Skip to main content
Erschienen in: Osteoporosis International 5/2021

09.11.2020 | Original Article

CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening

verfasst von: C. Tang, W. Zhang, H. Li, L. Li, Z. Li, A. Cai, L. Wang, D. Shi, B. Yan

Erschienen in: Osteoporosis International | Ausgabe 5/2021

Einloggen, um Zugang zu erhalten

Abstract

Summary

The features extracted from diagnostic computed tomography (CT) slices were used to qualitatively detect bone mineral density (BMD) through neural network models, and the evaluation results indicated that it may be a promising approach to perform osteoporosis screening in clinical practice.

Introduction

The purpose of this study is to design a novelty diagnostic method for osteoporosis screening by using the convolutional neural network (CNN), which can be incorporated into the procedure of routine CT diagnostic in medical examination thereby improving the osteoporosis diagnosis and reducing the patient burden.

Methods

The proposed CNN-based method mainly comprises two functional modules to perform qualitative detection of BMD by analyzing the diagnostic 2D CT slice. The first functional module aims to locate and segment the ROI of diagnostic 2D CT slice, called Mark-Segmentation-Network (MS-Net). The second functional module is used to determine the category of BMD by the features of ROI, called BMD-Classification-Network (BMDC-Net). The diagnostic 2D CT slice of pedicle level in lumbar vertebrae (L1) was selected from 3D CT image in our experiments firstly. Then, the trained MS-Net can get the mark image of input original 2D CT slice, thereby obtain the segmentation image. Finally, the trained BMDC-Net can obtain the probability value of normal bone mass, low bone mass, and osteoporosis by inputting the segmentation image. On the basis of network results, the radiologists can provide preliminary qualitative diagnosis results of BMD.

Results

Training of the network was performed on diagnostic 2D CT slices of 150 patients. The network was tested on 63 patients. Each patient corresponds to a 2D CT slice. The proposed MS-Net has an excellent segmentation precision on the shape preservation of different lumbar vertebra. The dice index (DI), pixel accuracy (PA), and intersection over union (IOU) of segmentation results are greater than 0.8. The proposed BMDC-Net achieved an accuracy of 76.65% and an area under the receiver operating characteristic curve of 0.9167.

Conclusions

This study proposed a novel method for qualitative detection of BMD via diagnostic CT slices and it has great potential in clinical applications for osteoporosis screening. The method can potentially reduce the manual burden to radiologists and diagnostic cost to patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat (2001) NIH consensus development panel on osteoporosis prevention diagnosis, and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795 (2001) NIH consensus development panel on osteoporosis prevention diagnosis, and therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA 285:785–795
2.
Zurück zum Zitat Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRef Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures. Lancet 359:1761–1767CrossRef
3.
Zurück zum Zitat Melton LJ, Cooper C (2001) Magnitude and impact of osteoporosis and fractures. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 2nd edn. Academic Press, San Diego, pp 557–567CrossRef Melton LJ, Cooper C (2001) Magnitude and impact of osteoporosis and fractures. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis, 2nd edn. Academic Press, San Diego, pp 557–567CrossRef
4.
Zurück zum Zitat Lindsay R (1992) The growing problem of osteoporosis[J]. Osteoporos Int 2(6):267–268CrossRef Lindsay R (1992) The growing problem of osteoporosis[J]. Osteoporos Int 2(6):267–268CrossRef
5.
6.
Zurück zum Zitat Unnanuntana A, Gladnick BP, Donnelly E, Lane JM (2010) The assessment of fracture risk. J Bone Joint Surg (Am Vol) 92(3):743–753CrossRef Unnanuntana A, Gladnick BP, Donnelly E, Lane JM (2010) The assessment of fracture risk. J Bone Joint Surg (Am Vol) 92(3):743–753CrossRef
7.
Zurück zum Zitat Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int 16(2):134–141CrossRef Vestergaard P, Rejnmark L, Mosekilde L (2005) Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int 16(2):134–141CrossRef
8.
Zurück zum Zitat (1994) World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of WHO study group. (Technical report series 843) (1994) World Health Organization. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of WHO study group. (Technical report series 843)
9.
Zurück zum Zitat Stone KL, Seeley DG, Lui L-y et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18(11):1947–1954CrossRef Stone KL, Seeley DG, Lui L-y et al (2003) BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J Bone Miner Res 18(11):1947–1954CrossRef
10.
Zurück zum Zitat Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288(15):1889–1897CrossRef Cummings SR, Bates D, Black DM (2002) Clinical use of bone densitometry: scientific review. JAMA 288(15):1889–1897CrossRef
11.
Zurück zum Zitat Lu Y, Genant HK, Shepherd J, Zhao S, Mathur A, Fuerst TP, Cummings SR (2001) Classification of osteoporosis based on bone mineral densities. J Bone Miner Res 16(5):901–910CrossRef Lu Y, Genant HK, Shepherd J, Zhao S, Mathur A, Fuerst TP, Cummings SR (2001) Classification of osteoporosis based on bone mineral densities. J Bone Miner Res 16(5):901–910CrossRef
12.
Zurück zum Zitat Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6(2):75–85CrossRef Albanese CV, Diessel E, Genant HK (2003) Clinical applications of body composition measurements using DXA. J Clin Densitom 6(2):75–85CrossRef
13.
Zurück zum Zitat Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71(3):415–424CrossRef Adams JE (2009) Quantitative computed tomography. Eur J Radiol 71(3):415–424CrossRef
14.
Zurück zum Zitat Shaanthana S, Soelaiman IN, Kok-Yong C (2018) Performance of osteoporosis self-assessment tool (OST) in predicting osteoporosis—a review. Int J Environ Res Public Health 15(7):1445CrossRef Shaanthana S, Soelaiman IN, Kok-Yong C (2018) Performance of osteoporosis self-assessment tool (OST) in predicting osteoporosis—a review. Int J Environ Res Public Health 15(7):1445CrossRef
15.
Zurück zum Zitat Li X, Na L, Xiaoguang C (2014) Update on the clinical application of quantitative computed tomography (QCT) in osteoporosis. Curr Radiol Rep 2(10):1–5CrossRef Li X, Na L, Xiaoguang C (2014) Update on the clinical application of quantitative computed tomography (QCT) in osteoporosis. Curr Radiol Rep 2(10):1–5CrossRef
16.
Zurück zum Zitat Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158(8):588–595CrossRef Pickhardt PJ, Pooler BD, Lauder T, del Rio AM, Bruce RJ, Binkley N (2013) Opportunistic screening for osteoporosis using abdominal computed tomography scans obtained for other indications. Ann Intern Med 158(8):588–595CrossRef
17.
Zurück zum Zitat Romme EA, Murchison JT, Phang KF et al (2012) Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. Bone Miner Res 27(11):2338–2343CrossRef Romme EA, Murchison JT, Phang KF et al (2012) Bone attenuation on routine chest CT correlates with bone mineral density on DXA in patients with COPD. Bone Miner Res 27(11):2338–2343CrossRef
18.
Zurück zum Zitat Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116CrossRef Pan Y, Shi D, Wang H, Chen T, Cui D, Cheng X, Lu Y (2020) Automatic opportunistic osteoporosis screening using low-dose chest computed tomography scans obtained for lung cancer screening. Eur Radiol 30(7):4107–4116CrossRef
19.
Zurück zum Zitat Wang SH, Sun J, Phillips P, Zhao G, Zhang YD (2018) Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J Real-Time Image Proc 15(3):631–642CrossRef Wang SH, Sun J, Phillips P, Zhao G, Zhang YD (2018) Polarimetric synthetic aperture radar image segmentation by convolutional neural network using graphical processing units. J Real-Time Image Proc 15(3):631–642CrossRef
20.
Zurück zum Zitat Chen L, Bentley P, Mori K et al (2018) DRINet for medical image segmentation. IEEE Trans Med Imaging (99):1–1 Chen L, Bentley P, Mori K et al (2018) DRINet for medical image segmentation. IEEE Trans Med Imaging (99):1–1
21.
Zurück zum Zitat Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651 Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell 39(4):640–651
22.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput-Assist Interv, Springer, Cham 9351:234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. Med Image Comput Comput-Assist Interv, Springer, Cham 9351:234–241
23.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. NIPS. Curran Associates Inc., pp 1097–1105 Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional neural networks. NIPS. Curran Associates Inc., pp 1097–1105
24.
Zurück zum Zitat Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556
25.
Zurück zum Zitat Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recognit:1–9 Szegedy C, Liu W, Jia Y et al (2015) Going deeper with convolutions. Proc IEEE Conf Comput Vis Pattern Recognit:1–9
26.
Zurück zum Zitat He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. EEE conference on computer vision and pattern recognition. pp 770–778 He K, Zhang X, Ren S et al (2016) Deep residual learning for image recognition. EEE conference on computer vision and pattern recognition. pp 770–778
27.
Zurück zum Zitat Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noël PB, Lorenz C (2014) Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24(4):872–880CrossRef Baum T, Bauer JS, Klinder T, Dobritz M, Rummeny EJ, Noël PB, Lorenz C (2014) Automatic detection of osteoporotic vertebral fractures in routine thoracic and abdominal MDCT. Eur Radiol 24(4):872–880CrossRef
28.
Zurück zum Zitat Bar A, Wolf L, Amitai O B et al (2017) Compression fractures detection on CT. SPIE Med Imaging Bar A, Wolf L, Amitai O B et al (2017) Compression fractures detection on CT. SPIE Med Imaging
29.
Zurück zum Zitat Tomita N, Cheung YY, Hassanpour S (2018) Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 98:8–15CrossRef Tomita N, Cheung YY, Hassanpour S (2018) Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans. Comput Biol Med 98:8–15CrossRef
30.
Zurück zum Zitat Zhang M, Gong H, Zhang K (2019) Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning. Osteoporos Int, 1–12 Zhang M, Gong H, Zhang K (2019) Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning. Osteoporos Int, 1–12
31.
Zurück zum Zitat Huang G, Liu Z, Maaten L V D et al (2017) Densely connected convolutional networks. CVPR, IEEE Comput Soc Huang G, Liu Z, Maaten L V D et al (2017) Densely connected convolutional networks. CVPR, IEEE Comput Soc
32.
Zurück zum Zitat Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250CrossRef Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)? – arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3):1247–1250CrossRef
33.
Zurück zum Zitat Zhou Z, Siddiquee MMR, Tajbakhsh N et al (2018) UNet++: a nested U-Net architecture for medical image segmentation. 11045:3–11 Zhou Z, Siddiquee MMR, Tajbakhsh N et al (2018) UNet++: a nested U-Net architecture for medical image segmentation. 11045:3–11
34.
Zurück zum Zitat Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech Report Krizhevsky A, Hinton G (2009) Learning multiple layers of features from tiny images. Tech Report
35.
Zurück zum Zitat Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42(1):2CrossRef Wang SH, Lv YD, Sui Y, Liu S, Wang SJ, Zhang YD (2018) Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling. J Med Syst 42(1):2CrossRef
36.
Zurück zum Zitat Y. Jia, E. Shelhamer, J. Donahue et al (2014) Caffe: convolutional architecture for fast feature embedding. ACM Int Conf Multimed 675–678 Y. Jia, E. Shelhamer, J. Donahue et al (2014) Caffe: convolutional architecture for fast feature embedding. ACM Int Conf Multimed 675–678
37.
Zurück zum Zitat Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. International Conference on Learning Representations Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. International Conference on Learning Representations
38.
Zurück zum Zitat Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958 Srivastava N, Hinton G, Krizhevsky A et al (2014) Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958
39.
Zurück zum Zitat Hutenlocher D, Klanderman G, Rucklidge W (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15:850–863CrossRef Hutenlocher D, Klanderman G, Rucklidge W (1993) Comparing images using the Hausdorff distance. IEEE Trans Pattern Anal Mach Intell 15:850–863CrossRef
40.
Zurück zum Zitat Fawcett T (2005) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874CrossRef Fawcett T (2005) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874CrossRef
41.
Zurück zum Zitat Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K (2015) Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom 18(3):359–392CrossRef Zysset P, Qin L, Lang T, Khosla S, Leslie WD, Shepherd JA, Schousboe JT, Engelke K (2015) Clinical use of quantitative computed tomography-based finite element analysis of the hip and spine in the management of osteoporosis in adults: the 2015 ISCD official positions-part II. J Clin Densitom 18(3):359–392CrossRef
42.
Zurück zum Zitat Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K (2009) Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine (Phila Pa 1976) 34(14):1464–1469CrossRef Matsumoto T, Ohnishi I, Bessho M, Imai K, Ohashi S, Nakamura K (2009) Prediction of vertebral strength under loading conditions occurring in activities of daily living using a computed tomography-based nonlinear finite element method. Spine (Phila Pa 1976) 34(14):1464–1469CrossRef
43.
Zurück zum Zitat Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer C, Baum T, Kirschke JS (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30(6):1275–1285CrossRef Valentinitsch A, Trebeschi S, Kaesmacher J, Lorenz C, Löffler MT, Zimmer C, Baum T, Kirschke JS (2019) Opportunistic osteoporosis screening in multi-detector CT images via local classification of textures. Osteoporos Int 30(6):1275–1285CrossRef
44.
Zurück zum Zitat Lee SJ, Pickhardt PJ (2017) Opportunistic screening for osteoporosis using body CT scans obtained for other indications: the UW experience. Clin Rev Bone Mineral Metabol 15:128–137CrossRef Lee SJ, Pickhardt PJ (2017) Opportunistic screening for osteoporosis using body CT scans obtained for other indications: the UW experience. Clin Rev Bone Mineral Metabol 15:128–137CrossRef
Metadaten
Titel
CNN-based qualitative detection of bone mineral density via diagnostic CT slices for osteoporosis screening
verfasst von
C. Tang
W. Zhang
H. Li
L. Li
Z. Li
A. Cai
L. Wang
D. Shi
B. Yan
Publikationsdatum
09.11.2020
Verlag
Springer London
Erschienen in
Osteoporosis International / Ausgabe 5/2021
Print ISSN: 0937-941X
Elektronische ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-020-05673-w

Weitere Artikel der Ausgabe 5/2021

Osteoporosis International 5/2021 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.