Skip to main content
Erschienen in: Investigational New Drugs 4/2015

01.08.2015 | PRECLINICAL STUDIES

Co-administration of antigen with chemokine MCP-3 or MDC/CCL22 enhances DNA vaccine potency

verfasst von: Xinmei Xie, Lin Wang, Wenliang Yang, Ruishuang Yu, Qingli Li, Xiaobin Pang

Erschienen in: Investigational New Drugs | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Abstract

We evaluated the utility of chemokine MCP-3 and MDC/CCL22 as molecular adjuvants of DNA vaccines for botulinum neurotoxin serotype A (BoNT/A) in a Balb/c mouse model. Notably, the immunogenicity of the DNA vaccine against BoNT/A was not enhanced using a fusion of the AHc-C antigen with the MCP-3 or MDC/CCL22. Nevertheless, the potency of the DNA vaccine was significantly modulated and enhanced by co-administration of the AHc-C antigen with MCP-3 or MDC/CCL22. This strategy elicited high levels of humoral immune responses and protection against BoNT/A. The enhanced potency was further boosted by co-administration of the AHc-C antigen with both MCP-3 and MDC/CCL22 in Balb/c mice, but not by co-administration of AHc-C antigen with the MCP-3-MDC/CCL22 fusion. Co-immunization with both the MCP-3 and MDC/CCL22 constructs induced the highest levels of humoral immunity and protective potency against BoNT/A. Our results indicated that MCP-3 and MDC/CCL22 are effective molecular adjuvants of the immune responses induced by the AHc-C-expressing DNA vaccine when delivered by co-administration of the individual chemokines, but not when delivered in the form of a chemokine/antigen fusion. Thus, we describe an alternative strategy to the design and optimization of DNA vaccine constructs based on co-administration of the antigen with the chemokine rather than in the form of a chemokine/antigen fusion.
Literatur
1.
Zurück zum Zitat Dhama K, Mahendran M, Gupta PK, Rai A (2008) DNA vaccines and their applications in veterinary practice: current perspectives. Vet Res Commun 32(5):341–356PubMedCrossRef Dhama K, Mahendran M, Gupta PK, Rai A (2008) DNA vaccines and their applications in veterinary practice: current perspectives. Vet Res Commun 32(5):341–356PubMedCrossRef
2.
Zurück zum Zitat Ulmer JB, Wahren B, Liu MA (2006) Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 12(5):216–222PubMedCrossRef Ulmer JB, Wahren B, Liu MA (2006) Gene-based vaccines: recent technical and clinical advances. Trends Mol Med 12(5):216–222PubMedCrossRef
3.
Zurück zum Zitat Fu J, Zhao B, Dong Z, Sun Y, Luan H, Shen X, Gao X, Gong F, Li S, Song H (2012) Heparanase DNA vaccine delivered by electroporation induces humoral immunity and cytoimmunity in animal models. Vaccine 30(12):2187–2196PubMedCrossRef Fu J, Zhao B, Dong Z, Sun Y, Luan H, Shen X, Gao X, Gong F, Li S, Song H (2012) Heparanase DNA vaccine delivered by electroporation induces humoral immunity and cytoimmunity in animal models. Vaccine 30(12):2187–2196PubMedCrossRef
4.
Zurück zum Zitat Rusnak JM, Smith LA (2009) Botulinum neurotoxin vaccines: past history and recent developments. Hum Vaccin 5(12):794–805PubMedCrossRef Rusnak JM, Smith LA (2009) Botulinum neurotoxin vaccines: past history and recent developments. Hum Vaccin 5(12):794–805PubMedCrossRef
5.
Zurück zum Zitat Smith LA, Rusnak JM (2007) Botulinum neurotoxin vaccines: past, present, and future. Crit Rev Immunol 27(4):303–318PubMedCrossRef Smith LA, Rusnak JM (2007) Botulinum neurotoxin vaccines: past, present, and future. Crit Rev Immunol 27(4):303–318PubMedCrossRef
6.
Zurück zum Zitat Middlebrook JL (2005) Production of vaccines against leading biowarfare toxins can utilize DNA scientific technology. Adv Drug Deliv Rev 57(9):1415–1423PubMedCrossRef Middlebrook JL (2005) Production of vaccines against leading biowarfare toxins can utilize DNA scientific technology. Adv Drug Deliv Rev 57(9):1415–1423PubMedCrossRef
7.
Zurück zum Zitat Villarreal D, Talbott K, Choo D, Shedlock D, Weiner D (2013) Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 12(5):537–554PubMedCentralPubMedCrossRef Villarreal D, Talbott K, Choo D, Shedlock D, Weiner D (2013) Synthetic DNA vaccine strategies against persistent viral infections. Expert Rev Vaccines 12(5):537–554PubMedCentralPubMedCrossRef
8.
Zurück zum Zitat Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19(12):568–574PubMedCrossRef Sallusto F, Lanzavecchia A, Mackay CR (1998) Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Immunol Today 19(12):568–574PubMedCrossRef
10.
Zurück zum Zitat Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7(2):175–191PubMedCrossRef Lu S, Wang S, Grimes-Serrano JM (2008) Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 7(2):175–191PubMedCrossRef
12.
Zurück zum Zitat Liu M, Wahren B, Karlsson HG (2006) DNA vaccines: recent developments and future possibilities. Hum Gene Ther 17(11):1051–1061PubMedCrossRef Liu M, Wahren B, Karlsson HG (2006) DNA vaccines: recent developments and future possibilities. Hum Gene Ther 17(11):1051–1061PubMedCrossRef
13.
Zurück zum Zitat Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496PubMedCrossRef Petrovsky N, Aguilar JC (2004) Vaccine adjuvants: current state and future trends. Immunol Cell Biol 82(5):488–496PubMedCrossRef
14.
Zurück zum Zitat Negash T, Liman M, Rautenschlein S (2013) Mucosal application of cationic poly(D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 31(36):3656–3662PubMedCrossRef Negash T, Liman M, Rautenschlein S (2013) Mucosal application of cationic poly(D, L-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine 31(36):3656–3662PubMedCrossRef
15.
Zurück zum Zitat Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW (2002) DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 100(4):1153–1159PubMedCrossRef Biragyn A, Belyakov IM, Chow YH, Dimitrov DS, Berzofsky JA, Kwak LW (2002) DNA vaccines encoding human immunodeficiency virus-1 glycoprotein 120 fusions with proinflammatory chemoattractants induce systemic and mucosal immune responses. Blood 100(4):1153–1159PubMedCrossRef
16.
Zurück zum Zitat Guo J, Fan M, Sun J, Jia R (2009) Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int Immunopharmacol 9(7–8):925–930PubMedCrossRef Guo J, Fan M, Sun J, Jia R (2009) Fusion of antigen to chemokine CCL20 or CXCL13 strategy to enhance DNA vaccine potency. Int Immunopharmacol 9(7–8):925–930PubMedCrossRef
17.
Zurück zum Zitat Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW (1999) Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17(3):253–258PubMedCrossRef Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW (1999) Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 17(3):253–258PubMedCrossRef
18.
Zurück zum Zitat Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS, Jackson SS, Gorgone DA, Lifton MA, Letvin NL, Barouch DH (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114(9):1334–1342PubMedCentralPubMedCrossRef Sumida SM, McKay PF, Truitt DM, Kishko MG, Arthur JC, Seaman MS, Jackson SS, Gorgone DA, Lifton MA, Letvin NL, Barouch DH (2004) Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest 114(9):1334–1342PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Yu Y, Ma Y, Chen Y, Gong Z, Wang S, Yu W, Sun Z (2011) Binding activity and immunogenic characterization of recombinant C-terminal quarter and half of the heavy chain of botulinum neurotoxin serotype A. Hum Vaccins 7(10):1090–1095CrossRef Yu Y, Ma Y, Chen Y, Gong Z, Wang S, Yu W, Sun Z (2011) Binding activity and immunogenic characterization of recombinant C-terminal quarter and half of the heavy chain of botulinum neurotoxin serotype A. Hum Vaccins 7(10):1090–1095CrossRef
20.
Zurück zum Zitat Ma Y, An H, Wei X, Xu Q, Yu Y, Sun Z (2013) Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant. Hum Vaccin Immunother 9(2):242–249PubMedCentralPubMedCrossRef Ma Y, An H, Wei X, Xu Q, Yu Y, Sun Z (2013) Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant. Hum Vaccin Immunother 9(2):242–249PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Hamzaoui K, Hamzaoui A, Borhani-Haghighi A, Kaabachi W (2014) Increased interleukin 33 in patients with neuro-Behcet’s disease: correlation with MCP-1 and IP-10 chemokines. Cell Mol Immunol 11:613–616PubMedCentralPubMedCrossRef Hamzaoui K, Hamzaoui A, Borhani-Haghighi A, Kaabachi W (2014) Increased interleukin 33 in patients with neuro-Behcet’s disease: correlation with MCP-1 and IP-10 chemokines. Cell Mol Immunol 11:613–616PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Mihret A, Bekele Y, Bobosha K, Kidd M (2013) Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 66(4):357–365PubMedCrossRef Mihret A, Bekele Y, Bobosha K, Kidd M (2013) Plasma cytokines and chemokines differentiate between active disease and non-active tuberculosis infection. J Infect 66(4):357–365PubMedCrossRef
24.
Zurück zum Zitat Yu Y, Bai J, Sun Z, Wang S, Zhao M, Chen A, Wang W, Chang Q, Liu S, Qiu W (2013) Effective DNA epitope chimeric vaccines for Alzheimer’s disease using a toxin-derived carrier protein as a molecular adjuvant. Clin Immunol 149(1):11–24PubMedCrossRef Yu Y, Bai J, Sun Z, Wang S, Zhao M, Chen A, Wang W, Chang Q, Liu S, Qiu W (2013) Effective DNA epitope chimeric vaccines for Alzheimer’s disease using a toxin-derived carrier protein as a molecular adjuvant. Clin Immunol 149(1):11–24PubMedCrossRef
25.
Zurück zum Zitat Kim JJ, Yang JS, Dentchev T, Dang K, Weiner DB (2000) Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 20(5):487–498PubMedCrossRef Kim JJ, Yang JS, Dentchev T, Dang K, Weiner DB (2000) Chemokine gene adjuvants can modulate immune responses induced by DNA vaccines. J Interferon Cytokine Res 20(5):487–498PubMedCrossRef
26.
Zurück zum Zitat Frauenschuh A, DeVico AL, Lim SP, Gallo RC, Garzino-Demo A (2004) Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine 23(4):546–554PubMedCrossRef Frauenschuh A, DeVico AL, Lim SP, Gallo RC, Garzino-Demo A (2004) Differential polarization of immune responses by co-administration of antigens with chemokines. Vaccine 23(4):546–554PubMedCrossRef
27.
Zurück zum Zitat Song R, Liu S, Leong KW (2007) Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 15(5):1007–1015PubMedCentralPubMed Song R, Liu S, Leong KW (2007) Effects of MIP-1 alpha, MIP-3 alpha, and MIP-3 beta on the induction of HIV Gag-specific immune response with DNA vaccines. Mol Ther 15(5):1007–1015PubMedCentralPubMed
28.
Zurück zum Zitat Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW (2002) Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20(9–10):1466–1474PubMedCrossRef Sun X, Hodge LM, Jones HP, Tabor L, Simecka JW (2002) Co-expression of granulocyte-macrophage colony-stimulating factor with antigen enhances humoral and tumor immunity after DNA vaccination. Vaccine 20(9–10):1466–1474PubMedCrossRef
29.
Zurück zum Zitat Li N, Yu YZ, Yu WY, Sun ZW (2011) Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 33(1):211–219PubMedCrossRef Li N, Yu YZ, Yu WY, Sun ZW (2011) Enhancement of the immunogenicity of DNA replicon vaccine of Clostridium botulinum neurotoxin serotype A by GM-CSF gene adjuvant. Immunopharmacol Immunotoxicol 33(1):211–219PubMedCrossRef
30.
Zurück zum Zitat Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J, Xing Z (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 25(7):1342–1352PubMedCrossRef Zhang X, Divangahi M, Ngai P, Santosuosso M, Millar J, Zganiacz A, Wang J, Bramson J, Xing Z (2007) Intramuscular immunization with a monogenic plasmid DNA tuberculosis vaccine: Enhanced immunogenicity by electroporation and co-expression of GM-CSF transgene. Vaccine 25(7):1342–1352PubMedCrossRef
Metadaten
Titel
Co-administration of antigen with chemokine MCP-3 or MDC/CCL22 enhances DNA vaccine potency
verfasst von
Xinmei Xie
Lin Wang
Wenliang Yang
Ruishuang Yu
Qingli Li
Xiaobin Pang
Publikationsdatum
01.08.2015
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 4/2015
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-015-0250-6

Weitere Artikel der Ausgabe 4/2015

Investigational New Drugs 4/2015 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.