Skip to main content
Erschienen in: Inflammation 5/2014

01.10.2014

Clinical Significance of Myeloid-Derived Suppressor Cells in Human Renal Transplantation with Acute T Cell-Mediated Rejection

verfasst von: Fanhang Meng, SiYang Chen, Xuekun Guo, Zhiyong Chen, Xianen Huang, Yongtong Lai, Minzhuan Lin

Erschienen in: Inflammation | Ausgabe 5/2014

Einloggen, um Zugang zu erhalten

Abstract

Myeloid-derived suppressor cells (MDSCs) are negative regulators of the immune response and are in part responsible for the inhibition of the T cell-mediated immune response. A recent paper indicated that MDSCs were involved in prolonged allograft survival in animal models of transplantation, but the significance of MDSCs in human renal transplantation is still unknown. In our study, 50 patients with biopsy-proven acute T cell-mediated rejection (ATCMR) were included. The ratio of MDSCs in peripheral blood mononuclear cell (PBMC) was evaluated with FACS, and the patients were divided into the MDSCs high group (MDSCs, >10 %) or the MDSCs low group (MDSCs, <10 %). We compared the allograft function, severity of tissue injury, and long-time survival between the two groups. In the MDSCs high group, allograft function was significantly increased compared with the MDSCs low group. Furthermore, we found that isolated MDSCs from transplant recipients are capable of expanding regulatory T cell (Treg), meanwhile, inhibiting production of IL-17 in vitro. We also found that the ratio between Foxp3+ and IL-17-producing CD4+ T cells positively correlated with MDSCs frequency in PBMC. In conclusion, we demonstrated a potential role for MDSCs in prolonging allograft survival after ATCMR, and this was associated with higher CD4+Foxp3+/CD4+IL-17+ ratio in PBMC.
Literatur
1.
Zurück zum Zitat Dugast, A.S., T. Haudebourg, F. Coulon, M. Heslan, F. Haspot, N. Poirier, D.S.R. Vuillefroy, C. Usal, H. Smit, B. Martinet, et al. 2008. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. Journal of Immunology 180: 7898–7906.CrossRef Dugast, A.S., T. Haudebourg, F. Coulon, M. Heslan, F. Haspot, N. Poirier, D.S.R. Vuillefroy, C. Usal, H. Smit, B. Martinet, et al. 2008. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion. Journal of Immunology 180: 7898–7906.CrossRef
2.
Zurück zum Zitat Luan, Y., E. Mosheir, M.C. Menon, D. Wilson, C. Woytovich, J. Ochando, et al. 2013. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 13: 3123–3131.CrossRef Luan, Y., E. Mosheir, M.C. Menon, D. Wilson, C. Woytovich, J. Ochando, et al. 2013. Monocytic myeloid-derived suppressor cells accumulate in renal transplant patients and mediate CD4(+) Foxp3(+) Treg expansion. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 13: 3123–3131.CrossRef
3.
Zurück zum Zitat Garcia, M.R., L. Ledgerwood, Y. Yang, J. Xu, G. Lal, B. Burrell, G. Ma, D. Hashimoto, Y. Li, P. Boros, et al. 2010. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation 120: 2486–2496.PubMedCrossRefPubMedCentral Garcia, M.R., L. Ledgerwood, Y. Yang, J. Xu, G. Lal, B. Burrell, G. Ma, D. Hashimoto, Y. Li, P. Boros, et al. 2010. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. Journal of Clinical Investigation 120: 2486–2496.PubMedCrossRefPubMedCentral
4.
Zurück zum Zitat Turnquist, H.R., Z. Zhao, B.R. Rosborough, Q. Liu, A. Castellaneta, K. Isse, Z. Wang, M. Lang, D.B. Stolz, X.X. Zheng, et al. 2011. IL-33 expands suppressive CD11b+Gr-1(int) and regulatory T cells, including ST2L+Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. Journal of Immunology 187: 4598–4610.CrossRef Turnquist, H.R., Z. Zhao, B.R. Rosborough, Q. Liu, A. Castellaneta, K. Isse, Z. Wang, M. Lang, D.B. Stolz, X.X. Zheng, et al. 2011. IL-33 expands suppressive CD11b+Gr-1(int) and regulatory T cells, including ST2L+Foxp3+ cells, and mediates regulatory T cell-dependent promotion of cardiac allograft survival. Journal of Immunology 187: 4598–4610.CrossRef
5.
Zurück zum Zitat Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.PubMedCrossRef Hori, S., T. Nomura, and S. Sakaguchi. 2003. Control of regulatory T cell development by the transcription factor Foxp3. Science 299: 1057–1061.PubMedCrossRef
6.
Zurück zum Zitat Bestard, O., J.M. Cruzado, M. Mestre, A. Caldes, J. Bas, M. Carrera, et al. 2007. Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. Journal of Immunology 179: 4901–4909.CrossRef Bestard, O., J.M. Cruzado, M. Mestre, A. Caldes, J. Bas, M. Carrera, et al. 2007. Achieving donor-specific hyporesponsiveness is associated with FOXP3+ regulatory T cell recruitment in human renal allograft infiltrates. Journal of Immunology 179: 4901–4909.CrossRef
7.
Zurück zum Zitat Afzali, B., G. Lombardi, R.I. Lechler, and G.M. Lord. 2007. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clinical and Experimental Immunology 148: 32–46.PubMedCrossRefPubMedCentral Afzali, B., G. Lombardi, R.I. Lechler, and G.M. Lord. 2007. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clinical and Experimental Immunology 148: 32–46.PubMedCrossRefPubMedCentral
8.
Zurück zum Zitat Eastaff-Leung, N., N. Mabarrack, A. Barbour, A. Cummins, and S. Barry. 2010. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. Journal of Clinical Immunology 30: 80–89.PubMedCrossRef Eastaff-Leung, N., N. Mabarrack, A. Barbour, A. Cummins, and S. Barry. 2010. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. Journal of Clinical Immunology 30: 80–89.PubMedCrossRef
9.
Zurück zum Zitat Ratajczak, P., A. Janin, R. Peffault de Latour, C. Leboeuf, A. Desveaux, K. Keyvanfar, et al. 2010. Th17/Treg ratio in human graft-versus-host disease. Blood 116: 1165–1171.PubMedCrossRefPubMedCentral Ratajczak, P., A. Janin, R. Peffault de Latour, C. Leboeuf, A. Desveaux, K. Keyvanfar, et al. 2010. Th17/Treg ratio in human graft-versus-host disease. Blood 116: 1165–1171.PubMedCrossRefPubMedCentral
10.
Zurück zum Zitat Cheng, X., X. Yu, Y.J. Ding, Q.Q. Fu, J.J. Xie, T.T. Tang, et al. 2008. The Th17/Treg imbalance in patients with acute coronary syndrome. Clinical Immunology 127: 89–97.PubMedCrossRef Cheng, X., X. Yu, Y.J. Ding, Q.Q. Fu, J.J. Xie, T.T. Tang, et al. 2008. The Th17/Treg imbalance in patients with acute coronary syndrome. Clinical Immunology 127: 89–97.PubMedCrossRef
11.
Zurück zum Zitat Chung, B.H., H.J. Oh, S.G. Piao, H.S. Hwang, I.O. Sun, S.R. Choi, et al. 2012. Clinical significance of the ratio between FOXP3 positive regulatory T cell and interleukin-17 secreting cell in renal allograft biopsies with acute T-cell-mediated rejection. Immunology 136: 344–351.PubMedCrossRefPubMedCentral Chung, B.H., H.J. Oh, S.G. Piao, H.S. Hwang, I.O. Sun, S.R. Choi, et al. 2012. Clinical significance of the ratio between FOXP3 positive regulatory T cell and interleukin-17 secreting cell in renal allograft biopsies with acute T-cell-mediated rejection. Immunology 136: 344–351.PubMedCrossRefPubMedCentral
12.
Zurück zum Zitat Ma, S., Cheng, Q., Cai, Y., Gong, H., Wu, Y., Yu, X., et al. 2014. IL-17A produced by gammadelta T cells promotes tumor growth in Hepatocellular Carcinoma. Cancer res Ma, S., Cheng, Q., Cai, Y., Gong, H., Wu, Y., Yu, X., et al. 2014. IL-17A produced by gammadelta T cells promotes tumor growth in Hepatocellular Carcinoma. Cancer res
13.
Zurück zum Zitat Guan, Q., S. Moreno, G. Qing, C.R. Weiss, L. Lu, C.N. Bernstein, et al. 2013. The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. Journal of Leukocyte Biology 94: 803–811.PubMedCrossRef Guan, Q., S. Moreno, G. Qing, C.R. Weiss, L. Lu, C.N. Bernstein, et al. 2013. The role and potential therapeutic application of myeloid-derived suppressor cells in TNBS-induced colitis. Journal of Leukocyte Biology 94: 803–811.PubMedCrossRef
14.
Zurück zum Zitat Solez, K., R.B. Colvin, L.C. Racusen, B. Sis, P.F. Halloran, P.E. Birk, et al. 2007. Banff '05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN'). American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 7: 518–526.CrossRef Solez, K., R.B. Colvin, L.C. Racusen, B. Sis, P.F. Halloran, P.E. Birk, et al. 2007. Banff '05 Meeting Report: differential diagnosis of chronic allograft injury and elimination of chronic allograft nephropathy ('CAN'). American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 7: 518–526.CrossRef
15.
Zurück zum Zitat Racusen, L.C., R.B. Colvin, K. Solez, M.J. Mihatsch, P.F. Halloran, P.M. Campbell, et al. 2003. Antibody-mediated rejection criteria—an addition to the Banff 97 classification of renal allograft rejection. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 3: 708–714.CrossRef Racusen, L.C., R.B. Colvin, K. Solez, M.J. Mihatsch, P.F. Halloran, P.M. Campbell, et al. 2003. Antibody-mediated rejection criteria—an addition to the Banff 97 classification of renal allograft rejection. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons 3: 708–714.CrossRef
16.
Zurück zum Zitat Nagaraj, S., M. Collazo, C.A. Corzo, J.I. Youn, M. Ortiz, D. Quiceno, et al. 2009. Regulatory myeloid suppressor cells in health and disease. Cancer Research 69: 7503–7506.PubMedCrossRefPubMedCentral Nagaraj, S., M. Collazo, C.A. Corzo, J.I. Youn, M. Ortiz, D. Quiceno, et al. 2009. Regulatory myeloid suppressor cells in health and disease. Cancer Research 69: 7503–7506.PubMedCrossRefPubMedCentral
17.
Zurück zum Zitat Filipazzi, P., R. Valenti, V. Huber, L. Pilla, P. Canese, M. Iero, et al. 2007. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 25: 2546–2553.CrossRef Filipazzi, P., R. Valenti, V. Huber, L. Pilla, P. Canese, M. Iero, et al. 2007. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology 25: 2546–2553.CrossRef
18.
Zurück zum Zitat Huang, B., P.Y. Pan, Q. Li, A.I. Sato, D.E. Levy, J. Bromberg, et al. 2006. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research 66: 1123–1131.PubMedCrossRef Huang, B., P.Y. Pan, Q. Li, A.I. Sato, D.E. Levy, J. Bromberg, et al. 2006. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Research 66: 1123–1131.PubMedCrossRef
19.
Zurück zum Zitat Ochs, H.D., M. Oukka, and T.R. Torgerson. 2009. TH17 cells and regulatory T cells in primary immunodeficiency diseases. The Journal of Allergy and Clinical Immunology 123: 977–983. quiz 984–5.PubMedCrossRefPubMedCentral Ochs, H.D., M. Oukka, and T.R. Torgerson. 2009. TH17 cells and regulatory T cells in primary immunodeficiency diseases. The Journal of Allergy and Clinical Immunology 123: 977–983. quiz 984–5.PubMedCrossRefPubMedCentral
20.
Zurück zum Zitat Groux, H., A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, et al. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.PubMedCrossRef Groux, H., A. O'Garra, M. Bigler, M. Rouleau, S. Antonenko, J.E. de Vries, et al. 1997. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737–742.PubMedCrossRef
21.
Zurück zum Zitat Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, et al. 1999. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. Journal of Immunology 162: 5317–5326. Itoh, M., T. Takahashi, N. Sakaguchi, Y. Kuniyasu, J. Shimizu, F. Otsuka, et al. 1999. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. Journal of Immunology 162: 5317–5326.
22.
Zurück zum Zitat Wood, K.J., and S. Sakaguchi. 2003. Regulatory T cells in transplantation tolerance. Nature Reviews Immunology 3: 199–210.PubMedCrossRef Wood, K.J., and S. Sakaguchi. 2003. Regulatory T cells in transplantation tolerance. Nature Reviews Immunology 3: 199–210.PubMedCrossRef
23.
Zurück zum Zitat Bettelli, E., M. Oukka, and V.K. Kuchroo. 2007. T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunology 8: 345–350.PubMedCrossRef Bettelli, E., M. Oukka, and V.K. Kuchroo. 2007. T(H)-17 cells in the circle of immunity and autoimmunity. Nature Immunology 8: 345–350.PubMedCrossRef
24.
Zurück zum Zitat Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, et al. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121–1133.PubMedCrossRef Ivanov, I.I., B.S. McKenzie, L. Zhou, C.E. Tadokoro, A. Lepelley, J.J. Lafaille, et al. 2006. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126: 1121–1133.PubMedCrossRef
25.
Zurück zum Zitat Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–476.PubMedCrossRef Kolls, J.K., and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467–476.PubMedCrossRef
Metadaten
Titel
Clinical Significance of Myeloid-Derived Suppressor Cells in Human Renal Transplantation with Acute T Cell-Mediated Rejection
verfasst von
Fanhang Meng
SiYang Chen
Xuekun Guo
Zhiyong Chen
Xianen Huang
Yongtong Lai
Minzhuan Lin
Publikationsdatum
01.10.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 5/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-014-9910-5

Weitere Artikel der Ausgabe 5/2014

Inflammation 5/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.