Skip to main content
Erschienen in: Journal of Clinical Immunology 1/2021

04.10.2020 | Original Article

Clinical Spectrum of Ras-Associated Autoimmune Leukoproliferative Disorder (RALD)

verfasst von: Quentin Neven, Cécile Boulanger, Annelyse Bruwier, Maëlle de Ville de Goyet, Isabelle Meyts, Leen Moens, An Van Damme, Bénédicte Brichard

Erschienen in: Journal of Clinical Immunology | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Abstract

Ras-associated autoimmune leukoproliferative disorder (RALD) is a clinical entity initially identified in patients evaluated for an autoimmune lymphoproliferative syndrome (ALPS)-like phenotype. It remains a matter of debate whether RALD is a chronic and benign lymphoproliferative disorder or a pre-malignant condition. We report the case of a 7-year-old girl diagnosed with RALD due to somatic KRAS mutation who progressed to a juvenile myelomonocytic leukemia phenotype and finally evolved into acute myeloid leukemia. The case report prompted a literature review by a search for all RALD cases published in PubMed and Embase. We identified 27 patients with RALD. The male-to-female ratio was 1:1 and median age at disease onset was 2 years (range 3 months–36 years). Sixteen patients (59%) harbored somatic mutations in KRAS and 11 patients (41%) somatic mutations in NRAS. The most common features were splenomegaly (26/27 patients), autoimmune cytopenia (15/16 patients), monocytosis (18/24 patients), pericarditis (6 patients), and skin involvement (4 patients). Two patients went on to develop a hematopoietic malignancy. In summary, the current case documents an additional warning about the long-term risk of malignancy in RALD.
Literatur
1.
Zurück zum Zitat Wang J, Zheng L, Lobito A, Ka-Ming Chan F, Dale J, Snelleret M, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98:47–58.CrossRef Wang J, Zheng L, Lobito A, Ka-Ming Chan F, Dale J, Snelleret M, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98:47–58.CrossRef
2.
Zurück zum Zitat Magerus-Chatinet A, Stolzenberg M-C, Lanzarotti N, Neven B, Daussy C, Picard C, et al. Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation. J Allergy Clin Immunol. 2013;131:486–90.CrossRef Magerus-Chatinet A, Stolzenberg M-C, Lanzarotti N, Neven B, Daussy C, Picard C, et al. Autoimmune lymphoproliferative syndrome caused by a homozygous null FAS ligand (FASLG) mutation. J Allergy Clin Immunol. 2013;131:486–90.CrossRef
3.
Zurück zum Zitat Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798–807.CrossRef Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798–807.CrossRef
4.
Zurück zum Zitat Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007;104(21):8953–8.CrossRef Oliveira JB, Bidere N, Niemela JE, Zheng L, Sakai K, Nix CP, et al. NRAS mutation causes a human autoimmune lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 2007;104(21):8953–8.CrossRef
5.
Zurück zum Zitat Takagi M, Shinoda K, Piao J, Mitsuiki N, Takagi M, Matsuda K, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 2011;117(10):2887–90.CrossRef Takagi M, Shinoda K, Piao J, Mitsuiki N, Takagi M, Matsuda K, et al. Autoimmune lymphoproliferative syndrome-like disease with somatic KRAS mutation. Blood. 2011;117(10):2887–90.CrossRef
6.
Zurück zum Zitat Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.CrossRef Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer. 2003;3(6):459–65.CrossRef
7.
Zurück zum Zitat Loh ML. Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol. 2011;152:677–87.CrossRef Loh ML. Recent advances in the pathogenesis and treatment of juvenile myelomonocytic leukaemia. Br J Haematol. 2011;152:677–87.CrossRef
9.
Zurück zum Zitat Calvo KR, Price S, Braylan RC, Oliveira JB, Lenardo M, Fleisher TA, et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood. 2015;125(18):2753–8.CrossRef Calvo KR, Price S, Braylan RC, Oliveira JB, Lenardo M, Fleisher TA, et al. JMML and RALD (Ras-associated autoimmune leukoproliferative disorder): common genetic etiology yet clinically distinct entities. Blood. 2015;125(18):2753–8.CrossRef
10.
Zurück zum Zitat Niemela JE, Lu L, Fleisher TA, Davis J, Caminha L, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117(10):2883–6.CrossRef Niemela JE, Lu L, Fleisher TA, Davis J, Caminha L, Natter M, et al. Somatic KRAS mutations associated with a human nonmalignant syndrome of autoimmunity and abnormal leukocyte homeostasis. Blood. 2011;117(10):2883–6.CrossRef
11.
Zurück zum Zitat Tran TA, Grow W, Chang CC. Superficial and deep cutaneous involvement by RAS-associated autoimmunne leukoproliferative disease (RALD cutis): a histologic mimicker of histiocytoid sweet syndrome. Am J Dermatopathol. 2019;41(8):606–10.CrossRef Tran TA, Grow W, Chang CC. Superficial and deep cutaneous involvement by RAS-associated autoimmunne leukoproliferative disease (RALD cutis): a histologic mimicker of histiocytoid sweet syndrome. Am J Dermatopathol. 2019;41(8):606–10.CrossRef
12.
Zurück zum Zitat Lanzarotti N, Bruneau J, Trinquand A, Stolzenberg MC, Neven B, Fregeac J, et al. RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood. 2014;123(12):1960–3.CrossRef Lanzarotti N, Bruneau J, Trinquand A, Stolzenberg MC, Neven B, Fregeac J, et al. RAS-associated lymphoproliferative disease evolves into severe juvenile myelo-monocytic leukemia. Blood. 2014;123(12):1960–3.CrossRef
13.
Zurück zum Zitat Shiota M, Yang X, Kubokawa M, Morishima T, Tanaka K, Mikami M, et al. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J Clin Immunol. 2015;35:454–8.CrossRef Shiota M, Yang X, Kubokawa M, Morishima T, Tanaka K, Mikami M, et al. Somatic mosaicism for a NRAS mutation associates with disparate clinical features in RAS-associated leukoproliferative disease: a report of two cases. J Clin Immunol. 2015;35:454–8.CrossRef
14.
Zurück zum Zitat Moritake H, Takagi M, Kinoshita M, Ohara O, Yamamoto S, Moriguchi S, et al. Autoimmunity including intestinal Behçet disease bearing the mutation in lymphocytes: a case report. Pediatrics. 2016;137(3):e20152891.CrossRef Moritake H, Takagi M, Kinoshita M, Ohara O, Yamamoto S, Moriguchi S, et al. Autoimmunity including intestinal Behçet disease bearing the mutation in lymphocytes: a case report. Pediatrics. 2016;137(3):e20152891.CrossRef
15.
Zurück zum Zitat Kubara K, Yamazaki K, Ishihara Y, Naturo T, Lin HT, Nishimura K, et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports. 2018;11:1–15.CrossRef Kubara K, Yamazaki K, Ishihara Y, Naturo T, Lin HT, Nishimura K, et al. Status of KRAS in iPSCs impacts upon self-renewal and differentiation propensity. Stem Cell Reports. 2018;11:1–15.CrossRef
16.
Zurück zum Zitat Ragotte RJ, Dhanrajani A, Pleydell-Pearce J, Del Bel KL, Tarailo-Graovac M, van Karnebeek C, et al. The importance of considering monogenic causes of autoimmunity: a somatic mutation in KRAS causing pediatric Rosai-Dorfman syndrome and systemic lupus erythematosus. Clin Immunol. 2017;175:143–6.CrossRef Ragotte RJ, Dhanrajani A, Pleydell-Pearce J, Del Bel KL, Tarailo-Graovac M, van Karnebeek C, et al. The importance of considering monogenic causes of autoimmunity: a somatic mutation in KRAS causing pediatric Rosai-Dorfman syndrome and systemic lupus erythematosus. Clin Immunol. 2017;175:143–6.CrossRef
17.
Zurück zum Zitat Levy-Mendelovich S, Lev A, Rechavi E, Barel O, Golan H, Bielorai B, et al. T and B cell clonal expansion in Ras-associated lymphoproliferative disease (RALD) as revealed by next-generation sequencing. Clin Exp Immunol. 2017;189:310–7.CrossRef Levy-Mendelovich S, Lev A, Rechavi E, Barel O, Golan H, Bielorai B, et al. T and B cell clonal expansion in Ras-associated lymphoproliferative disease (RALD) as revealed by next-generation sequencing. Clin Exp Immunol. 2017;189:310–7.CrossRef
18.
Zurück zum Zitat Toyoda H, Deguchi T, Iwamoto S, Kihira K, Hori H, Komada Y, et al. Weekly rituximab followed by monthly rituximab treatment for autoimmune disease associated with RAS-associated autoimmune leukoproliferative disease. J Pediatr Hematol Oncol. 2018;40:516–8.CrossRef Toyoda H, Deguchi T, Iwamoto S, Kihira K, Hori H, Komada Y, et al. Weekly rituximab followed by monthly rituximab treatment for autoimmune disease associated with RAS-associated autoimmune leukoproliferative disease. J Pediatr Hematol Oncol. 2018;40:516–8.CrossRef
19.
Zurück zum Zitat Giacaman A, Bauzá Alonso A, Salinas Sanz JA, Dapena Diaz JL, Ramos Asensio R, Ferrés Ramis L, et al. Cutaneous involvement in an 8-year-old boy with Ras-associated autoimmune leucoproliferative disorder (RALD). Clin Exp Dermatol. 2018;43:913–6.CrossRef Giacaman A, Bauzá Alonso A, Salinas Sanz JA, Dapena Diaz JL, Ramos Asensio R, Ferrés Ramis L, et al. Cutaneous involvement in an 8-year-old boy with Ras-associated autoimmune leucoproliferative disorder (RALD). Clin Exp Dermatol. 2018;43:913–6.CrossRef
20.
Zurück zum Zitat Wang W, Zhou Y, Zhong L, Wang L, Tang X, Ma M, et al. RAS-associated autoimmune leukoproliferative disease (RALD) manifested with early-onset SLE-like syndrome: a case series of RALD in Chinese children. Pediatr Rheumatol. 2019;17:55.CrossRef Wang W, Zhou Y, Zhong L, Wang L, Tang X, Ma M, et al. RAS-associated autoimmune leukoproliferative disease (RALD) manifested with early-onset SLE-like syndrome: a case series of RALD in Chinese children. Pediatr Rheumatol. 2019;17:55.CrossRef
21.
Zurück zum Zitat Anastas V, Wang W, Price S, Zhao Z, Koneti Rao V, Calvo KR. Indolent phenotype of RAS-associated autoimmune leukoproliferative disorder (RALD) is characterized by single somatic mutations in RAS genes with absence of cooperating mutations. (abstract). Blood. 2016;128:4268.CrossRef Anastas V, Wang W, Price S, Zhao Z, Koneti Rao V, Calvo KR. Indolent phenotype of RAS-associated autoimmune leukoproliferative disorder (RALD) is characterized by single somatic mutations in RAS genes with absence of cooperating mutations. (abstract). Blood. 2016;128:4268.CrossRef
22.
Zurück zum Zitat Bouillet P, Metcalf D, Huang D, Tarlinton DM, Kay TW, Köntgen R, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999;286:1735–8.CrossRef Bouillet P, Metcalf D, Huang D, Tarlinton DM, Kay TW, Köntgen R, et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science. 1999;286:1735–8.CrossRef
23.
Zurück zum Zitat Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.CrossRef Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91:479–89.CrossRef
24.
Zurück zum Zitat Meynier S, Rieux-Laucat F. FAS and RAS related apoptosis defects: from autoimmunity to leukemia Immunol. Rev. 2019;287:50–61. Meynier S, Rieux-Laucat F. FAS and RAS related apoptosis defects: from autoimmunity to leukemia Immunol. Rev. 2019;287:50–61.
25.
Zurück zum Zitat Bader-Meunier B, Cavé H, Jeremiah N, Magerus A, Lanzarotti N, Rieux-Laucat F, et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum. 2013;43(2):217–9.CrossRef Bader-Meunier B, Cavé H, Jeremiah N, Magerus A, Lanzarotti N, Rieux-Laucat F, et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum. 2013;43(2):217–9.CrossRef
26.
Zurück zum Zitat Aringer M, Costenbader K, David Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9):1400–12.CrossRef Aringer M, Costenbader K, David Daikh D, Brinks R, Mosca M, Ramsey-Goldman R, et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Arthritis Rheumatol. 2019;71(9):1400–12.CrossRef
27.
Zurück zum Zitat Quaio CR, Carvalho JF, da Silva CA, Buena C, Brasil AS, Pereira AC, et al. Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am J Med Genet A. 2012;158A(5):1077–82.CrossRef Quaio CR, Carvalho JF, da Silva CA, Buena C, Brasil AS, Pereira AC, et al. Autoimmune disease and multiple autoantibodies in 42 patients with RASopathies. Am J Med Genet A. 2012;158A(5):1077–82.CrossRef
28.
Zurück zum Zitat Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.PubMed Niemeyer CM, Arico M, Basso G, Biondi A, Cantu Rajnoldi A, Creutzig U, et al. Chronic myelomonocytic leukemia in childhood: a retrospective analysis of 110 cases. European Working Group on Myelodysplastic Syndromes in Childhood (EWOG-MDS). Blood. 1997;89(10):3534–43.PubMed
29.
Zurück zum Zitat Matsuda K, Shimada A, Yoshida N, Ogawa A, Watanabe A, Yajima S, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood. 2007;109(12):5477–80.CrossRef Matsuda K, Shimada A, Yoshida N, Ogawa A, Watanabe A, Yajima S, et al. Spontaneous improvement of hematologic abnormalities in patients having juvenile myelomonocytic leukemia with specific RAS mutations. Blood. 2007;109(12):5477–80.CrossRef
30.
Zurück zum Zitat Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRef Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.CrossRef
31.
Zurück zum Zitat Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33:355–62.CrossRef Chan RJ, Cooper T, Kratz CP, Weiss B, Loh ML. Juvenile myelomonocytic leukemia: a report from the 2nd International JMML Symposium. Leuk Res. 2009;33:355–62.CrossRef
32.
Zurück zum Zitat de Vries AC, Zwaan CM, van den Heuvel-Eibrink MM. Molecular basis of juvenile myelomonocytic leukemia. Haematologica. 2010;95(2):179–82.CrossRef de Vries AC, Zwaan CM, van den Heuvel-Eibrink MM. Molecular basis of juvenile myelomonocytic leukemia. Haematologica. 2010;95(2):179–82.CrossRef
33.
Zurück zum Zitat Meynier S. Apoptosis defects discriminate the Ras-associated lymphoproliferative disease (RALD) and juvenile myelomonocytic leukaemia (JMML) conditions [abstract]. Focused meeting of the European Society for Immunodefiencies 2019. Meynier S. Apoptosis defects discriminate the Ras-associated lymphoproliferative disease (RALD) and juvenile myelomonocytic leukaemia (JMML) conditions [abstract]. Focused meeting of the European Society for Immunodefiencies 2019.
34.
Zurück zum Zitat Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet. 2011;157:83–9.CrossRef Kratz CP, Rapisuwon S, Reed H, Hasle H, Rosenberg PS. Cancer in Noonan, Costello, cardiofaciocutaneous and LEOPARD syndromes. Am J Med Genet C Semin Med Genet. 2011;157:83–9.CrossRef
35.
Zurück zum Zitat Niemeyer CM. RAS diseases in children. Haematologica. 2014;99:1653–62.CrossRef Niemeyer CM. RAS diseases in children. Haematologica. 2014;99:1653–62.CrossRef
36.
Zurück zum Zitat Takagi M, Piao J, Lin L, Kawaguchi H, Imai C, Ogawa A, et al. Autoimmunity and persistent RAS-mutated clones long after the spontaneous regression of JMML. Leukemia. 2013;27:1926–8.CrossRef Takagi M, Piao J, Lin L, Kawaguchi H, Imai C, Ogawa A, et al. Autoimmunity and persistent RAS-mutated clones long after the spontaneous regression of JMML. Leukemia. 2013;27:1926–8.CrossRef
37.
Zurück zum Zitat Murakami N, Okuno Y, Yoshida K, Shiraishi Y, Nagae G, Suzuki K, et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018;131:1576–86.CrossRef Murakami N, Okuno Y, Yoshida K, Shiraishi Y, Nagae G, Suzuki K, et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood. 2018;131:1576–86.CrossRef
38.
Zurück zum Zitat Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB, et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood. 2015;125(3):516–24.CrossRef Stieglitz E, Troup CB, Gelston LC, Haliburton J, Chow ED, Yu KB, et al. Subclonal mutations in SETBP1 confer a poor prognosis in juvenile myelomonocytic leukemia. Blood. 2015;125(3):516–24.CrossRef
39.
Zurück zum Zitat Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC, Akutagawa J, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2127.CrossRef Stieglitz E, Mazor T, Olshen AB, Geng H, Gelston LC, Akutagawa J, et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat Commun. 2017;8(1):2127.CrossRef
40.
Zurück zum Zitat Caye A, Strullu M, Guidez F, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334–40.CrossRef Caye A, Strullu M, Guidez F, Cassinat B, Gazal S, Fenneteau O, et al. Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network. Nat Genet. 2015;47(11):1334–40.CrossRef
41.
Zurück zum Zitat Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi TM, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937–41.CrossRef Sakaguchi H, Okuno Y, Muramatsu H, Yoshida K, Shiraishi TM, et al. Exome sequencing identifies secondary mutations of SETBP1 and JAK3 in juvenile myelomonocytic leukemia. Nat Genet. 2013;45(8):937–41.CrossRef
42.
Zurück zum Zitat Osumi T, Kato M, Ouchi-Uchiyama M, Tomizawa D, Kataoka K, Fuhii Y, et al. Blastic transformation of juvenile myelomonocytic leukemia caused by the copy number gain of oncogenic KRAS. Pediatr Blood Cancer. 2017;64(9):e26496.CrossRef Osumi T, Kato M, Ouchi-Uchiyama M, Tomizawa D, Kataoka K, Fuhii Y, et al. Blastic transformation of juvenile myelomonocytic leukemia caused by the copy number gain of oncogenic KRAS. Pediatr Blood Cancer. 2017;64(9):e26496.CrossRef
43.
Zurück zum Zitat Meynier S, Rieux-Laucat F. After 95 years, it’s time to eRASe JMML. Blood Rev. 2020;43:100652. Meynier S, Rieux-Laucat F. After 95 years, it’s time to eRASe JMML. Blood Rev. 2020;43:100652.
Metadaten
Titel
Clinical Spectrum of Ras-Associated Autoimmune Leukoproliferative Disorder (RALD)
verfasst von
Quentin Neven
Cécile Boulanger
Annelyse Bruwier
Maëlle de Ville de Goyet
Isabelle Meyts
Leen Moens
An Van Damme
Bénédicte Brichard
Publikationsdatum
04.10.2020
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 1/2021
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-020-00883-7

Weitere Artikel der Ausgabe 1/2021

Journal of Clinical Immunology 1/2021 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.