum Zitat Hovingh GK, et al.: A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J Am Coll Cardiol 2004, 44:1429–1435.CrossRefPubMed Hovingh GK, et al.: A novel apoA-I mutation (L178P) leads to endothelial dysfunction, increased arterial wall thickness, and premature coronary artery disease. J Am Coll Cardiol 2004, 44:1429–1435.CrossRefPubMed
44.
Zurück zum Zitat Inazu A, et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990, 323:1234–1238.CrossRefPubMed Inazu A, et al.: Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 1990, 323:1234–1238.CrossRefPubMed
45.
Zurück zum Zitat Barter PJ, et al.: Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003, 23:160–167.CrossRefPubMed Barter PJ, et al.: Cholesteryl ester transfer protein: a novel target for raising HDL and inhibiting atherosclerosis. Arterioscler Thromb Vasc Biol 2003, 23:160–167.CrossRefPubMed
46.
Zurück zum Zitat Saxena R, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.CrossRefPubMed Saxena R, et al.: Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007, 316:1331–1336.CrossRefPubMed
47.
Zurück zum Zitat • Kathiresan S, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197. This GWAS identified 18 total loci for lipid traits and six novel loci, including the 1p13 SORT1 locus, as a genome-wide significant determinant of LDL-C. • Kathiresan S, et al.: Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet 2008, 40:189–197. This GWAS identified 18 total loci for lipid traits and six novel loci, including the 1p13 SORT1 locus, as a genome-wide significant determinant of LDL-C.
48.
Zurück zum Zitat • Willer CJ, et al.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008, 40:161–169. This GWAS identified 11 total loci for lipid traits and six novel loci, including the 1p13 SORT1 locus. This study also found an association between 11 LDL SNPs and CVD. • Willer CJ, et al.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008, 40:161–169. This GWAS identified 11 total loci for lipid traits and six novel loci, including the 1p13 SORT1 locus. This study also found an association between 11 LDL SNPs and CVD.
49.
Zurück zum Zitat • Kathiresan S, et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009, 41:56–65. This GWAS identified 30 total loci for lipid traits, with 10 novel loci. • Kathiresan S, et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 2009, 41:56–65. This GWAS identified 30 total loci for lipid traits, with 10 novel loci.
50.
Zurück zum Zitat • Teslovich TM, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2009, 466:707–713. The largest GWAS for lipid traits to date, it identified 95 total loci for lipid traits with 59 novel loci. This study also identified 29 lipid loci also associated with CVD. Many of the significant SNPs were associated with gene expression changes in liver and adipose and were also replicated in three non-European populations. Three novel genes were also overexpressed and/or knocked down in mice and shown to have an effect on lipids. • Teslovich TM, et al.: Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2009, 466:707–713. The largest GWAS for lipid traits to date, it identified 95 total loci for lipid traits with 59 novel loci. This study also identified 29 lipid loci also associated with CVD. Many of the significant SNPs were associated with gene expression changes in liver and adipose and were also replicated in three non-European populations. Three novel genes were also overexpressed and/or knocked down in mice and shown to have an effect on lipids.
51.
Zurück zum Zitat Lanktree MB, et al.: Replication of genetic associations with plasma lipoprotein traits in a multiethnic sample. J Lipid Res 2009, 50:1487–1496.CrossRefPubMed Lanktree MB, et al.: Replication of genetic associations with plasma lipoprotein traits in a multiethnic sample. J Lipid Res 2009, 50:1487–1496.CrossRefPubMed
52.
Zurück zum Zitat Nakayama K, et al.: Large scale replication analysis of loci associated with lipid concentrations in a Japanese population. J Med Genet 2009, 46:370–374.CrossRefPubMed Nakayama K, et al.: Large scale replication analysis of loci associated with lipid concentrations in a Japanese population. J Med Genet 2009, 46:370–374.CrossRefPubMed
53.
Zurück zum Zitat • Musunuru K, et al.: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2009, 466:714–719. This study shows that an SNP in the 1p13 locus creates a CEBP transcription factor binding site and increases hepatic expression of the SORT1 gene. Through overexpression and knockdown studies in mice, this study shows that sortilin affects plasma LDL-C levels by influencing very low-density lipoprotein secretion. • Musunuru K, et al.: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 2009, 466:714–719. This study shows that an SNP in the 1p13 locus creates a CEBP transcription factor binding site and increases hepatic expression of the SORT1 gene. Through overexpression and knockdown studies in mice, this study shows that sortilin affects plasma LDL-C levels by influencing very low-density lipoprotein secretion.
54.
Zurück zum Zitat • Samani NJ, et al.: Genomewide association analysis of coronary artery disease. N Engl J Med 2007, 357:443–453. This is a seminal GWAS of CAD and myocardial infarction. • Samani NJ, et al.: Genomewide association analysis of coronary artery disease. N Engl J Med 2007, 357:443–453. This is a seminal GWAS of CAD and myocardial infarction.
55.
Zurück zum Zitat • Kathiresan S, et al.: Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009, 41:334–341. This is a seminal GWAS of CAD and myocardial infarction. • Kathiresan S, et al.: Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet 2009, 41:334–341. This is a seminal GWAS of CAD and myocardial infarction.
56.
Zurück zum Zitat • Edmondson AC, et al.: Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest 2009, 119:1042–1050. This study identified loss of function mutations in LIPG (endothelial lipase) in individuals with high HDL and showed that these mutations lead to reduced lipolytic activity of endothelial lipase. • Edmondson AC, et al.: Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J Clin Invest 2009, 119:1042–1050. This study identified loss of function mutations in LIPG (endothelial lipase) in individuals with high HDL and showed that these mutations lead to reduced lipolytic activity of endothelial lipase.
Metadaten
Titel
Clinical Implications of Lipid Genetics for Cardiovascular Disease
verfasst von
Alanna Strong
Daniel J. Rader
Publikationsdatum
01.11.2010
Verlag
Current Science Inc.
Erschienen in
Current Cardiovascular Risk Reports / Ausgabe 6/2010
Print ISSN: 1932-9520
Elektronische ISSN: 1932-9563
DOI
https://doi.org/10.1007/s12170-010-0131-7

Weitere Artikel der Ausgabe 6/2010

Current Cardiovascular Risk Reports 6/2010 Zur Ausgabe

Clinical Trial Report

Assessment of the JUPITER Trial

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.