Skip to main content
Erschienen in:

24.01.2024 | Review Article

Clinical prediction models for knee pain in patients with knee osteoarthritis: a systematic review

verfasst von: Beibei Tong, Hongbo Chen, Cui Wang, Wen Zeng, Dan Li, Peiyuan Liu, Ming Liu, Xiaoyan Jin, Shaomei Shang

Erschienen in: Skeletal Radiology | Ausgabe 6/2024

Einloggen, um Zugang zu erhalten

Abstract

Objective

To identify and describe existing models for predicting knee pain in patients with knee osteoarthritis.

Methods

The electronic databases PubMed, EMBASE, CINAHL, Web of Science, and Cochrane Library were searched from their inception to May 2023 for any studies to develop and validate a prediction model for predicting knee pain in patients with knee osteoarthritis. Two reviewers independently screened titles, abstracts, and full-text qualifications, and extracted data. Risk of bias was assessed using the PROBAST. Data extraction of eligible articles was extracted by a data extraction form based on CHARMS. The quality of evidence was graded according to GRADE. The results were summarized with descriptive statistics.

Results

The search identified 2693 records. Sixteen articles reporting on 26 prediction models were included targeting occurrence (n = 9), others (n = 7), progression (n = 5), persistent (n = 2), incident (n = 1), frequent (n = 1), and flares (n = 1) of knee pain. Most of the studies (94%) were at high risk of bias. Model discrimination was assessed by the AUROC ranging from 0.62 to 0.81. The most common predictors were age, BMI, gender, baseline pain, and joint space width. Only frequent knee pain had a moderate quality of evidence; all other types of knee pain had a low quality of evidence.

Conclusion

There are many prediction models for knee pain in patients with knee osteoarthritis that do show promise. However, the clinical extensibility, applicability, and interpretability of predictive tools should be considered during model development.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dainese P, Wyngaert KV, De Mits S, Wittoek R, Van Ginckel A, Calders P. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. Osteoarthr Cartil. 2022;30(4):516–34.CrossRef Dainese P, Wyngaert KV, De Mits S, Wittoek R, Van Ginckel A, Calders P. Association between knee inflammation and knee pain in patients with knee osteoarthritis: a systematic review. Osteoarthr Cartil. 2022;30(4):516–34.CrossRef
2.
Zurück zum Zitat Vongsirinavarat M, Nilmart P, Somprasong S, Apinonkul B. Identification of knee osteoarthritis disability phenotypes regarding activity limitation: a cluster analysis. BMC Musculoskelet Disord. 2020;21(1):237.CrossRefPubMedPubMedCentral Vongsirinavarat M, Nilmart P, Somprasong S, Apinonkul B. Identification of knee osteoarthritis disability phenotypes regarding activity limitation: a cluster analysis. BMC Musculoskelet Disord. 2020;21(1):237.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Driban JB, Harkey MS, Liu S-H, Salzler M, McAlindon TE. Osteoarthritis and Aging: Young Adults with Osteoarthritis. Curr Epidemiol Rep. 2020;7(1):9–15.CrossRef Driban JB, Harkey MS, Liu S-H, Salzler M, McAlindon TE. Osteoarthritis and Aging: Young Adults with Osteoarthritis. Curr Epidemiol Rep. 2020;7(1):9–15.CrossRef
4.
Zurück zum Zitat Luan L, El-Ansary D, Adams R, Wu S, Han J. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis. Physiotherapy. 2022;114:16–29.CrossRefPubMed Luan L, El-Ansary D, Adams R, Wu S, Han J. Knee osteoarthritis pain and stretching exercises: a systematic review and meta-analysis. Physiotherapy. 2022;114:16–29.CrossRefPubMed
5.
Zurück zum Zitat Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, Lin M, Xie G, Chen S, Huang J, Liu W, Wu J, Xiao T, Wilson G, Lang C, Park J, Tao J, Kong J. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex A multiple mode MRI study. Brain Behav Immun. 2019;82:253–63.CrossRefPubMed Liu J, Chen L, Tu Y, Chen X, Hu K, Tu Y, Lin M, Xie G, Chen S, Huang J, Liu W, Wu J, Xiao T, Wilson G, Lang C, Park J, Tao J, Kong J. Different exercise modalities relieve pain syndrome in patients with knee osteoarthritis and modulate the dorsolateral prefrontal cortex A multiple mode MRI study. Brain Behav Immun. 2019;82:253–63.CrossRefPubMed
6.
Zurück zum Zitat Peterson JA, Meng L, Rani A, Sinha P, Johnson AJ, Huo Z, et al. Epigenetic aging, knee pain and physical performance in community-dwelling middle-to-older age adults. Exp Gerontol. 2022;166:11681. Peterson JA, Meng L, Rani A, Sinha P, Johnson AJ, Huo Z, et al. Epigenetic aging, knee pain and physical performance in community-dwelling middle-to-older age adults. Exp Gerontol. 2022;166:11681.
7.
Zurück zum Zitat Landsmeer MLA, Runhaar J, van Middelkoop M, Oei EHG, Schiphof D, Bindels PJE, et al. Predicting Knee Pain and Knee Osteoarthritis Among Overweight Women. J Am Board Fam Med. 2019;32(4):575–84.CrossRefPubMed Landsmeer MLA, Runhaar J, van Middelkoop M, Oei EHG, Schiphof D, Bindels PJE, et al. Predicting Knee Pain and Knee Osteoarthritis Among Overweight Women. J Am Board Fam Med. 2019;32(4):575–84.CrossRefPubMed
8.
Zurück zum Zitat Vina ER, Ran D, Ashbeck EL, Kwoh CK. Natural history of pain and disability among African–Americans and Whites with or at risk for knee osteoarthritis: A longitudinal study. Osteoarthr Cartil. 2018;26(4):471–9.CrossRef Vina ER, Ran D, Ashbeck EL, Kwoh CK. Natural history of pain and disability among African–Americans and Whites with or at risk for knee osteoarthritis: A longitudinal study. Osteoarthr Cartil. 2018;26(4):471–9.CrossRef
9.
Zurück zum Zitat Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, et al. Risk of Knee Osteoarthritis With Obesity, Sarcopenic Obesity, and Sarcopenia. Arthritis Rheum. 2019;71(2):232–7.CrossRef Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, et al. Risk of Knee Osteoarthritis With Obesity, Sarcopenic Obesity, and Sarcopenia. Arthritis Rheum. 2019;71(2):232–7.CrossRef
11.
Zurück zum Zitat Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skelet Radiol. 2022;51(2):363–73.CrossRef Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skelet Radiol. 2022;51(2):363–73.CrossRef
12.
Zurück zum Zitat Neogi T, Frey-Law L, Scholz J, Niu J, Arendt-Nielsen L, Woolf C, Nevitt M, Bradley L, Felson DT. Sensitivity and sensitisation in relation to pain severity in knee osteoarthritis trait or state. Ann Rheum Dis. 2015;74(4):682–8.CrossRefPubMed Neogi T, Frey-Law L, Scholz J, Niu J, Arendt-Nielsen L, Woolf C, Nevitt M, Bradley L, Felson DT. Sensitivity and sensitisation in relation to pain severity in knee osteoarthritis trait or state. Ann Rheum Dis. 2015;74(4):682–8.CrossRefPubMed
13.
Zurück zum Zitat Atukorala I, Pathmeswaran A, Makovey J, Metcalf B, Bennell KL, March L, et al. Can pain flares in knee osteoarthritis be predicted? Scand J Rheumatol. 2021;50(3):198–205.CrossRefPubMed Atukorala I, Pathmeswaran A, Makovey J, Metcalf B, Bennell KL, March L, et al. Can pain flares in knee osteoarthritis be predicted? Scand J Rheumatol. 2021;50(3):198–205.CrossRefPubMed
14.
Zurück zum Zitat Goulston LM, Kiran A, Javaid MK, Soni A, White KM, Hart DJ, Spector TD, Arden NK. Does obesity predict knee pain over fourteen years in women, independently of radiographic changes? Arthritis Care Res. 2011;63(10):1398–406.CrossRef Goulston LM, Kiran A, Javaid MK, Soni A, White KM, Hart DJ, Spector TD, Arden NK. Does obesity predict knee pain over fourteen years in women, independently of radiographic changes? Arthritis Care Res. 2011;63(10):1398–406.CrossRef
15.
Zurück zum Zitat Jinks C, Jordan KP, Blagojevic M, Croft P. Predictors of onset and progression of knee pain in adults living in the community. A prospective study. Rheumatology (Oxford, England). 2008;47(3):368–74. Jinks C, Jordan KP, Blagojevic M, Croft P. Predictors of onset and progression of knee pain in adults living in the community. A prospective study. Rheumatology (Oxford, England). 2008;47(3):368–74.
16.
Zurück zum Zitat Urish KL, Keffalas MG, Durkin JR, Miller DJ, Chu CR, Mosher TJ. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(10):1550–7.CrossRef Urish KL, Keffalas MG, Durkin JR, Miller DJ, Chu CR, Mosher TJ. T2 texture index of cartilage can predict early symptomatic OA progression: data from the osteoarthritis initiative. Osteoarthr Cartil. 2013;21(10):1550–7.CrossRef
17.
Zurück zum Zitat Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skelet Radiol. 2016;45(7):909–13.CrossRef Zhong H, Miller DJ, Urish KL. T2 map signal variation predicts symptomatic osteoarthritis progression: data from the Osteoarthritis Initiative. Skelet Radiol. 2016;45(7):909–13.CrossRef
18.
Zurück zum Zitat van Helvoort EM, Ladel C, Mastbergen S, Kloppenburg M, Blanco FJ, Haugen IK, et al. Baseline clinical characteristics of predicted structural and pain progressors in the IMI-APPROACH knee OA cohort. RMD Open. 2021;7(3) van Helvoort EM, Ladel C, Mastbergen S, Kloppenburg M, Blanco FJ, Haugen IK, et al. Baseline clinical characteristics of predicted structural and pain progressors in the IMI-APPROACH knee OA cohort. RMD Open. 2021;7(3)
19.
Zurück zum Zitat Papadomanolakis-Pakis N, Uhrbrand P, Haroutounian S, Nikolajsen L. Prognostic prediction models for chronic postsurgical pain in adults: a systematic review. Pain. 2021;162(11):2644–57.CrossRefPubMed Papadomanolakis-Pakis N, Uhrbrand P, Haroutounian S, Nikolajsen L. Prognostic prediction models for chronic postsurgical pain in adults: a systematic review. Pain. 2021;162(11):2644–57.CrossRefPubMed
20.
Zurück zum Zitat Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8.CrossRefPubMed Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, et al. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann Intern Med. 2019;170(1):51–8.CrossRefPubMed
21.
Zurück zum Zitat Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.CrossRefPubMed Debray TP, Damen JA, Snell KI, Ensor J, Hooft L, Reitsma JB, et al. A guide to systematic review and meta-analysis of prediction model performance. BMJ. 2017;356:i6460.CrossRefPubMed
22.
Zurück zum Zitat Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.CrossRefPubMedPubMedCentral Moons KG, de Groot JA, Bouwmeester W, Vergouwe Y, Mallett S, Altman DG, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med. 2014;11(10):e1001744.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRefPubMedPubMedCentral Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Damen JAA, Moons KGM, van Smeden M, Hooft L. How to conduct a systematic review and meta-analysis of prognostic model studies. Clin Microbiol Infect. 2023;29(4):434–40. Damen JAA, Moons KGM, van Smeden M, Hooft L. How to conduct a systematic review and meta-analysis of prognostic model studies. Clin Microbiol Infect. 2023;29(4):434–40.
25.
Zurück zum Zitat Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71.CrossRefPubMedPubMedCentral Huguet A, Hayden JA, Stinson J, McGrath PJ, Chambers CT, Tougas ME, et al. Judging the quality of evidence in reviews of prognostic factor research: adapting the GRADE framework. Syst Rev. 2013;2(1):71.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Chen R, Wang SF, Zhou JC, Sun F, Wei WW, Zhan SY. Introduction of the prediction model risk of bias assessment tool: a tool to assess risk of bias and applicability of prediction model studies. Chin J Epidemmiol. 2020;41(5):776–81. Chen R, Wang SF, Zhou JC, Sun F, Wei WW, Zhan SY. Introduction of the prediction model risk of bias assessment tool: a tool to assess risk of bias and applicability of prediction model studies. Chin J Epidemmiol. 2020;41(5):776–81.
27.
Zurück zum Zitat Kennedy EE, Bowles KH, Aryal S. Systematic review of prediction models for postacute care destination decision-making. J Am Med Inform Assoc. 2021;29(1):176–86.CrossRefPubMedPubMedCentral Kennedy EE, Bowles KH, Aryal S. Systematic review of prediction models for postacute care destination decision-making. J Am Med Inform Assoc. 2021;29(1):176–86.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Panken G, Verhagen AP, Terwee CB, Heymans MW. Clinical Prediction Models for Patients With Nontraumatic Knee Pain in Primary Care: A Systematic Review and Internal Validation Study. J Orthop Sports Phys Ther. 2017;47(8):518–29.CrossRefPubMed Panken G, Verhagen AP, Terwee CB, Heymans MW. Clinical Prediction Models for Patients With Nontraumatic Knee Pain in Primary Care: A Systematic Review and Internal Validation Study. J Orthop Sports Phys Ther. 2017;47(8):518–29.CrossRefPubMed
29.
Zurück zum Zitat Belsher BE, Smolenski DJ, Pruitt LD, Bush NE, Beech EH, Workman DE, et al. Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation. JAMA Psychiat. 2019;76(6):642–51.CrossRef Belsher BE, Smolenski DJ, Pruitt LD, Bush NE, Beech EH, Workman DE, et al. Prediction Models for Suicide Attempts and Deaths: A Systematic Review and Simulation. JAMA Psychiat. 2019;76(6):642–51.CrossRef
30.
Zurück zum Zitat Luna-Gómez CD, Zanella-Calzada LA, Galván-Tejada JI, Galván-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative. Med Imaging 2017: Computer-Aided Diagnosis. 2017;10134:1074–80. Luna-Gómez CD, Zanella-Calzada LA, Galván-Tejada JI, Galván-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? Data from the Osteoarthritis Initiative. Med Imaging 2017: Computer-Aided Diagnosis. 2017;10134:1074–80.
31.
Zurück zum Zitat Liu Y, Joseph GB, Foreman SC, Li X, Lane NE, Nevitt MC, et al. Determining a Threshold of Medial Meniscal Extrusion for Prediction of Knee Pain and Cartilage Damage Progression Over 4 Years: Data From the Osteoarthritis Initiative. AJR Am J Roentgenol. 2021;216(5):1318–28.CrossRefPubMed Liu Y, Joseph GB, Foreman SC, Li X, Lane NE, Nevitt MC, et al. Determining a Threshold of Medial Meniscal Extrusion for Prediction of Knee Pain and Cartilage Damage Progression Over 4 Years: Data From the Osteoarthritis Initiative. AJR Am J Roentgenol. 2021;216(5):1318–28.CrossRefPubMed
32.
Zurück zum Zitat Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA annual symposium proceedings American Medical Informatics Association. 2008;788–92. Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA annual symposium proceedings American Medical Informatics Association. 2008;788–92.
33.
Zurück zum Zitat Galván-Tejada JI, Arceo-Olague JG, Luna-García H, Gamboa-Rosales H, Celaya-Padilla JM, R Lam-Q, et al. General Linear Models for Pain Prediction in Knee Osteoarthritis Data from the Osteoarthritis Initiative. Rev Mex de Ing Biomed. 2018;39(1):29–40. Galván-Tejada JI, Arceo-Olague JG, Luna-García H, Gamboa-Rosales H, Celaya-Padilla JM, R Lam-Q, et al. General Linear Models for Pain Prediction in Knee Osteoarthritis Data from the Osteoarthritis Initiative. Rev Mex de Ing Biomed. 2018;39(1):29–40.
34.
Zurück zum Zitat Galvan-Tejada JI, Celaya-Padilla JM, Trevino V, Tamez-Pena JG. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI. Comput Math Methods Med. 2015;2015:794141.CrossRefPubMedPubMedCentral Galvan-Tejada JI, Celaya-Padilla JM, Trevino V, Tamez-Pena JG. Multivariate Radiological-Based Models for the Prediction of Future Knee Pain: Data from the OAI. Comput Math Methods Med. 2015;2015:794141.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Alexos A, Kokkotis C, Moustakidis S, Papageorgiou EI, Tsaopoulos DE. Prediction of pain in knee osteoarthritis patients using machine learning: data from osteoarthritis initiative. In: 2020 11th International Conference on Information, Intelligence, Systems and Applications IISA. 2020;1–7. Alexos A, Kokkotis C, Moustakidis S, Papageorgiou EI, Tsaopoulos DE. Prediction of pain in knee osteoarthritis patients using machine learning: data from osteoarthritis initiative. In: 2020 11th International Conference on Information, Intelligence, Systems and Applications IISA. 2020;1–7.
36.
Zurück zum Zitat Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2017;76(1):186–95.CrossRefPubMed Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA Biomarkers Consortium. Ann Rheum Dis. 2017;76(1):186–95.CrossRefPubMed
37.
Zurück zum Zitat Galván-Tejada JI, Celaya-Padilla JM, Galván Tejada CE, Trevino V, Tamez-Pena JG. Radiological Pain Predictors in Knee Osteoarthritis, a Four Feature Selection Comparison Data from the OAI. In: Mexican Conference on Pattern Recognition, vol. 2014. Cham: Springer; 2014. p. 351–60.CrossRef Galván-Tejada JI, Celaya-Padilla JM, Galván Tejada CE, Trevino V, Tamez-Pena JG. Radiological Pain Predictors in Knee Osteoarthritis, a Four Feature Selection Comparison Data from the OAI. In: Mexican Conference on Pattern Recognition, vol. 2014. Cham: Springer; 2014. p. 351–60.CrossRef
38.
Zurück zum Zitat Galván-Tejada JI, Celaya Padilla JM, Martínez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee OA pain: data from the OAI. Med Imaging 2014: Computer-Aided Diagnosis. 2014;9035:842–6. Galván-Tejada JI, Celaya Padilla JM, Martínez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee OA pain: data from the OAI. Med Imaging 2014: Computer-Aided Diagnosis. 2014;9035:842–6.
39.
Zurück zum Zitat Akin-Akinyosoye K, Sarmanova A, Fernandes GS, Frowd N, Swaithes L, Stocks J, et al. Baseline self-report 'central mechanisms' trait predicts persistent knee pain in the Knee Pain in the Community (KPIC) cohort. Osteoarthr Cartil. 2020;28(2):173–81.CrossRef Akin-Akinyosoye K, Sarmanova A, Fernandes GS, Frowd N, Swaithes L, Stocks J, et al. Baseline self-report 'central mechanisms' trait predicts persistent knee pain in the Knee Pain in the Community (KPIC) cohort. Osteoarthr Cartil. 2020;28(2):173–81.CrossRef
40.
Zurück zum Zitat Baumbach L, List M, Gronne DT, Skou ST, Roos EM. Individualized predictions of changes in knee pain, quality of life and walking speed following patient education and exercise therapy in patients with knee osteoarthritis - a prognostic model study. Osteoarthr Cartil. 2020;28(9):1191–201.CrossRef Baumbach L, List M, Gronne DT, Skou ST, Roos EM. Individualized predictions of changes in knee pain, quality of life and walking speed following patient education and exercise therapy in patients with knee osteoarthritis - a prognostic model study. Osteoarthr Cartil. 2020;28(9):1191–201.CrossRef
41.
Zurück zum Zitat Belo JN, Berger MY, Koes BW, Bierma-Zeinstra SM. Prognostic factors in adults with knee pain in general practice. Arthritis Rheum. 2009;61(2):143–51.CrossRefPubMed Belo JN, Berger MY, Koes BW, Bierma-Zeinstra SM. Prognostic factors in adults with knee pain in general practice. Arthritis Rheum. 2009;61(2):143–51.CrossRefPubMed
42.
Zurück zum Zitat Fernandes GS, Bhattacharya A, McWilliams DF, Ingham SL, Doherty M, Zhang W. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach. Arthritis Res Ther. 2017;19(1):59.CrossRefPubMedPubMedCentral Fernandes GS, Bhattacharya A, McWilliams DF, Ingham SL, Doherty M, Zhang W. Risk prediction model for knee pain in the Nottingham community: a Bayesian modelling approach. Arthritis Res Ther. 2017;19(1):59.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Luna-Gomez CD, Zanella-Calzada LA, Acosta-Garcia MA, Galvan-Tejada JI, Galvan-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? : Data from the Osteoarthritis Initiative. Conference on Medical Imaging - Computer-Aided Diagnosis; 2017 2017 Feb 13-16; Orlando, FL; 2017. Luna-Gomez CD, Zanella-Calzada LA, Acosta-Garcia MA, Galvan-Tejada JI, Galvan-Tejada CE, Celaya-Padilla JM. Can multivariate models based on MOAKS predict OA knee pain? : Data from the Osteoarthritis Initiative. Conference on Medical Imaging - Computer-Aided Diagnosis; 2017 2017 Feb 13-16; Orlando, FL; 2017.
44.
Zurück zum Zitat Galvan-Tejada JI, Celaya-Padilla JM, Galvan-Tejada CE, Trevino V, Tamez-Pena JG. Radiological pain predictors in knee osteoarthritis, a four feature selection comparison: data from the OAI. In: Pattern recognition: 6th Mexican Conference, MCPR 2014, Cancun, Mexico, June 25-28, 2014. Proceedings 6. Springer International Publishing. 2014;351–60. Galvan-Tejada JI, Celaya-Padilla JM, Galvan-Tejada CE, Trevino V, Tamez-Pena JG. Radiological pain predictors in knee osteoarthritis, a four feature selection comparison: data from the OAI. In: Pattern recognition: 6th Mexican Conference, MCPR 2014, Cancun, Mexico, June 25-28, 2014. Proceedings 6. Springer International Publishing. 2014;351–60.
45.
Zurück zum Zitat Galvan-Tejada JI, Celaya-Padilla JM, Martinez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee oa pain: data from the OAI. In: Medical imaging 2014: computer-aided diagnosis. SPIE. 2014;9035:842–6. Galvan-Tejada JI, Celaya-Padilla JM, Martinez-Torteya A, Rodriguez-Rojas J, Trevino V, Tamez-Pena JG. Wide association study of radiological features that predict future knee oa pain: data from the OAI. In: Medical imaging 2014: computer-aided diagnosis. SPIE. 2014;9035:842–6.
46.
Zurück zum Zitat Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA Annual Symposium proceedings AMIA Symposium. 2008:788-792. Watt EW, Bui AAT. Evaluation of a dynamic bayesian belief network to predict osteoarthritic knee pain using data from the osteoarthritis initiative. AMIA Annual Symposium proceedings AMIA Symposium. 2008:788-792.
47.
Zurück zum Zitat Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31. Tu JV. Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol. 1996;49(11):1225–31.
48.
Zurück zum Zitat Boniatis I, Costaridou L, Cavouras D, Kalatzis I, Panagiotopoulos E, Panayiotakis G. Assessing hip osteoarthritis severity utilizing a probabilistic neural network based classification scheme. Med Eng Phys. 2007;29(2):227–37.CrossRefPubMed Boniatis I, Costaridou L, Cavouras D, Kalatzis I, Panagiotopoulos E, Panayiotakis G. Assessing hip osteoarthritis severity utilizing a probabilistic neural network based classification scheme. Med Eng Phys. 2007;29(2):227–37.CrossRefPubMed
49.
Zurück zum Zitat Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyas B. 3D deep learning on medical images: a review. Sensors (Basel). 2020;20(18):5097. Singh SP, Wang L, Gupta S, Goli H, Padmanabhan P, Gulyas B. 3D deep learning on medical images: a review. Sensors (Basel). 2020;20(18):5097.
50.
Zurück zum Zitat Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: A review. Osteoarthr Cartil Open. 2020;2(3) Kokkotis C, Moustakidis S, Papageorgiou E, Giakas G, Tsaopoulos DE. Machine learning in knee osteoarthritis: A review. Osteoarthr Cartil Open. 2020;2(3)
51.
Zurück zum Zitat Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437–41. Hunter DJ, Schofield D, Callander E. The individual and socioeconomic impact of osteoarthritis. Nat Rev Rheumatol. 2014;10(7):437–41.
52.
Zurück zum Zitat Liu L, Zhu MM, Cai LL, Zhang X. Predictive models for knee pain in middle-aged and elderly individuals based on machine learning methods. Comput Math Methods Med. 2022;2022:5005195. Liu L, Zhu MM, Cai LL, Zhang X. Predictive models for knee pain in middle-aged and elderly individuals based on machine learning methods. Comput Math Methods Med. 2022;2022:5005195.
Metadaten
Titel
Clinical prediction models for knee pain in patients with knee osteoarthritis: a systematic review
verfasst von
Beibei Tong
Hongbo Chen
Cui Wang
Wen Zeng
Dan Li
Peiyuan Liu
Ming Liu
Xiaoyan Jin
Shaomei Shang
Publikationsdatum
24.01.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 6/2024
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-024-04590-x

Neu im Fachgebiet Radiologie

Ringen um den richtigen Umgang mit Zufallsbefunden

Wenn 2026 in Deutschland das Lungenkrebsscreening mittels Low-Dose-Computertomografie (LDCT) eingeführt wird, wird es auch viele Zufallsbefunde ans Licht bringen. Das birgt Chancen und Risiken.

Bald 5% der Krebserkrankungen durch CT verursacht

Die jährlich rund 93 Millionen CTs in den USA könnten künftig zu über 100.000 zusätzlichen Krebserkrankungen führen, geht aus einer Modellrechnung hervor. Damit würde eine von 20 Krebserkrankungen auf die ionisierende Strahlung bei CT-Untersuchungen zurückgehen.

Röntgen-Thorax oder LDCT fürs Lungenscreening nach HNSCC?

Personen, die an einem Plattenepithelkarzinom im Kopf-Hals-Bereich erkrankt sind, haben ein erhöhtes Risiko für Metastasen oder zweite Primärmalignome der Lunge. Eine Studie hat untersucht, wie die radiologische Überwachung aussehen sollte.

Statine: Was der G-BA-Beschluss für Praxen bedeutet

Nach dem G-BA-Beschluss zur erweiterten Verordnungsfähigkeit von Lipidsenkern rechnet die DEGAM mit 200 bis 300 neuen Dauerpatienten pro Praxis. Im Interview erläutert Präsidiumsmitglied Erika Baum, wie Hausärztinnen und Hausärzte am besten vorgehen.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.