Skip to main content
Erschienen in: Clinical and Translational Medicine 1/2014

Open Access 01.12.2014 | Review

Clinical significance of macrophage phenotypes in cardiovascular disease

verfasst von: Heather J Medbury, Helen Williams, John P Fletcher

Erschienen in: Clinical and Translational Medicine | Ausgabe 1/2014

Abstract

The emerging understanding of macrophage subsets and their functions in the atherosclerotic plaque has led to the consensus that M1 macrophages are pro-atherogenic while M2 macrophages may promote plaque stability, primarily though their tissue repair and anti-inflammatory properties. As such, modulating macrophage function to promote plaque stability is an exciting therapeutic prospect. This review will outline the involvement of the different macrophage subsets throughout atherosclerosis progression and in models of regression. It is evident that much of our understanding of macrophage function comes from in vitro or small animal models and, while such knowledge is valuable, we have much to learn about the roles of the macrophage subsets in the clinical setting in order to identify the key pathways to target to possibly promote plaque stability.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s40169-014-0042-1) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare they do not have any competing interests.

Authors’ contributions

HM drafted the manuscript. Both HM and HW reviewed the literature. All authors read through and made suggestions and corrections to the manuscript. All authors approved the final manuscript.
Abkürzungen
ABCA1
ATP-binding cassette, sub-family A member 1
ABCG1
ATP-binding cassette sub-family G member 1
ADRP
Adipose differentiation-related protein
Apo
Apolipoprotein
Arg
Arginase
ATF
Activating transcription factor
CCR7
Chemokine (C-C motif) receptor 7
CXCL4
Chemokine (C-X-C motif) ligand 4
EC
Endothelial cell
ECM
Extra cellular matrix
ER
Endoplasmic reticulum
GM-CSF
Granulocyte macrophage colony stimulating factor
HDL
High density lipoprotein
HMOX
Haemoxygenase
IL
Interleukin
IFN
Interferon
LDL
Low density lipoprotein
LPS
Lipopolysaccharide
LXR
Liver x receptor
M1
Type 1 macrophage
M2
Type 2 macrophage
M4
CXCL4 derived macrophage
M-Mac
M-CSF derived macrophage
MCP-1
Monocyte chemotactic protein 1
M-CSF
Macrophage colony stimulating factor
MERTK
MER proto-oncogene, tyrosine kinase
Mhem
Haeme directed macrophage
Mox
Oxidised phospholipid derived macrophages
MR
Mannose receptor
MTOR
Mechanistic target of rapamcyin
OxLDL
Oxidised LDL
PPARγ
Peroxisome proliferator-activated receptor gamma
SMC
Smooth muscle cells
STAT
Signal transducer and activator of transcription
TGFβ
Transforming growth factor beta
Th 1
T helper cell type 1 cytokines
TNF
Tumour necrosis factor

Introduction

The main cause of cardiovascular disease is the formation of atherosclerotic plaques within the blood vessel wall. They may occur at multiple sites in the arterial tree and be at different stages of progression [1]. While plaques progressively narrow the arteries in which they form, their clinical significance is dependent more on their composition than the size they attain [2],[3]. Morphologically, advanced plaques are composed of a necrotic core and overlying fibrous cap and those with a relatively large core and thin cap are considered unstable as they are vulnerable to rupture [2]-[4]. Rupture of the cap leads to exposure of the blood to thrombogenic material. While the subsequent thrombus that forms primarily leads to subclinical plaque progression, through fibrosis tissue formation and constrictive remodelling [1],[5], it may also lead to vessel occlusion and occurrence of a clinical event, such as a heart attack or stroke [6],[7].
Macrophages are key players in atherosclerotic plaque development, progression and, importantly, stability as they contribute to formation of the core and degradation of the fibrous cap. However, macrophages can adopt various phenotypes including a wound healing form [8] and, indeed, collagen producing macrophages are present in human carotid plaques [9]. The ‘plasticity’ of macrophages gives hope to the notion of atherosclerotic plaque stabilisation through the modulation of macrophage functions. This review will summarise macrophage phenotype heterogeneity, the presence of the different ‘subsets’ within the plaque throughout its development and focus, in particular, on the possible clinical significance of macrophage subsets in terms of their likely contribution to plaque stability – such as their role in the core and cap.

Review

Macrophage phenotypes

Monocytes can differentiate into a spectrum of functional macrophage phenotypes depending upon the microenvironment - such as presence of specific growth and differentiation factors- as well as on the receptors they express, signaling pathways and transcription factors [8],[10]. The first stage of differentiation is induced by macrophage colony stimulating factor (M-CSF) or granulocyte macrophage colony stimulating factor (GM-CSF) [11] and the subsequent phenotype that macrophages adopt is dependent upon the concentration of various mediators they are exposed to - with interferon (IFN)γ and interleukin (IL)-4 priming macrophages to adopt classical or alternative phenotypes respectively [10]. Macrophages exhibit a high degree of plasticity such that some (though not all) of their properties alter as the local milieu changes [12]-[14].
Our understanding of macrophage phenotypes, and their plasticity, relies heavily on cell culture systems and, accordingly, so does much of the terminology applied to them. While numerous names have been used in the literature, the terms that predominate are M1 (classically activated) and M2 (alternatively activated) [15] and as such, these are used here. The M1 and M2 terms parallel the T helper cell (Th)1 and Th2 cytokines which drive macrophage polarisation [16]-[19]. For a review on alternative nomenclature including differentiating based on activation method, the reader is directed to Murray et. al. [20].
M1 macrophages are promoted by Th1 cytokines [15], with this term used in the literature to describe macrophages induced by monocyte stimulation with GM-CSF [21],[22] or by M-CSF combined with lipopolysaccharide (LPS) and IFNγ [23]-[25]. While the cytokine production from both these forms is similar [26], the current recommendation is that GM-CSF macrophages not be assigned the terminology M1 [20]. M1 macrophages are considered inflammatory as they produce high levels of IL-6 and TNFα [27],[28] and they have a recognised role in tissue destruction [8]. M1 macrophages express pro-inflammatory transcription factors such as nuclear factor-κB and signal transducer and activator of transcription (STAT) 1 [28]-[30].
The term ‘M2’ encompasses largely any phenotype that is not M1 [15],[17] and is subdivided into groups based on the stimulus used, with M2a (alternative) stimulated by IL-4 or IL-13, M2b stimulated by immunocomplex and M2c stimulated by IL-10, glucocorticoids or transforming growth factor (TGF)β [15],[31]-[33]. The term ‘M2’ has also been used to describe M-CSF generated macrophages [34] with evidence that M-CSF stimulation promotes expression of a considerable portion of the M2 transcriptome [27]. M2 macrophages (human and mouse) produce anti-inflammatory cytokines such as IL-10 and TGFβ [27],[35]. M2a macrophages express the transcription factors Krüppel-like factor 4, peroxisome proliferator activated receptor-γ (PPARγ) and STAT6 [28]-[30] while M2c macrophages express STAT 3 [36]. The key recognised functions of M2 macrophages are immunosuppressive, including immune regulation and wound healing [8],[15],[35]. There are, in reality, many different modes of activation, resulting in an array of macrophage functional phenotypes [8]. The possible function of these subsets in plaque stability can, in part, be gleaned from understanding the effect of the stimulating cytokines on plaque development in murine models. As such, IFNγ (which promotes M1) is considered pro-atherogenic, IL-4 (which promotes M2a) is considered to have a dual pro and anti-inflammatory character, while IL-10 (which promotes M2c macrophages), is considered anti-atherogenic [37].
In the atherosclerosis field, additional forms have been described including the Mhem macrophage [38] (also known M(Hb) [39] or HA-Mac [40]). Consistent with their presence in regions of haemorrhage, Mhem macrophages arise from culturing monocytes with the haemoglobin/haptoglobin complex [38]-[40]. The term Mox macrophages has been given to murine macrophages (including M1 or M2) cultured in the presence of oxidised phospholipids [41]; their phenotype is markedly different from standard M1 or M2 macrophages. The term ‘M4’ describes macrophages formed when monocytes are differentiated with the platelet chemokine chemokine (C-X-C motif) ligand 4 (CXCL4) [42]. Other monocyte derived cells (sharing some overlapping functions with macrophages) are also recognised in the plaque, such as dendritic cells [43],[44] and fibrocytes [45]. Common markers used to identify the macrophage subsets include CD86 for M1 (as well as Arginase (Arg) II in mice) and CD163 plus CD206 (mannose receptor: MR) for M2 (as well as Arg I and FIZZ1 in mice) [15],[24],[27],[31],[46],[47]. Transcriptome analysis of cultured cells has identified additional markers [27],[28],[48]. Noted differences are, that M2a macrophages also express CD209 [49]; Mhem macrophages, while expressing CD163 and CD206, are distinguishable from M2 macrophages by the expression of activating transcription factor (ATF) [38] and M4 macrophages lack expression of CD163 [50].

Macrophages in plaque initiation

Atherosclerosis is initiated by the accumulation of apolipoprotien (Apo) B lipoproteins within the vessel wall [51],[52]. Their retention is partially mediated by interaction with extracellular matrix (ECM) proteins, primarily proteoglycans that have chondroitin sulphate side chains [52] such as biglycan and versican [53]-[55]. ECM binding makes lipoproteins susceptible to modification, such as oxidation [56],[57]. This activates endothelial cells (EC) which secrete chemokines that promote monocyte recruitment [58],[59]. Vascular cells, such as EC and smooth muscle cells (SMC), produce M-CSF - a factor which promotes monocyte differentiation into macrophages [60],[61]. The macrophages formed internalise the modified low density lipoprotein (LDL), become foam cells [62] and form what is known as a fatty streak [63]. The inflammatory response to retained lipoproteins is maladapted as the macrophage foam cells do not leave but are retained in the vessel wall [52]. They may also exacerbate lesion formation independently by producing molecules such as lipoprotein lipase [64], sphingomyelinase [65] or proteoglycans [66], which promote lipoprotein retention and modification [67]. Though the contribution of different macrophage subsets to lipoprotein retention is not completely defined, M2a macrophages secrete components of the ECM as part of their wound healing function [8]. Our preliminary findings are that CD163+ foam cells in the plaque produce biglycan (unpublished data) and thus may contribute to retention of lipoproteins.
In the murine model (ApoE-/- mouse), it is thought that the early infiltrating macrophages are mainly of the M2 phenotype as they virtually all stain for Arg I [68]. Consistent with this, IL-4 was the predominant transcript (compared to IFNγ) in early lesions [68]. Furthermore, fatty streak formation is significantly reduced in IL-4-/- mice [69]. Whether M2 macrophages predominate in early human plaques is not known, though M-CSF-driven monocyte to macrophage differentiation may promote such skewing (Figure 1). Inferences from the murine model are not entirely appropriate as the initial environment encountered by transmigrating monocytes is quite different to that in humans. There is minimal intima in the mouse [70], while human lesion-prone sites contain considerable diffuse intimal thickening (composed of SMC, elastin and proteoglycans) prior to lipid accumulation, with the lipid depositing deep in the (ECM and SMC rich) intima [71],[72]. In humans, the foam cells form at the interface between infiltrating macrophages and extracellular lipid, rather than just below the luminal surface [62],[73]. As the plaque progresses, a heterogeneous population of foam cells is found (Figure 2:A-C and F), as is evident by the presence of CD68+ foam cells that double stain with a variety of markers such as CD14 (M-CSF derived macrophages (M-Mac)) [74], CD86(M1) [9], CD163(M2) [50] or MR (CD206:M2) [75] .
Conflicting data exists on the ability of different macrophage phenotypes to take up lipid with both increase and decrease of lipid uptake being reported in M2 macrophages- the differences are likely due to variations in culture conditions leading to differences in the cell types being formed and compared. While M2a macrophages take up less lipid than resting macrophages [75], M2 macrophages (a, b and c) take up more lipid than M1 macrophages (M-CSF with LPS plus IFNγ) [76]. M-CSF derived macrophages also take up more lipid than GM-CSF derived macrophages [34]. Macrophages can also take up lipid by non scavenger receptor means such as macropinocytosis [77]; interestingly, this is enhanced in M-CSF plus IL-10 (M2c) compared to GM-CSF derived macrophages [74]. The finding that M2 macrophages take up more lipid than M1 macrophages is consistent with the fact that M-CSF and IL-4 up-regulate the expression of CD36 [34],[78] a receptor for oxLDL [79],[80] and scavenger receptor class A [34],[76] while, conversely, IFNγ reduces CD36 expression [81]. GM-CSF up-regulates expression of genes that promote reverse cholesterol transport (PPARγ, liver x receptor (LXR)-α [34],[74] and ATP-binding cassette sub-family G member 1(ABCG1)) [74]. As M2 (a, b and c) macrophages do not differ in ApoA-1 or high density lipoprotein (HDL)-stimulated cholesterol efflux compared with M1 macrophages, it is thought that the net increase in foam cell formation is primarily due to cholesterol uptake [76]. The accumulation of lipid by M-CSF derived macrophages enhances pro-inflammatory responses characterised by higher production of IL-6, IL-8 and MCP-1 and lower production of IL-10 upon stimulation with LPS [34].
As the atherosclerotic lesion progresses, a pro-inflammatory environment ensues with greater levels of Th1 cytokines (such as IFNγ) compared to Th2 (IL-4) [7]. Consistent with this, lesion progression in the ApoE-/- mouse is associated with an increased prevalence of M1(Arg II) in older mice [68]. Thus, though M2 macrophages may theoretically have a greater ability to take up lipid in the plaque, the increasingly pro-inflammatory environment may skew monocyte to macrophage differentiation towards that of an M1 phenotype. This skewing would accordingly account for the reported absence of M2 foam cells in advanced human lesions [40], or their location distant from the core [75]. Though, interestingly, in the ApoE-/- mouse, M2 (MR+) macrophages were localised more centrally within the plaque, and had a higher proportion of adipose differentiation-related protein (ADRP) expression compared to M1(chemokine (C-C motif) receptor 7 (CCR7)) macrophages [82]. The lack of M2 foam cells may also arise from increased cell death, as cholesterol uptake promotes endoplasmic reticulum (ER) stress which triggers the unfolded protein response [76],[83] and M2 (IL-13 derived) foam cells are more sensitive to the unfolded protein response than other forms of macrophages [84].

Macrophages and formation of the necrotic core

The clearance of apoptotic cells promotes resolution of inflammation through the production of anti inflammatory mediators such as IL-10 and TGFβ [85]-[87]. However, in atherosclerosis, defective clearance of apoptotic cells leads to secondary necrosis and development of the necrotic core [88],[89]. The switch from an M2 to an M1 promoting environment during atherosclerosis progression may impede apoptotic cell clearance as M2 cells have greater capacity for efferocytosis [90] (Figure 1); this is through various pathways such as the expression of MR [91] and up-regulation of MER proto-oncogene tryosine kinase (MERTK) (on M2c), which is not induced on M1 macrophages [49],[92]. Furthermore, inhibition of autophagy promotes apoptosis and defective efferocytosis leading to increased plaque necrosis in a murine model [93]. Interestingly, ER stress, which promotes autophagy [93], also promotes an M2 macrophage phenotype [76], while mechanistic target of rapamcyin (mTOR) which negatively regulates autophagy [94], also inhibits M2 polarisation [95]. In addition, the uptake of phospholipid (and adoption of a Mox phenotype) reduces the ability of both M1 and M2 macrophages to phagocytose apoptotic cells [41]. Necrosis leads to a pro-inflammatory state, which itself promotes formation of efferocytic low macrophage phenotypes [90].

Macrophages in the fibrous cap

While a large necrotic core promotes plaque instability, formation of the fibrous cap promotes plaque stability and thus the role of macrophages in the cap is equally important. Both M1 (CD86) and M2 (CD163 and MR) macrophages are found in the atherosclerotic cap, where they adopt a spindle shape (Figure 2: D-F) [9],[96]. A high number of CD68 macrophages in the cap is associated with plaque instability [97],[98], with this association also holding for M1(CD86), but not M2(CD163), macrophages [9]. Similarly, levels of CD68 and CD11c (M1) in the carotid plaque are higher in symptomatic patients compared to asymptomatic patients, while levels of the M2 markers (CD163 and MR) are lower [99]. Notably, M1 macrophages are found in the rupture-prone shoulder regions of the plaque [96]. Macrophage activity in the cap is highly detrimental as they produce matrix metalloproteinases (MMP) which degrade components of the matrix, thinning the cap and leaving it vulnerable to rupture [100]-[102]. That M1 macrophages are more frequent in plaques with an unstable morphology is consistent with the understanding that M1 macrophages are involved in tissue destruction [8]. This can be directly through the production of matrix metalloproteinases and indirectly through effects on SMC. Macrophage production of inflammatory cytokines, such as IL-1 and TNFα, can stimulate SMC to produce gelatinase, interstitial collagenase and stromelysin [103]. Furthermore, TNFα promotes macrophage–induced vascular SMC apoptosis [104], thus reducing the source of collagen and other matrix which thickens the cap. These cytokines also further activate EC and SMC, up-regulating chemokine production [105].
M2 macrophages may promote plaque stability due to their promotion of tissue repair and evidence of this in the carotid plaque is seen by their (CD163+ and CD206+ macrophages) production of collagen I (Figure 2:D) [9]. Despite this function however, no correlation was found in levels of CD163 in plaque cap, with cap thickness [9]; which may reflect a range of macrophages in the plaque that can express CD163. Furthermore, M2 macrophages may also promote plaque stabilisation by inducing the proliferation of vascular SMC [68].

Macrophages in the complex plaque

Advanced plaques can become quite complex with features such as calcification and intra-plaque haemorrhage. In this respect, distinct macrophages are found in regions of plaque haemorrhage displaying a non foam cell form [38]-[40]. In vitro investigation of these Mhem macrophages shows that they are resistant to foam cell formation through down regulation of scavenger receptors and up-regulation of ATP-binding cassette, sub-family A member 1 (ABCA1), ABCG1 [39] and LXR-β [38]. Consistent with this, MR (CD206) + foam cells in the plaque are smaller and contain smaller lipid droplets than their MR- counterparts [75]. Mhem macrophages are thought to be athero-protective as haemoglobin binding to CD163 up-regulates haemoxygenase (HMOX)1 [106]. HMOX1 catabolises haeme, thus removing its pro-oxidative and pro- inflammatory actions, and in the process, promotes anti-oxidant and anti-inflammatory effects through the generation of haeme degradation by-products, such as biliverdin [107]. Over-expression of HMOX1 inhibits atherosclerosis in ApoE-/- mice [108]. With the production of collagen I evident in CD163+ and CD206+ macrophages found in regions of haemorrhage [9], this suggests that Mhem macrophages may also be athero-protective through production of collagen I. M4 macrophages are also evident in the plaque; they may have a pro-atherogenic role as CXCL4 deficiency results in decreased atherosclerotic plaque burden [109]. Furthermore, in vitro, CXCL4 down regulates both IL-10 secretion and CD163 expression and inhibits HMOX1 up-regulation [50].

Macrophage phenotypes in plaque regression/stabilisation

Plaque regression or stabilisation, a key clinical goal, has been achieved in mouse models, most notably in the Reversa mouse – a mouse in which hypercholesterolaemia (due to knock out of the LDL receptor) can be conditionally reversed [110]. Decreasing LDL resulted in stabilisation of the plaque with a reduced lipid component and increased collagen content. These changes were associated with a decrease in total macrophages (CD68 and Moma +) and increased gene expression of M2 markers such as Arg I, MR, CD163, C-lectin and FIZZ1 [111]. This increase in M2 macrophages is also evident in other models of plaque regression including transplant of the atherosclerosed vessel into normal cholesterolaemic mice [112] and induction of regression by HDL [113]. Whether these changes involved a phenotypic conversion of M1 to M2 macrophages is not clear, but it has been suggested to occur in the ApoE-/- mouse as seen by the presence of macrophages double staining with Arg I (M2) and Arg II (M1) [68], though it should be noted that the specificity of Arg I for M2 macrophages is in question [20]. Nonetheless, an M1- M2 switch has been seen in other models, such as wound healing [114].
The polarisation towards an M2 phenotype in plaque regression is consistent with the view that M1 macrophages are pro-atherogenic and promote an unstable plaque, while M2 macrophages promote tissue repair [10] and likely plaque stability. Stimulation of the PPARγ pathway, which promotes M2 macrophage polarisation [115], results in decreased atherosclerosis development in the ApoE-/- mouse [116]. Interestingly, Wolfs et al. [117] observed reduced atherosclerosis in the LDLR-/- mouse after injection of helminth antigens which reprogrammed monocytes and macrophages to an M2 phenotype. Of note, a link between Schistosomal infection and reduced incidence of atherosclerosis has previously been recognised [118]. These results show that modulation towards an M2 phenotype may inhibit plaque progression, reflect plaque regression and holds promise that it may also promote plaque regression in an advanced plaque.

Plasticity of macrophage phenotypes

Though the plasticity of macrophages in vitro and in vivo, which suggests functional adaptivity, has been documented [12]-[14],[119]-[121], the reversal of the phenotype does not always occur and may depend upon the state of macrophage differentiation. For example, while PPARγ activation primes monocytes to adopt an M2 phenotype, it does not influence M2 marker expression in M1 macrophages nor does it influence the expression of M2 markers in human atherosclerotic lesions [115]. Furthermore, while M-CSF and IL-10 promote the formation of an M2c macrophage and accordingly high levels of expression of MERTK and ability to clear apoptotic cells [49], chronic pre-exposure of the cells to IFN-γ or IL-4 prior to exposure with IL-10 down regulates MERTK, leading instead to the cells up-regulating Fas (CD95) and undergoing apoptosis [92]. In addition, M-CSF was unable to significantly induce CD163 expression on monocytes pre-exposed to CXCL4 [50]. Clearly a greater understanding of macrophage function in the plaque, their plasticity (or lack thereof) and the pathways involved is required to ensure that a plaque stabilising form can be promoted.

Conclusion

A spectrum of macrophage phenotypes is present in the atherosclerotic plaque with each, in some way, impacting plaque stability. Given the association of M1 macrophages with plaque instability and their known role in tissue destruction, decreasing the levels of these macrophages in the plaque is a promising avenue for plaque stabilisation. However, promoting the elevation of M2 macrophages in the plaque is too simplistic and requires a greater understanding of the function of the various subsets within the human plaque and careful consideration of the pathways to target. For while M2 macrophages may have predominantly anti-atherogenic functions, some properties may promote plaque progression; such as their increased uptake of, and sensitivity to, oxLDL, which may promote enlargement of the core. Furthermore, while macrophages are ‘plastic’, it is apparent that such plasticity is quite conditional with some, but not all, properties being reversible and even leading to undesired functions. (Note also that the source of macrophages in the plaque; the contribution of monocyte derived, proliferating and resident macrophages, to plaque stability will also need to be considered, but this was outside the scope of this review).
Upon further investigation, modulating macrophage function to promote plaque stabilisation may become a reality. However, any approach to modulate macrophage phenotype should be an adjunct to existing treatments of lowering lipids, for lipid deposition in the arterial wall is a key initiating factor in atherosclerosis and itself increases the inflammatory nature of the plaque, which could counteract efforts to promote a less inflammatory environment.

Acknowledgments

Thank you to Virginia James and Jessica Ngo who conducted the staining for the plaque pictures shown in this review.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://​creativecommons.​org/​licenses/​by/​4.​0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare they do not have any competing interests.

Authors’ contributions

HM drafted the manuscript. Both HM and HW reviewed the literature. All authors read through and made suggestions and corrections to the manuscript. All authors approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Below are the links to the authors’ original submitted files for images.
Literatur
1.
Zurück zum Zitat Bentzon JF, Otsuka F, Virmani R, Falk E: Mechanisms of plaque formation and rupture. Circ Res 2014, 114: 1852–1866.PubMed Bentzon JF, Otsuka F, Virmani R, Falk E: Mechanisms of plaque formation and rupture. Circ Res 2014, 114: 1852–1866.PubMed
2.
Zurück zum Zitat Falk E, Shah PK, Fuster V: Coronary plaque disruption. Circulation 1995, 92: 657–671.PubMed Falk E, Shah PK, Fuster V: Coronary plaque disruption. Circulation 1995, 92: 657–671.PubMed
3.
Zurück zum Zitat Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993, 69: 377–381.PubMedPubMedCentral Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J: Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J 1993, 69: 377–381.PubMedPubMedCentral
4.
Zurück zum Zitat Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold HK: Pathologic assessment of the vulnerable human coronary plaque. Heart 2004, 90: 1385–1391.PubMedPubMedCentral Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold HK: Pathologic assessment of the vulnerable human coronary plaque. Heart 2004, 90: 1385–1391.PubMedPubMedCentral
5.
6.
Zurück zum Zitat Shah PK: Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis 2002, 44: 357–368.PubMed Shah PK: Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion. Prog Cardiovasc Dis 2002, 44: 357–368.PubMed
7.
Zurück zum Zitat Hansson GK, Libby P: The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006, 6: 508–519.PubMed Hansson GK, Libby P: The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 2006, 6: 508–519.PubMed
8.
9.
Zurück zum Zitat Medbury HJ, James V, Ngo J, Hitos K, Wang Y, Harris DC, Fletcher JP: Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 2013, 32: 74–84.PubMed Medbury HJ, James V, Ngo J, Hitos K, Wang Y, Harris DC, Fletcher JP: Differing association of macrophage subsets with atherosclerotic plaque stability. Int Angiol 2013, 32: 74–84.PubMed
10.
Zurück zum Zitat Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32: 593–604.PubMed Gordon S, Martinez FO: Alternative activation of macrophages: mechanism and functions. Immunity 2010, 32: 593–604.PubMed
11.
Zurück zum Zitat Stanley ER, Chen DM, Lin HS: Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature 1978, 274: 168–170.PubMed Stanley ER, Chen DM, Lin HS: Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature 1978, 274: 168–170.PubMed
12.
Zurück zum Zitat Stout RD, Suttles J: Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004, 76: 509–513.PubMedPubMedCentral Stout RD, Suttles J: Functional plasticity of macrophages: reversible adaptation to changing microenvironments. J Leukoc Biol 2004, 76: 509–513.PubMedPubMedCentral
13.
Zurück zum Zitat Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G: Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005, 142: 481–489.PubMedPubMedCentral Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, Dormont D, Gras G: Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005, 142: 481–489.PubMedPubMedCentral
14.
Zurück zum Zitat Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175: 342–349.PubMed Stout RD, Jiang C, Matta B, Tietzel I, Watkins SK, Suttles J: Macrophages sequentially change their functional phenotype in response to changes in microenvironmental influences. J Immunol 2005, 175: 342–349.PubMed
15.
Zurück zum Zitat Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13: 453–461.PubMed Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13: 453–461.PubMed
16.
Zurück zum Zitat Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000, 164: 6166–6173.PubMed Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM: M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000, 164: 6166–6173.PubMed
17.
Zurück zum Zitat Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23: 549–555.PubMed Mantovani A, Sozzani S, Locati M, Allavena P, Sica A: Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002, 23: 549–555.PubMed
18.
Zurück zum Zitat Modolell M, Corraliza IM, Link F, Soler G, Eichmann K: Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 1995, 25: 1101–1104.PubMed Modolell M, Corraliza IM, Link F, Soler G, Eichmann K: Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur J Immunol 1995, 25: 1101–1104.PubMed
19.
Zurück zum Zitat Gratchev A, Schledzewski K, Guillot P, Goerdt S: Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 2001, 14: 272–279.PubMed Gratchev A, Schledzewski K, Guillot P, Goerdt S: Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 2001, 14: 272–279.PubMed
20.
Zurück zum Zitat Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41: 14–20.PubMedPubMedCentral Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, Gordon S, Hamilton JA, Ivashkiv LB, Lawrence T, Locati M, Mantovani A, Martinez FO, Mege JL, Mosser DM, Natoli G, Saeij JP, Schultze JL, Shirey KA, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel SN, Wynn TA: Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014, 41: 14–20.PubMedPubMedCentral
21.
Zurück zum Zitat Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004, 101: 4560–4565.PubMedPubMedCentral Verreck FA, de Boer T, Langenberg DM, Hoeve MA, Kramer M, Vaisberg E, Kastelein R, Kolk A, de Waal-Malefyt R, Ottenhoff TH: Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004, 101: 4560–4565.PubMedPubMedCentral
22.
Zurück zum Zitat Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH: Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006, 79: 285–293.PubMed Verreck FA, de Boer T, Langenberg DM, van der Zanden L, Ottenhoff TH: Phenotypic and functional profiling of human proinflammatory type-1 and anti-inflammatory type-2 macrophages in response to microbial antigens and IFN-gamma- and CD40L-mediated costimulation. J Leukoc Biol 2006, 79: 285–293.PubMed
23.
Zurück zum Zitat Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J: M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 2009, 182: 4415–4422.PubMed Leidi M, Gotti E, Bologna L, Miranda E, Rimoldi M, Sica A, Roncalli M, Palumbo GA, Introna M, Golay J: M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J Immunol 2009, 182: 4415–4422.PubMed
24.
Zurück zum Zitat Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P: Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 2009, 85: 779–787.PubMed Lolmede K, Campana L, Vezzoli M, Bosurgi L, Tonlorenzi R, Clementi E, Bianchi ME, Cossu G, Manfredi AA, Brunelli S, Rovere-Querini P: Inflammatory and alternatively activated human macrophages attract vessel-associated stem cells, relying on separate HMGB1- and MMP-9-dependent pathways. J Leukoc Biol 2009, 85: 779–787.PubMed
25.
Zurück zum Zitat Rey-Giraud F, Hafner M, Ries CH: In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 2012, 7: e42656.PubMedPubMedCentral Rey-Giraud F, Hafner M, Ries CH: In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions. PLoS One 2012, 7: e42656.PubMedPubMedCentral
26.
Zurück zum Zitat Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 2007, 178: 5245–5252.PubMed Fleetwood AJ, Lawrence T, Hamilton JA, Cook AD: Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J Immunol 2007, 178: 5245–5252.PubMed
27.
Zurück zum Zitat Martinez FO, Gordon S, Locati M, Mantovani A: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006, 177: 7303–7311.PubMed Martinez FO, Gordon S, Locati M, Mantovani A: Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 2006, 177: 7303–7311.PubMed
28.
Zurück zum Zitat Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014, 40: 274–288.PubMedPubMedCentral Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 2014, 40: 274–288.PubMedPubMedCentral
29.
Zurück zum Zitat Hoeksema MA, Stoger JL, de Winther MP: Molecular pathways regulating macrophage polarization: implications for atherosclerosis. Curr Atheroscler Rep 2012, 14: 254–263.PubMedPubMedCentral Hoeksema MA, Stoger JL, de Winther MP: Molecular pathways regulating macrophage polarization: implications for atherosclerosis. Curr Atheroscler Rep 2012, 14: 254–263.PubMedPubMedCentral
30.
Zurück zum Zitat Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13: 709–721.PubMedPubMedCentral Moore KJ, Sheedy FJ, Fisher EA: Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013, 13: 709–721.PubMedPubMedCentral
31.
Zurück zum Zitat Stein M, Keshav S, Harris N, Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992, 176: 287–292.PubMed Stein M, Keshav S, Harris N, Gordon S: Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992, 176: 287–292.PubMed
32.
Zurück zum Zitat Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25: 677–686.PubMed Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M: The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004, 25: 677–686.PubMed
33.
Zurück zum Zitat Sironi M, Martinez FO, D'Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J, Sozzani S, Martini A, Sinigaglia F, Vecchi A, Mantovani A: Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 2006, 80: 342–349.PubMed Sironi M, Martinez FO, D'Ambrosio D, Gattorno M, Polentarutti N, Locati M, Gregorio A, Iellem A, Cassatella MA, Van Damme J, Sozzani S, Martini A, Sinigaglia F, Vecchi A, Mantovani A: Differential regulation of chemokine production by Fcgamma receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, Type 2). J Leukoc Biol 2006, 80: 342–349.PubMed
34.
Zurück zum Zitat van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF: Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 2011, 214: 345–349.PubMed van Tits LJ, Stienstra R, van Lent PL, Netea MG, Joosten LA, Stalenhoef AF: Oxidized LDL enhances pro-inflammatory responses of alternatively activated M2 macrophages: a crucial role for Kruppel-like factor 2. Atherosclerosis 2011, 214: 345–349.PubMed
35.
Zurück zum Zitat Edwards JP, Zhang X, Frauwirth KA, Mosser DM: Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006, 80: 1298–1307.PubMedPubMedCentral Edwards JP, Zhang X, Frauwirth KA, Mosser DM: Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006, 80: 1298–1307.PubMedPubMedCentral
36.
Zurück zum Zitat Wolfs IM, Donners MM, de Winther MP: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 2011, 106: 763–771.PubMed Wolfs IM, Donners MM, de Winther MP: Differentiation factors and cytokines in the atherosclerotic plaque micro-environment as a trigger for macrophage polarisation. Thromb Haemost 2011, 106: 763–771.PubMed
37.
Zurück zum Zitat Kleemann R, Zadelaar S, Kooistra T: Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008, 79: 360–376.PubMedPubMedCentral Kleemann R, Zadelaar S, Kooistra T: Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res 2008, 79: 360–376.PubMedPubMedCentral
38.
Zurück zum Zitat Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 2012, 110: 20–33.PubMed Boyle JJ, Johns M, Kampfer T, Nguyen AT, Game L, Schaer DJ, Mason JC, Haskard DO: Activating transcription factor 1 directs Mhem atheroprotective macrophages through coordinated iron handling and foam cell protection. Circ Res 2012, 110: 20–33.PubMed
39.
Zurück zum Zitat Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R: Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 2012, 59: 166–177.PubMedPubMedCentral Finn AV, Nakano M, Polavarapu R, Karmali V, Saeed O, Zhao X, Yazdani S, Otsuka F, Davis T, Habib A, Narula J, Kolodgie FD, Virmani R: Hemoglobin directs macrophage differentiation and prevents foam cell formation in human atherosclerotic plaques. J Am Coll Cardiol 2012, 59: 166–177.PubMedPubMedCentral
40.
Zurück zum Zitat Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO: Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 2009, 174: 1097–1108.PubMedPubMedCentral Boyle JJ, Harrington HA, Piper E, Elderfield K, Stark J, Landis RC, Haskard DO: Coronary intraplaque hemorrhage evokes a novel atheroprotective macrophage phenotype. Am J Pathol 2009, 174: 1097–1108.PubMedPubMedCentral
41.
Zurück zum Zitat Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010, 107: 737–746.PubMedPubMedCentral Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N: Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010, 107: 737–746.PubMedPubMedCentral
43.
Zurück zum Zitat Bobryshev YV, Lord RS: S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc Res 1995, 29: 689–696.PubMed Bobryshev YV, Lord RS: S-100 positive cells in human arterial intima and in atherosclerotic lesions. Cardiovasc Res 1995, 29: 689–696.PubMed
44.
Zurück zum Zitat Bobryshev YV, Lord RS, Rainer S, Jamal OS, Munro VF: Vascular dendritic cells and atherosclerosis. Pathol Res Pract 1996, 192: 462–467.PubMed Bobryshev YV, Lord RS, Rainer S, Jamal OS, Munro VF: Vascular dendritic cells and atherosclerosis. Pathol Res Pract 1996, 192: 462–467.PubMed
45.
Zurück zum Zitat Medbury HJ, Tarran SL, Guiffre AK, Williams MM, Lam TH, Vicaretti M, Fletcher JP: Monocytes contribute to the atherosclerotic cap by transformation into fibrocytes. Int Angiol 2008, 27: 114–123.PubMed Medbury HJ, Tarran SL, Guiffre AK, Williams MM, Lam TH, Vicaretti M, Fletcher JP: Monocytes contribute to the atherosclerotic cap by transformation into fibrocytes. Int Angiol 2008, 27: 114–123.PubMed
46.
Zurück zum Zitat Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012, 2012: 948098.PubMedPubMedCentral Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM: Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol 2012, 2012: 948098.PubMedPubMedCentral
47.
Zurück zum Zitat Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014, 6: 13.PubMedPubMedCentral Martinez FO, Gordon S: The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014, 6: 13.PubMedPubMedCentral
48.
Zurück zum Zitat Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL: High-resolution transcriptome of human macrophages. PLoS One 2012, 7: e45466.PubMedPubMedCentral Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL: High-resolution transcriptome of human macrophages. PLoS One 2012, 7: e45466.PubMedPubMedCentral
49.
Zurück zum Zitat Zizzo G, Hilliard BA, Monestier M, Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 2012, 189: 3508–3520.PubMedPubMedCentral Zizzo G, Hilliard BA, Monestier M, Cohen PL: Efficient clearance of early apoptotic cells by human macrophages requires M2c polarization and MerTK induction. J Immunol 2012, 189: 3508–3520.PubMedPubMedCentral
50.
Zurück zum Zitat Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, Ley K: CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 2010, 106: 203–211.PubMedPubMedCentral Gleissner CA, Shaked I, Erbel C, Bockler D, Katus HA, Ley K: CXCL4 downregulates the atheroprotective hemoglobin receptor CD163 in human macrophages. Circ Res 2010, 106: 203–211.PubMedPubMedCentral
51.
Zurück zum Zitat Williams KJ, Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995, 15: 551–561.PubMedPubMedCentral Williams KJ, Tabas I: The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 1995, 15: 551–561.PubMedPubMedCentral
52.
Zurück zum Zitat Tabas I, Williams KJ, Boren J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007, 116: 1832–1844.PubMed Tabas I, Williams KJ, Boren J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 2007, 116: 1832–1844.PubMed
53.
Zurück zum Zitat Williams KJ: Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Curr Opin Lipidol 2001, 12: 477–487.PubMed Williams KJ: Arterial wall chondroitin sulfate proteoglycans: diverse molecules with distinct roles in lipoprotein retention and atherogenesis. Curr Opin Lipidol 2001, 12: 477–487.PubMed
54.
Zurück zum Zitat Khalil MF, Wagner WD, Goldberg IJ: Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24: 2211–2218.PubMed Khalil MF, Wagner WD, Goldberg IJ: Molecular interactions leading to lipoprotein retention and the initiation of atherosclerosis. Arterioscler Thromb Vasc Biol 2004, 24: 2211–2218.PubMed
55.
Zurück zum Zitat Chait A, Wight TN: Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 2000, 11: 457–463.PubMed Chait A, Wight TN: Interaction of native and modified low-density lipoproteins with extracellular matrix. Curr Opin Lipidol 2000, 11: 457–463.PubMed
56.
Zurück zum Zitat Schwenke DC, Carew TE: Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989, 9: 895–907.PubMed Schwenke DC, Carew TE: Initiation of atherosclerotic lesions in cholesterol-fed rabbits. I. Focal increases in arterial LDL concentration precede development of fatty streak lesions. Arteriosclerosis 1989, 9: 895–907.PubMed
57.
Zurück zum Zitat Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 1998, 9: 471–474.PubMed Williams KJ, Tabas I: The response-to-retention hypothesis of atherogenesis reinforced. Curr Opin Lipidol 1998, 9: 471–474.PubMed
58.
Zurück zum Zitat Gerrity RG, Naito HK, Richardson M, Schwartz CJ: Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol 1979, 95: 775–792.PubMedPubMedCentral Gerrity RG, Naito HK, Richardson M, Schwartz CJ: Dietary induced atherogenesis in swine. Morphology of the intima in prelesion stages. Am J Pathol 1979, 95: 775–792.PubMedPubMedCentral
59.
Zurück zum Zitat Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 2001, 104: 503–516.PubMed Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 2001, 104: 503–516.PubMed
60.
Zurück zum Zitat Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P: Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 1992, 140: 301–316.PubMedPubMedCentral Clinton SK, Underwood R, Hayes L, Sherman ML, Kufe DW, Libby P: Macrophage colony-stimulating factor gene expression in vascular cells and in experimental and human atherosclerosis. Am J Pathol 1992, 140: 301–316.PubMedPubMedCentral
61.
Zurück zum Zitat Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 1995, 92: 8264–8268.PubMedPubMedCentral Smith JD, Trogan E, Ginsberg M, Grigaux C, Tian J, Miyata M: Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E. Proc Natl Acad Sci U S A 1995, 92: 8264–8268.PubMedPubMedCentral
62.
Zurück zum Zitat Zaman AG, Helft G, Worthley SG, Badimon JJ: The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000, 149: 251–266.PubMed Zaman AG, Helft G, Worthley SG, Badimon JJ: The role of plaque rupture and thrombosis in coronary artery disease. Atherosclerosis 2000, 149: 251–266.PubMed
63.
Zurück zum Zitat Stary HC: Changes in components and structure of atherosclerotic lesions developing from childhood to middle age in coronary arteries. Basic Res Cardiol 1994, 89(Suppl 1):17–32.PubMed Stary HC: Changes in components and structure of atherosclerotic lesions developing from childhood to middle age in coronary arteries. Basic Res Cardiol 1994, 89(Suppl 1):17–32.PubMed
64.
Zurück zum Zitat Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT: Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 2002, 22: 211–217.PubMed Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT: Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler Thromb Vasc Biol 2002, 22: 211–217.PubMed
65.
Zurück zum Zitat Schissel SL, Schuchman EH, Williams KJ, Tabas I: Zn2 + -stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 1996, 271: 18431–18436.PubMed Schissel SL, Schuchman EH, Williams KJ, Tabas I: Zn2 + -stimulated sphingomyelinase is secreted by many cell types and is a product of the acid sphingomyelinase gene. J Biol Chem 1996, 271: 18431–18436.PubMed
66.
Zurück zum Zitat Kaplan M, Aviram M: Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis 2000, 149: 5–17.PubMed Kaplan M, Aviram M: Macrophage plasma membrane chondroitin sulfate proteoglycan binds oxidized low-density lipoprotein. Atherosclerosis 2000, 149: 5–17.PubMed
67.
Zurück zum Zitat Williams KJ, Tabas I: Lipoprotein retention–and clues for atheroma regression. Arterioscler Thromb Vasc Biol 2005, 25: 1536–1540.PubMed Williams KJ, Tabas I: Lipoprotein retention–and clues for atheroma regression. Arterioscler Thromb Vasc Biol 2005, 25: 1536–1540.PubMed
68.
Zurück zum Zitat Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G: Macrophage plasticity in experimental atherosclerosis. PLoS One 2010, 5: e8852.PubMedPubMedCentral Khallou-Laschet J, Varthaman A, Fornasa G, Compain C, Gaston AT, Clement M, Dussiot M, Levillain O, Graff-Dubois S, Nicoletti A, Caligiuri G: Macrophage plasticity in experimental atherosclerosis. PLoS One 2010, 5: e8852.PubMedPubMedCentral
69.
Zurück zum Zitat George J, Shoenfeld Y, Gilburd B, Afek A, Shaish A, Harats D: Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res 2000, 86: 1203–1210.PubMed George J, Shoenfeld Y, Gilburd B, Afek A, Shaish A, Harats D: Requisite role for interleukin-4 in the acceleration of fatty streaks induced by heat shock protein 65 or Mycobacterium tuberculosis. Circ Res 2000, 86: 1203–1210.PubMed
70.
Zurück zum Zitat Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994, 14: 133–140.PubMed Nakashima Y, Plump AS, Raines EW, Breslow JL, Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb 1994, 14: 133–140.PubMed
71.
Zurück zum Zitat Nakashima Y, Chen YX, Kinukawa N, Sueishi K: Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch 2002, 441: 279–288.PubMed Nakashima Y, Chen YX, Kinukawa N, Sueishi K: Distributions of diffuse intimal thickening in human arteries: preferential expression in atherosclerosis-prone arteries from an early age. Virchows Arch 2002, 441: 279–288.PubMed
72.
Zurück zum Zitat Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20: 1262–1275.PubMed Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000, 20: 1262–1275.PubMed
73.
Zurück zum Zitat Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K: Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007, 27: 1159–1165.PubMed Nakashima Y, Fujii H, Sumiyoshi S, Wight TN, Sueishi K: Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 2007, 27: 1159–1165.PubMed
74.
Zurück zum Zitat Waldo SW, Li Y, Buono C, Zhao B, Billings EM, Chang J, Kruth HS: Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 2008, 172: 1112–1126.PubMedPubMedCentral Waldo SW, Li Y, Buono C, Zhao B, Billings EM, Chang J, Kruth HS: Heterogeneity of human macrophages in culture and in atherosclerotic plaques. Am J Pathol 2008, 172: 1112–1126.PubMedPubMedCentral
75.
Zurück zum Zitat Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, Derudas B, Mayi T, Bories G, Tailleux A, Haulon S, Zawadzki C, Jude B, Staels B: Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res 2011, 108: 985–995.PubMedPubMedCentral Chinetti-Gbaguidi G, Baron M, Bouhlel MA, Vanhoutte J, Copin C, Sebti Y, Derudas B, Mayi T, Bories G, Tailleux A, Haulon S, Zawadzki C, Jude B, Staels B: Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res 2011, 108: 985–995.PubMedPubMedCentral
76.
Zurück zum Zitat Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287: 11629–11641.PubMedPubMedCentral Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287: 11629–11641.PubMedPubMedCentral
77.
Zurück zum Zitat Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY: Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 2005, 280: 2352–2360.PubMed Kruth HS, Jones NL, Huang W, Zhao B, Ishii I, Chang J, Combs CA, Malide D, Zhang WY: Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formation with native low density lipoprotein. J Biol Chem 2005, 280: 2352–2360.PubMed
78.
Zurück zum Zitat Yesner LM, Huh HY, Pearce SF, Silverstein RL: Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996, 16: 1019–1025.PubMed Yesner LM, Huh HY, Pearce SF, Silverstein RL: Regulation of monocyte CD36 and thrombospondin-1 expression by soluble mediators. Arterioscler Thromb Vasc Biol 1996, 16: 1019–1025.PubMed
79.
Zurück zum Zitat Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA: CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993, 268: 11811–11816.PubMed Endemann G, Stanton LW, Madden KS, Bryant CM, White RT, Protter AA: CD36 is a receptor for oxidized low density lipoprotein. J Biol Chem 1993, 268: 11811–11816.PubMed
80.
Zurück zum Zitat Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 2002, 277: 49982–49988.PubMed Kunjathoor VV, Febbraio M, Podrez EA, Moore KJ, Andersson L, Koehn S, Rhee JS, Silverstein R, Hoff HF, Freeman MW: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 2002, 277: 49982–49988.PubMed
81.
Zurück zum Zitat Nakagawa T, Nozaki S, Nishida M, Yakub JM, Tomiyama Y, Nakata A, Matsumoto K, Funahashi T, Kameda-Takemura K, Kurata Y, Yamashita S, Matsuzawa Y: Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1998, 18: 1350–1357.PubMed Nakagawa T, Nozaki S, Nishida M, Yakub JM, Tomiyama Y, Nakata A, Matsumoto K, Funahashi T, Kameda-Takemura K, Kurata Y, Yamashita S, Matsuzawa Y: Oxidized LDL increases and interferon-gamma decreases expression of CD36 in human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol 1998, 18: 1350–1357.PubMed
82.
Zurück zum Zitat Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287(15):11629–11641.PubMedPubMedCentral Oh J, Riek AE, Weng S, Petty M, Kim D, Colonna M, Cella M, Bernal-Mizrachi C: Endoplasmic reticulum stress controls M2 macrophage differentiation and foam cell formation. J Biol Chem 2012, 287(15):11629–11641.PubMedPubMedCentral
83.
Zurück zum Zitat Seimon T, Tabas I: Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009, 50(Suppl):S382-S387.PubMedPubMedCentral Seimon T, Tabas I: Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res 2009, 50(Suppl):S382-S387.PubMedPubMedCentral
84.
Zurück zum Zitat Isa SA, Ruffino JS, Ahluwalia M, Thomas AW, Morris K, Webb R: M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 2011, 10: 229.PubMedPubMedCentral Isa SA, Ruffino JS, Ahluwalia M, Thomas AW, Morris K, Webb R: M2 macrophages exhibit higher sensitivity to oxLDL-induced lipotoxicity than other monocyte/macrophage subtypes. Lipids Health Dis 2011, 10: 229.PubMedPubMedCentral
85.
Zurück zum Zitat Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997, 390: 350–351.PubMed Voll RE, Herrmann M, Roth EA, Stach C, Kalden JR, Girkontaite I: Immunosuppressive effects of apoptotic cells. Nature 1997, 390: 350–351.PubMed
86.
Zurück zum Zitat Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101: 890–898.PubMedPubMedCentral Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest 1998, 101: 890–898.PubMedPubMedCentral
87.
Zurück zum Zitat Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002, 109: 41–50.PubMedPubMedCentral Huynh ML, Fadok VA, Henson PM: Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J Clin Invest 2002, 109: 41–50.PubMedPubMedCentral
88.
Zurück zum Zitat Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W: Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005, 25: 1256–1261.PubMed Schrijvers DM, De Meyer GR, Kockx MM, Herman AG, Martinet W: Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis. Arterioscler Thromb Vasc Biol 2005, 25: 1256–1261.PubMed
89.
Zurück zum Zitat Tabas I: Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010, 10: 36–46.PubMedPubMedCentral Tabas I: Macrophage death and defective inflammation resolution in atherosclerosis. Nat Rev Immunol 2010, 10: 36–46.PubMedPubMedCentral
90.
Zurück zum Zitat Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL: Modulation of macrophage efferocytosis in inflammation. Front Immunol 2011, 2: 57.PubMedPubMedCentral Korns D, Frasch SC, Fernandez-Boyanapalli R, Henson PM, Bratton DL: Modulation of macrophage efferocytosis in inflammation. Front Immunol 2011, 2: 57.PubMedPubMedCentral
91.
Zurück zum Zitat Nauta AJ, Raaschou-Jensen N, Roos A, Daha MR, Madsen HO, Borrias-Essers MC, Ryder LP, Koch C, Garred P: Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003, 33: 2853–2863.PubMed Nauta AJ, Raaschou-Jensen N, Roos A, Daha MR, Madsen HO, Borrias-Essers MC, Ryder LP, Koch C, Garred P: Mannose-binding lectin engagement with late apoptotic and necrotic cells. Eur J Immunol 2003, 33: 2853–2863.PubMed
92.
Zurück zum Zitat Zizzo G, Cohen PL: IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J Immunol 2013, 190: 5237–5246.PubMedPubMedCentral Zizzo G, Cohen PL: IL-17 stimulates differentiation of human anti-inflammatory macrophages and phagocytosis of apoptotic neutrophils in response to IL-10 and glucocorticoids. J Immunol 2013, 190: 5237–5246.PubMedPubMedCentral
93.
Zurück zum Zitat Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I: Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012, 15: 545–553.PubMedPubMedCentral Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J, Tabas I: Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab 2012, 15: 545–553.PubMedPubMedCentral
94.
Zurück zum Zitat Sergin I, Razani B: Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014, 25: 225–234.PubMedPubMedCentral Sergin I, Razani B: Self-eating in the plaque: what macrophage autophagy reveals about atherosclerosis. Trends Endocrinol Metab 2014, 25: 225–234.PubMedPubMedCentral
95.
Zurück zum Zitat Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T: The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2013, 4: 2834.PubMedPubMedCentral Byles V, Covarrubias AJ, Ben-Sahra I, Lamming DW, Sabatini DM, Manning BD, Horng T: The TSC-mTOR pathway regulates macrophage polarization. Nat Commun 2013, 4: 2834.PubMedPubMedCentral
96.
Zurück zum Zitat Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP: Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012, 225: 461–468.PubMed Stoger JL, Gijbels MJ, van der Velden S, Manca M, van der Loos CM, Biessen EA, Daemen MJ, Lutgens E, de Winther MP: Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis 2012, 225: 461–468.PubMed
97.
Zurück zum Zitat Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, Stoll G: Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998, 29: 1625–1630.PubMed Jander S, Sitzer M, Schumann R, Schroeter M, Siebler M, Steinmetz H, Stoll G: Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998, 29: 1625–1630.PubMed
98.
Zurück zum Zitat Tavora FR, Ripple M, Li L, Burke AP: Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009, 9: 27.PubMedPubMedCentral Tavora FR, Ripple M, Li L, Burke AP: Monocytes and neutrophils expressing myeloperoxidase occur in fibrous caps and thrombi in unstable coronary plaques. BMC Cardiovasc Disord 2009, 9: 27.PubMedPubMedCentral
99.
Zurück zum Zitat Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T: The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013, 22: 910–918.PubMed Cho KY, Miyoshi H, Kuroda S, Yasuda H, Kamiyama K, Nakagawara J, Takigami M, Kondo T, Atsumi T: The phenotype of infiltrating macrophages influences arteriosclerotic plaque vulnerability in the carotid artery. J Stroke Cerebrovasc Dis 2013, 22: 910–918.PubMed
100.
Zurück zum Zitat Lendon CL, Davies MJ, Born GV, Richardson PD: Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991, 87: 87–90.PubMed Lendon CL, Davies MJ, Born GV, Richardson PD: Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 1991, 87: 87–90.PubMed
101.
Zurück zum Zitat Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P: Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 1995, 92: 402–406.PubMedPubMedCentral Galis ZS, Sukhova GK, Kranzhofer R, Clark S, Libby P: Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases. Proc Natl Acad Sci U S A 1995, 92: 402–406.PubMedPubMedCentral
102.
Zurück zum Zitat Gough PJ, Gomez IG, Wille PT, Raines EW: Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006, 116: 59–69.PubMedPubMedCentral Gough PJ, Gomez IG, Wille PT, Raines EW: Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest 2006, 116: 59–69.PubMedPubMedCentral
103.
Zurück zum Zitat Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P: Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 1994, 75: 181–189.PubMed Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P: Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 1994, 75: 181–189.PubMed
104.
Zurück zum Zitat Boyle JJ, Weissberg PL, Bennett MR: Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003, 23: 1553–1558.PubMed Boyle JJ, Weissberg PL, Bennett MR: Tumor necrosis factor-alpha promotes macrophage-induced vascular smooth muscle cell apoptosis by direct and autocrine mechanisms. Arterioscler Thromb Vasc Biol 2003, 23: 1553–1558.PubMed
105.
Zurück zum Zitat Butcher MJ, Galkina EV: Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol 2012, 3: 44.PubMedPubMedCentral Butcher MJ, Galkina EV: Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol 2012, 3: 44.PubMedPubMedCentral
106.
Zurück zum Zitat Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ: Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res 2006, 99: 943–950.PubMed Schaer CA, Schoedon G, Imhof A, Kurrer MO, Schaer DJ: Constitutive endocytosis of CD163 mediates hemoglobin-heme uptake and determines the noninflammatory and protective transcriptional response of macrophages to hemoglobin. Circ Res 2006, 99: 943–950.PubMed
107.
Zurück zum Zitat Jeney V, Balla G, Balla J: Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014, 5: 379.PubMedPubMedCentral Jeney V, Balla G, Balla J: Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol 2014, 5: 379.PubMedPubMedCentral
108.
Zurück zum Zitat Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY: Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001, 104: 1519–1525.PubMed Juan SH, Lee TS, Tseng KW, Liou JY, Shyue SK, Wu KK, Chau LY: Adenovirus-mediated heme oxygenase-1 gene transfer inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Circulation 2001, 104: 1519–1525.PubMed
109.
Zurück zum Zitat Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA: Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007, 98: 1108–1113.PubMed Sachais BS, Turrentine T, Dawicki McKenna JM, Rux AH, Rader D, Kowalska MA: Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE-/- mice. Thromb Haemost 2007, 98: 1108–1113.PubMed
110.
Zurück zum Zitat Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG: Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 2003, 107: 1315–1321.PubMed Lieu HD, Withycombe SK, Walker Q, Rong JX, Walzem RL, Wong JS, Hamilton RL, Fisher EA, Young SG: Eliminating atherogenesis in mice by switching off hepatic lipoprotein secretion. Circulation 2003, 107: 1315–1321.PubMed
111.
Zurück zum Zitat Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG, Fisher EA: Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 2011, 123: 989–998.PubMedPubMedCentral Feig JE, Parathath S, Rong JX, Mick SL, Vengrenyuk Y, Grauer L, Young SG, Fisher EA: Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques. Circulation 2011, 123: 989–998.PubMedPubMedCentral
112.
Zurück zum Zitat Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O: Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 2012, 7: e39790.PubMedPubMedCentral Feig JE, Vengrenyuk Y, Reiser V, Wu C, Statnikov A, Aliferis CF, Garabedian MJ, Fisher EA, Puig O: Regression of atherosclerosis is characterized by broad changes in the plaque macrophage transcriptome. PLoS One 2012, 7: e39790.PubMedPubMedCentral
113.
Zurück zum Zitat Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA: HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 2011, 108: 7166–7171.PubMedPubMedCentral Feig JE, Rong JX, Shamir R, Sanson M, Vengrenyuk Y, Liu J, Rayner K, Moore K, Garabedian M, Fisher EA: HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells. Proc Natl Acad Sci U S A 2011, 108: 7166–7171.PubMedPubMedCentral
114.
Zurück zum Zitat Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011, 22: 317–326.PubMedPubMedCentral Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C, Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol 2011, 22: 317–326.PubMedPubMedCentral
115.
Zurück zum Zitat Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007, 6: 137–143.PubMed Bouhlel MA, Derudas B, Rigamonti E, Dievart R, Brozek J, Haulon S, Zawadzki C, Jude B, Torpier G, Marx N, Staels B, Chinetti-Gbaguidi G: PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007, 6: 137–143.PubMed
116.
Zurück zum Zitat Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KA, Allen TJ: Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005, 25: 1903–1909.PubMed Calkin AC, Forbes JM, Smith CM, Lassila M, Cooper ME, Jandeleit-Dahm KA, Allen TJ: Rosiglitazone attenuates atherosclerosis in a model of insulin insufficiency independent of its metabolic effects. Arterioscler Thromb Vasc Biol 2005, 25: 1903–1909.PubMed
117.
Zurück zum Zitat Wolfs IM, Stoger JL, Goossens P, Pottgens C, Gijbels MJ, Wijnands E, van der Vorst EP, van Gorp P, Beckers L, Engel D, Biessen EA, Kraal G, van Die I, Donners MM, de Winther MP: Reprogramming macrophages to an anti-inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB J 2014, 28: 288–299.PubMed Wolfs IM, Stoger JL, Goossens P, Pottgens C, Gijbels MJ, Wijnands E, van der Vorst EP, van Gorp P, Beckers L, Engel D, Biessen EA, Kraal G, van Die I, Donners MM, de Winther MP: Reprogramming macrophages to an anti-inflammatory phenotype by helminth antigens reduces murine atherosclerosis. FASEB J 2014, 28: 288–299.PubMed
118.
Zurück zum Zitat Assaad-Khalil SH, Lachine N, Sidrak M, Amara F, Jacotot B, Fahmy MH: Immuno-metabolic factors in schistosomal hepatic fibrosis modulating atherogenesis. Ann Biol Clin (Paris) 1992, 50: 697–701. Assaad-Khalil SH, Lachine N, Sidrak M, Amara F, Jacotot B, Fahmy MH: Immuno-metabolic factors in schistosomal hepatic fibrosis modulating atherogenesis. Ann Biol Clin (Paris) 1992, 50: 697–701.
119.
Zurück zum Zitat Shnyra A, Brewington R, Alipio A, Amura C, Morrison DC: Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol 1998, 160: 3729–3736.PubMed Shnyra A, Brewington R, Alipio A, Amura C, Morrison DC: Reprogramming of lipopolysaccharide-primed macrophages is controlled by a counterbalanced production of IL-10 and IL-12. J Immunol 1998, 160: 3729–3736.PubMed
120.
Zurück zum Zitat Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008, 205: 1261–1268.PubMedPubMedCentral Hagemann T, Lawrence T, McNeish I, Charles KA, Kulbe H, Thompson RG, Robinson SC, Balkwill FR: "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J Exp Med 2008, 205: 1261–1268.PubMedPubMedCentral
121.
Zurück zum Zitat Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P: Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 2009, 125: 367–373.PubMed Duluc D, Corvaisier M, Blanchard S, Catala L, Descamps P, Gamelin E, Ponsoda S, Delneste Y, Hebbar M, Jeannin P: Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int J Cancer 2009, 125: 367–373.PubMed
Metadaten
Titel
Clinical significance of macrophage phenotypes in cardiovascular disease
verfasst von
Heather J Medbury
Helen Williams
John P Fletcher
Publikationsdatum
01.12.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clinical and Translational Medicine / Ausgabe 1/2014
Elektronische ISSN: 2001-1326
DOI
https://doi.org/10.1186/s40169-014-0042-1

Weitere Artikel der Ausgabe 1/2014

Clinical and Translational Medicine 1/2014 Zur Ausgabe