Skip to main content
Erschienen in: European Radiology 12/2022

09.06.2022 | Computed Tomography

Clinical validation of an AI-based motion correction reconstruction algorithm in cerebral CT

verfasst von: Leilei Zhou, Hao Liu, Yi-Xuan Zou, Guozhi Zhang, Bin Su, Liyan Lu, Yu-Chen Chen, Xindao Yin, Hong-Bing Jiang

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To evaluate the clinical performance of an artificial intelligence (AI)–based motion correction (MC) reconstruction algorithm for cerebral CT.

Methods

A total of 53 cases, where motion artifacts were found in the first scan so that an immediate rescan was taken, were retrospectively enrolled. While the rescanned images were reconstructed with a hybrid iterative reconstruction (IR) algorithm (reference group), images of the first scan were reconstructed with both the hybrid IR (motion group) and the MC algorithm (MC group). Image quality was compared in terms of standard deviation (SD), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), the mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and mutual information (MI), as well as subjective scores. The diagnostic performance for each case was evaluated accordingly by lesion detectability or the Alberta Stroke Program Early CT Score (ASPECTS) assessment.

Results

Compared with the motion group, the SNR and CNR of the MC group were significantly increased. The MSE, PSNR, SSIM, and MI with respect to the reference group were improved by 44.1%, 15.8%, 7.4%, and 18.3%, respectively (all p < 0.001). Subjective image quality indicators were scored higher for the MC than the motion group (p < 0.05). Improved lesion detectability and higher AUC (0.817 vs 0.614) in the ASPECTS assessment were found for the MC to the motion group.

Conclusions

The AI-based MC reconstruction algorithm has been clinically validated for reducing motion artifacts and improving diagnostic performance of cerebral CT.

Key Points

• An artificial intelligence–based motion correction (MC) reconstruction algorithm has been clinically validated in both qualitative and quantitative manner.
• The MC algorithm reduces motion artifacts in cerebral CT and increases the diagnostic confidence for brain lesions.
• The MC algorithm can help avoiding rescans caused by motion and improving the efficiency of cerebral CT in the emergency department.
Literatur
1.
Zurück zum Zitat Wagner A, Schicho K, Kainberger F, Birkfellner W, Grampp S, Ewers R (2003) Quantification and clinical relevance of head motion during computed tomography. Invest Radiol 38:733–741CrossRefPubMed Wagner A, Schicho K, Kainberger F, Birkfellner W, Grampp S, Ewers R (2003) Quantification and clinical relevance of head motion during computed tomography. Invest Radiol 38:733–741CrossRefPubMed
2.
Zurück zum Zitat Fahmi F, Beenen LFM, Streekstra GJ et al (2013) Head movement during CT brain perfusion acquisition of patients with suspected acute ischemic stroke. Eur J Radiol 82:2334–2341CrossRefPubMed Fahmi F, Beenen LFM, Streekstra GJ et al (2013) Head movement during CT brain perfusion acquisition of patients with suspected acute ischemic stroke. Eur J Radiol 82:2334–2341CrossRefPubMed
3.
Zurück zum Zitat Li G, Lovelock DM, Mechalakos J et al (2013) Migration from full-head mask to “open-face” mask for immobilization of patients with head and neck cancer. J Appl Clin Med Phys 14:243–254CrossRefPubMedPubMedCentral Li G, Lovelock DM, Mechalakos J et al (2013) Migration from full-head mask to “open-face” mask for immobilization of patients with head and neck cancer. J Appl Clin Med Phys 14:243–254CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Kim S, Akpati HC, Li JG, Liu CR, Amdur RJ, Palta JR (2004) An immobilization system for claustrophobic patients in head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol 59:1531–1539CrossRef Kim S, Akpati HC, Li JG, Liu CR, Amdur RJ, Palta JR (2004) An immobilization system for claustrophobic patients in head-and-neck intensity-modulated radiation therapy. Int J Radiat Oncol 59:1531–1539CrossRef
5.
Zurück zum Zitat Funk W, Taeger K (2000) Anaesthesia for magnetic resonance imaging/computed tomography. Curr Opin Anesthesiol 13:429–432CrossRef Funk W, Taeger K (2000) Anaesthesia for magnetic resonance imaging/computed tomography. Curr Opin Anesthesiol 13:429–432CrossRef
6.
Zurück zum Zitat Malviya S, Voepel-Lewis T, Eldevik OP, Rockwell DT, Wong JH, Tait AR (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748 Malviya S, Voepel-Lewis T, Eldevik OP, Rockwell DT, Wong JH, Tait AR (2000) Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 84:743–748
7.
Zurück zum Zitat Fleischmann D, Boas FE (2011) Computed tomography—old ideas and new technology. Eur Radiol 21:510–517CrossRefPubMed Fleischmann D, Boas FE (2011) Computed tomography—old ideas and new technology. Eur Radiol 21:510–517CrossRefPubMed
8.
Zurück zum Zitat Udayasankar UK, Braithwaite K, Arvaniti M et al (2008) Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol 29:802–806 Udayasankar UK, Braithwaite K, Arvaniti M et al (2008) Low-dose nonenhanced head CT protocol for follow-up evaluation of children with ventriculoperitoneal shunt: reduction of radiation and effect on image quality. AJNR Am J Neuroradiol 29:802–806
10.
Zurück zum Zitat Sun T, Kim J-H, Fulton R, Nuyts J (2016) An iterative projection-based motion estimation and compensation scheme for head x-ray CT. Med Phys 43:5705–5716CrossRefPubMed Sun T, Kim J-H, Fulton R, Nuyts J (2016) An iterative projection-based motion estimation and compensation scheme for head x-ray CT. Med Phys 43:5705–5716CrossRefPubMed
11.
Zurück zum Zitat Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29CrossRefPubMed Esteva A, Robicquet A, Ramsundar B et al (2019) A guide to deep learning in healthcare. Nat Med 25:24–29CrossRefPubMed
12.
Zurück zum Zitat Wang G, Ye JC, Man BD (2020) Deep learning for tomographic image reconstruction. Nat Mach Intell 2:737–748CrossRef Wang G, Ye JC, Man BD (2020) Deep learning for tomographic image reconstruction. Nat Mach Intell 2:737–748CrossRef
13.
Zurück zum Zitat Wang W, Xia Q, Hu ZQ et al (2021) Few-shot learning by a cascaded framework with shape-constrained pseudo label assessment for whole heart segmentation. IEEE Trans Med Imaging 40:2629–2641CrossRefPubMed Wang W, Xia Q, Hu ZQ et al (2021) Few-shot learning by a cascaded framework with shape-constrained pseudo label assessment for whole heart segmentation. IEEE Trans Med Imaging 40:2629–2641CrossRefPubMed
15.
Zurück zum Zitat Küstner T, Armanious K, Yang JH, Yang B, Schick F, Gatidis S (2019) Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med 82:1527–1540CrossRefPubMed Küstner T, Armanious K, Yang JH, Yang B, Schick F, Gatidis S (2019) Retrospective correction of motion-affected MR images using deep learning frameworks. Magn Reson Med 82:1527–1540CrossRefPubMed
16.
Zurück zum Zitat Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U (2020) Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 19:64–76 Tamada D, Kromrey ML, Ichikawa S, Onishi H, Motosugi U (2020) Motion artifact reduction using a convolutional neural network for dynamic contrast enhanced MR imaging of the liver. Magn Reson Med Sci 19:64–76
17.
Zurück zum Zitat Kromrey ML, Tamada D, Johno H et al (2020) Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network. Eur Radiol 30:5923–5932CrossRefPubMedPubMedCentral Kromrey ML, Tamada D, Johno H et al (2020) Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning–based filter using convolutional neural network. Eur Radiol 30:5923–5932CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Lossau T, Nickisch H, Wissel T et al (2019) Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med Image Anal 52:68–79CrossRefPubMed Lossau T, Nickisch H, Wissel T et al (2019) Motion artifact recognition and quantification in coronary CT angiography using convolutional neural networks. Med Image Anal 52:68–79CrossRefPubMed
19.
Zurück zum Zitat Jung S, Lee S, Jeon B, Jang Y, Chang HJ (2020) Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography. IEEE Access 8:81849–81863CrossRef Jung S, Lee S, Jeon B, Jang Y, Chang HJ (2020) Deep learning cross-phase style transfer for motion artifact correction in coronary computed tomography angiography. IEEE Access 8:81849–81863CrossRef
20.
Zurück zum Zitat Su B, Wen YT, Liu YY et al (2022) A deep learning method for eliminating head motion artifacts in computed tomography. Med Phys 49:411–419CrossRefPubMed Su B, Wen YT, Liu YY et al (2022) A deep learning method for eliminating head motion artifacts in computed tomography. Med Phys 49:411–419CrossRefPubMed
21.
Zurück zum Zitat Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRefPubMed Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13:600–612CrossRefPubMed
22.
Zurück zum Zitat Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108 Beister M, Kolditz D, Kalender WA (2012) Iterative reconstruction methods in X-ray CT. Phys Med 28:94–108
25.
Zurück zum Zitat Murakami Y, Kakeda S, Kamada K et al (2010) Effect of tube voltage on image quality in 64-section multidetector 3D CT angiography: evaluation with a vascular phantom with superimposed bone skull structures. AJNR Am J Neuroradiol 31:620–625 Murakami Y, Kakeda S, Kamada K et al (2010) Effect of tube voltage on image quality in 64-section multidetector 3D CT angiography: evaluation with a vascular phantom with superimposed bone skull structures. AJNR Am J Neuroradiol 31:620–625
26.
Zurück zum Zitat Weinrich JM, Well L, Regier M et al (2018) MDCT in suspected lumbar spine fracture: comparison of standard and reduced dose settings using iterative reconstruction. Clin Radiol 73:675.e9–675.e15CrossRefPubMed Weinrich JM, Well L, Regier M et al (2018) MDCT in suspected lumbar spine fracture: comparison of standard and reduced dose settings using iterative reconstruction. Clin Radiol 73:675.e9–675.e15CrossRefPubMed
27.
Zurück zum Zitat Barber PA, Demchuk AM, Zhang JJ, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355:1670–1674CrossRefPubMed Barber PA, Demchuk AM, Zhang JJ, Buchan AM (2000) Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy. Lancet 355:1670–1674CrossRefPubMed
28.
Zurück zum Zitat Maegerlein C, Fischer J, Monch S et al (2019) Automated calculation of the alberta stroke program early CT score: feasibility and reliability. Radiology 291:140–147CrossRef Maegerlein C, Fischer J, Monch S et al (2019) Automated calculation of the alberta stroke program early CT score: feasibility and reliability. Radiology 291:140–147CrossRef
Metadaten
Titel
Clinical validation of an AI-based motion correction reconstruction algorithm in cerebral CT
verfasst von
Leilei Zhou
Hao Liu
Yi-Xuan Zou
Guozhi Zhang
Bin Su
Liyan Lu
Yu-Chen Chen
Xindao Yin
Hong-Bing Jiang
Publikationsdatum
09.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08883-4

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.