Skip to main content
main-content

01.12.2018 | Research article | Ausgabe 1/2018 Open Access

BMC Health Services Research 1/2018

Clinicians can independently predict 30-day hospital readmissions as well as the LACE index

Zeitschrift:
BMC Health Services Research > Ausgabe 1/2018
Autoren:
William Dwight Miller, Kimngan Nguyen, Sitaram Vangala, Erin Dowling

Abstract

Background

Significant effort has been directed at developing prediction tools to identify patients at high risk of unplanned hospital readmission, but it is unclear what these tools add to clinicians’ judgment. In our study, we assess clinicians’ abilities to independently predict 30-day hospital readmissions, and we compare their abilities with a common prediction tool, the LACE index.

Methods

Over a period of 50 days, we asked attendings, residents, and nurses to predict the likelihood of 30-day hospital readmission on a scale of 0–100% for 359 patients discharged from a General Medicine Service. For readmitted versus non-readmitted patients, we compared the mean and standard deviation of the clinician predictions and the LACE index. We compared receiver operating characteristic (ROC) curves for clinician predictions and for the LACE index.

Results

For readmitted versus non-readmitted patients, attendings predicted a risk of 48.1% versus 31.1% (p < 0.001), residents predicted 45.5% versus 34.6% (p 0.002), and nurses predicted 40.2% versus 30.6% (p 0.011), respectively. The LACE index for readmitted patients was 11.3, versus 10.1 for non-readmitted patients (p 0.003). The area under the curve (AUC) derived from the ROC curves was 0.689 for attendings, 0.641 for residents, 0.628 for nurses, and 0.620 for the LACE index. Logistic regression analysis suggested that the LACE index only added predictive value to resident predictions, but not attending or nurse predictions (p < 0.05).

Conclusions

Attendings, residents, and nurses were able to independently predict readmissions as well as the LACE index. Improvements in prediction tools are still needed to effectively predict hospital readmissions.
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

BMC Health Services Research 1/2018 Zur Ausgabe