Skip to main content
Erschienen in: Antimicrobial Resistance & Infection Control 1/2017

Open Access 01.12.2017 | Research

Co-existence of bla OXA-23 and bla NDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance

verfasst von: Prabhu Raj Joshi, Mahesh Acharya, Trishna Kakshapati, Udomluk Leungtongkam, Rapee Thummeepak, Sutthirat Sitthisak

Erschienen in: Antimicrobial Resistance & Infection Control | Ausgabe 1/2017

Abstract

Background

Molecular analysis of carbapenem-resistant genes in Acinetobacter baumannii, an emerging pathogen, is less commonly reported from Nepal. In this study we determined the antibiotic susceptibility profile and genetic mechanism of carbapenem resistance in clinical isolates of A. baumannii.

Methods

A. baumannii were isolated from various clinical specimens and identified based on Gram staining, biochemical tests, and PCR amplification of organism specific 16S rRNA and bla OXA-51 genes. The antibiotic susceptibility testing was performed using disc diffusion and E-test method. Multiplex PCR assays were used to detect the following β-lactamase genes: four class D carbapenem hydrolyzing oxacillinases (bla OXA-51, bla OXA-23, bla OXA-24 and bla OXA-58). Uniplex PCRs were used to detect three class B metallo-β-lactamases genes (bla IMP, bla VIM and bla NDM-1), class C cephalosporin resistance genes (bla ADC), aminoglycoside resistance gene (aphA6), and ISAba1 of all isolates. Insertion sequence ISAba125 among NDM-1 positive strains was detected. Clonal relatedness of all isolates were analyzed using repetitive sequence-based PCR (rep-PCR).

Results

Of total 44 analyzed isolates, 97.7% (n = 43) were carbapenem-resistant A. baumannii (CR-AB) and 97.7% (n = 43) were multidrug resistant A. baumannii (MDR-AB). One isolate was detected to be extremely drug resistant A. baumannii (XDR-AB). All the isolates were fully susceptible to colistin (MICs < 2 μg/ml). The bla OXA-23 gene was detected in all isolates, while bla NDM-1 was detected in 6 isolates (13.6%). Insertion sequence, ISAba1 was detected in all of bla OXA-23 positive isolates. ISAba125 was detected in all bla NDM-1 positive strains. The bla ADC and aphA6 genes were detected in 90.1 and 40.1%, respectively. The rep-PCR of all isolates represented 7 different genotypes.

Conclusion

We found high prevalence of CR-AB and MDR-AB with bla OXA-23 gene in a tertiary care hospital in Nepal. Systemic network surveillance should be established for monitoring and controlling the spread of these resistant strains.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​s13756-017-0180-5) contains supplementary material, which is available to authorized users.
Abkürzungen
CR-AB
Carbapenem-resistant Acinetobacter baumannii
ICU
Intensive care unit
IPM-EDTA
Imipenem-ethylenediaminetetraacetic acid
MBL
Metallo-beta-lactamase
MDR-AB
Multidrug-resistant Acinetobacter baumannii
MIC
Minimum inhibitory concentration
NDM
New Delhi metallo-beta-lactamase
PCR
Polymerase chain reaction
XDR-AB
Extremely drug resistant Acinetobacter baumannii

Background

Acinetobacter baumannii, an emerging pathogen of healthcare centers, shows intrinsic as well as acquired drug-resistance mechanisms [1]. Multidrug-resistant A. baumannii can be resistant to all of the currently available antibiotics, and in its deadliest form these are only susceptible to potentially toxic polymyxins and colistins, leaving limited options for treatment [2]. Infections with carbapenem- and colistin-resistant A. baumannii are emerging globally [3].
Carbapenem resistance in A. baumannii encompasses production of class B, C and class D carbapenemase, decreased membrane permeability, altered penicillin-binding proteins, and overexpression of efflux pumps [4, 5]. Most commonly, Acinetobacter spp. develop carbapenem resistance by production of OXA-type carbapenemase and metallo-β-lactamases (MBLs) [6, 7]; bla OXA-23-like, bla OXA-40-like, bla OXA-58-like and bla OXA-51-like carbapenemases are broadly reported, where bla OXA-51-like β-lactamases, intrinsic to A. baumannii, is used for species identification [810]. Among multiple MBL genes, bla IMP and bla VIM types (chromosomal or plasmid encoded) encode carbapenemase in A. baumannii [9]. A. baumannii harboring plasmid encoded New Delhi metallo-β-lactamase-1 (NDM-1), a novel carbapenemase gene, is reported from many countries [11, 12]. In addition, detection of class C β-lactamase genes (bla ADC) which mediated cephalosporin resistances and aminoglycoside resistant genes (aphA6) has increased in recent years in A. baumannii clinical isolates [13, 14].
A. baumannii remains a critical problem in many healthcare settings throughout the world despite the implementation of infection control practices. There are limited data on carbapenem-resistant A. baumannii in Nepal. The objective of this study was to determine antibiotic susceptibility profile, antibiotic resistance genes and genetic mechanism of carbapenem resistance of A. baumannii in clinical isolates at a tertiary care hospital, Nepal.

Methods

Bacterial isolation and identification

A. baumannii isolates were collected from inpatient units of a tertiary hospital, Nepal. Forty-four non-duplicate isolates were collected (24 male and 20 female; age range between 24 to 80 years) over 9 months periods (October 2014 to June 2015). All isolates were identified by classical biochemical methods and confirmed by PCR method for detecting 16S rRNA gene and bla OXA-51 gene [15, 16]. Isolates were identified as A. baumannii by PCR result of positive for both PCRs.

Antibiotic susceptibility testing

The antibiotic susceptibility of amikacin (30), cefotaxime (30), ceftazidime (30), ceftriaxone (30), cefepime (30), ciprofloxacin (5), gentamicin (10), imipenem (10), meropenem (10), trimethoprim/sulfamethoxazole (1.25/23.75), tetracycline (30), and piperacillin/tazobactam (100/10) (Oxoid) was determined on Mueller Hinton Agar (High Media, India) according to the antibiotic disk diffusion method [17]. The plates were incubated at 37 °C for 24 h. The zones of inhibition were determined whether the microorganism was susceptible, intermediately resistant, or resistant to each antibiotic according to Clinical and Laboratory Standards Institute (CLSI) guidelines. E-test was performed to determine the Minimum inhibitory concentration (MIC) of ceftazidime, imipenem, tigecycline and colistin (High Media, India) according to manufacturer instructions and interpreted as per CLSI guidelines except for tigecycline. Multidrung-resistant A. baumannii (MDR-AB) was defined when A. baumannii resistant to multiple antibiotics, often defined as three or more antibiotic classes. Extensively drug resistant A. baumannii (XDR-AB) was defined when A. baumannii was resistant to all antimicrobial agents except polymyxins (colistin) [18].

PCR amplification of antibiotic resistance genes

PCR assays to detect bla OXA-23, bla OXA-24, bla OXA-51, bla OXA-58, bla IMP, bla VIM, bla NDM, bla ADC and ahpA6 genes were performed using primers as describe previously (Table 1). The amplification reaction was performed using A. baumannii cell lysate as DNA template. Each PCR was performed in triplicate in a thermocycler with a PCR condition as described previously [14, 16, 1921]. All PCR assays used 16S rRNA or bla OXA-51 genes as the internal control. The ISAba1 of bla OXA-23 gene was detected using combination of primers ISAba1-F/ISAba1-R and ISAba1-F/bla OXA-23-R (Table 1) [22]. The ISAba125 of bla NDM-1 gene were determined in all bla NDM-1 positive strains using combination of primers ISA125-F/ISA125-R and ISA125-F/bla NDM-R (Table 1). PCR products of the bla NDM-1 genes were purified and sequenced. BLAST was used to compare the sequences of bla NDM-1 genes against the GenBank Database. PCR products were analyzed by electrophoresis in 1% agarose gel containing 0.5 μg/ml ethidium bromides.
Table 1
List of primer for detection of genes used in this study
Target genes
Primer name
Sequence 5’-3’
Size/ Annealing temp.
References
16S rRNA
16S rRNA-F
AGAGTTTGATCCTGGCTCAG
1500/58
[15]
 
16S rRNA-R
ACGGCTACCTTGTTACGACTT
  
bla OXA-23
bla OXA-23-F
GATCGGATTGGAGAACCAGA
501/52
[16]
 
bla OXA-23-R
ATTTCTGACCGCATTTCCAT
  
bla OXA-51
bla OXA-51-F
TAATGCTTTGATCGGCCTTG
353/52
[16]
 
bla OXA-51-R
TGGATTGCACTTCATCTTGG
  
bla OXA-24
bla OXA-24-F
GGTTAGTTGGCCCCCTTAAA
246/52
[16]
 
bla OXA-24-R
AGTTGAGCGAAAAGGGGATT
  
bla OXA-58
bla OXA-58-F
AAGTATTGGGGCTTGTGCTG
599/52
[16]
 
bla OXA-58-R
CCCCTCTGCGCTCTACATAC
  
bla IMP
bla IMP –F
GGAATAGAGTGGCTTAAYTCTC
232/52
[20]
 
bla IMP –R
GGTTTAAYAAAACAACCACC
  
bla VIM
bla VIM –F
GATGGTGTTTGGTCGCATA
390/52
[20]
 
bla VIM –R
CGAATGCGCAGCACCAG
  
bla NDM
bla NDM–F
GGTTTGGCGATCTGGTTTTC
621/52
[21]
 
bla NDM–R
CGGAATGGCTCATCACGATC
  
bla ADC
bla ADC-F
TAAACACCACATATGTTCCG
663/56
[19]
 
bla ADC-F
ACTTACTTCAACTCGCGACG
  
aphA6
aphA6-F
ATGGAATTGCCCAATATTATTC
736/55
[14]
 
aphA6-R
TCAATTCAATTCATCAAGTTTTA
  
ISAba1
ISAba1-F
CATTGGCATTAAACTGAGGAGAAA
451/52
[22]
 
ISAba1-R
TTGGAAATGGGGAAAACGAA
  
ISAba125
ISA125-F
TGTTGAAGCGATCCGTTGTT
755/57
This study
 
ISA125-R
GTGCGACAGTTTCAAAAGCCA
  
Rep-PCR
ERIC-2
AAGTAAGTGACTGGGGTGAGCG
variable length/45
[24]

IPM-EDTA combined disk test

All bla NDM-1 positive strains were tested for MBL production by IPM-EDTA combined disk test. The test was performed as previously described [23]. After 24 h incubation, the difference of inhibition zone diameter between IPM-EDTA disk and IPM disk alone (≥7 mm) was considered the positive criteria for the presence of MBL.

Repetitive element PCR-mediated DNA fingerprinting (rep-PCR)

Genomic DNA of each isolates was extracted from the overnight cultures using GF-1 bacterial DNA extraction kit (Vivantis, Malaysia). Rep-PCR was performed by using genomic DNA as a template for PCR amplification with the ERIC-2 primer (Table 1) using condition as describe previously [24, 25]. PCR-banding patterns and rep-PCR types were analyzed and interpreted as previously described [25].

Results

Demographic characteristic of patients

Demographic characteristics of the inpatients with A. baumannii infection were analyzed; 24 (54.5%) were male and 20 (45.5%) were female. Most of the specimens were from ICU wards (n = 27, 61.4%) (Fig. 1). Isolates were collected from sputum (n = 26, 59.1%), tracheal aspirates (n = 9, 20.4%), catheter tip, (n = 4, 9.1%), pus (n = 4, 9.1%) and urine (n = 1, 2.3%) (Fig. 1).

Antibiotic susceptibility

Of the 44 isolates, resistance was found against ciprofloxacin (n = 43, 97.7%), cefotaxime (n = 43, 97.7%), ceftazidime (n = 42, 95.4%), ceftriaxone (n = 41, 93.2%), cefepime (n = 39, 88.6%), amikacin (n = 19, 43.2%), gentamicin (n = 23, 52.3%), trimethoprim/sulfamethoxazole (n = 41, 93.2%), tetracycline (n = 21, 47.7%) and piperacillin/tazobactam (n = 43, 97.7%). Only one isolate of A.baumannii was susceptible to all tested antibiotics. Most isolates (97.7%, n = 43) were carbapenem resistant A. baumannii (CR-AB); all CR-AB were MDR-AB. One isolate was detected to be XDR-AB. All the isolates were fully susceptible to colistin (MICs < 2 μg/ml) and MIC of tigecycline was determined to be <2.5 μg/ml (Table 2).
Table 2
The carbapenemases gene patterns, rep-PCR types and MIC determination of A. baumannii isolated from difference wards
Sites
β-lactamase gene patterns
No. of isolates
Rep-PCR
Types (n)
MIC (μg/ml) range
CAZ
IMP
TG
CL
Intensive care unit
bla OXA-51/ OXA-23
25
A (2), B (6), C (8), D (6), E (2), F (1)
4– > 256
1– > 32
1.6–3.9
0.13–2
bla OXA-51/ OXA-23/ NDM-1
2
B (1), C (1)
>256
>32
1.7–3.2
0.61–0.79
General ward
bla OXA-51/ OXA-23
9
A (1), B (1), C (1), D (5), G (1)
>256
>24–>32
2–3.4
0.32–0.88
Post-operative ward
bla OXA-51/ OXA-23
4
A (1), B (1), C (2)
>256
>32
2.3–3.3
0.54–0.78
bla OXA-51/ OXA-23/ NDM-1
4
A (1), C (2) D (1)
>256
>32
2.1–3.2
0.23–0.51
Abbreviations: CAZ ceftazidime, IPM imipenem, TG tigecycline, CL colistin

Antibiotic resistance genes and IS element in A. baumannii

Aminoglycoside resistance gene, aphA6 and cephalosporin resistance genes, bla ADC were detected in 40.1% (18/44) and 90.1% (40/44), respectively. The bla OXA-23 was present in all isolates. Other class D β-lactamase genes, including bla OXA-24 and bla OXA-58, markers of carbapenem resistance in A. baumannii, were not detected in analyzed isolates. ISAba1 was detected in all of bla OXA-23 positive isolates (100%). Of total analyzed isolates, 6 (13.6%) also harbored bla NDM-1 gene in addition to bla OXA-23 and bla OXA-51. All NDM-1 positive strains exhibited insertion sequence ISAba125 detecting with primers ISA125-F/ISA125-R. All isolates also detected a band of 1.6 kb in a PCR using ISA125-F/bla NDM-R primers. Metallo-β-lactamase (MBL) genes, including bla VIM and bla IMP, were not detected in all isolates. The sequences of the bla NDM-1 gene yielded 99-100% sequence identity to the bla NDM-1 gene from Acinetobacter lwoffii strain WJ10621 plasmid pNDM-BJ01 (Accession: JQ001791) obtained from the GenBank Database.

MBL production

Six A. baumannii isolates harbored bla NDM-1 gene were detected for MBL production. All of bla NDM-1 positive strains were positive for MBL production. MBL positive strains showed resistance to fluoroquinolones and β-lactam.

Epidemiological typing

Clonal relationship among isolates were studied using rep-PCR typing. The fingerprinting represented 7 different DNA patterns consisting of 2 to 5 DNA fragment sizes. The amplicons size for ERIC-2 PCR was 500–4000 bp. The genotype was named A-G as shown in Fig. 2. The high prevalence genotype was type C (n = 14; 31.8%) and D (n = 12; 27.3%). Genotype A, B, C and D were disseminated in all isolated ward (ICU, general ward and post-operative ward). Among 44 isolates, one isolate of type F (2.3%) and G (2.3%) was found. Type F was obtained from a catheter tip specimen from the ICU ward. Type G was obtained from sputum of a patient from a general ward. All NDM-1 positive strains exhibited genotype A (n = 1), B (n = 1), C (n = 3) and D (n = 1).

Discussions

A. baumannii harboring bla OXA-51-like gene has been identified as a marker for species identification. An intrinsic bla OXA-51-like gene detected in all isolates in this study supports the use of this gene as a surrogate marker of A. baumannii identification [810]. High prevalence of cephalosporin resistance genes, bla ADC (90.1%) was found in this study. In addition, we found a high rate of cepharosporin resistant antibiotics (cefotaxime, ceftazidime, ceftriaxone) using the disk diffusion method. These data indicated that cephalosporins no longer work to treat A. baumannii isolated from Nepal. Carbapenem resistance in A. baumannii is a major concern and is most often associated with class D β-lactamases and MBLs. The full susceptibility of all CR-AB to colistin in this study indicates that colistin is still an option of drug for the treatment of infections caused by A. baumannii in Nepal hospital.
OXA-type carbapenemases are predominant in A. baumannii [6, 7]. In agreement with this finding, high prevalence of bla OXA-23 carrying A. baumannii strains has been reported in Nepalese patients [26]. The acquired bla OXA-23 is the dominant genetic determinant in Asia. The bla OXA-23 gene located on plasmid can be transferred between A. baumannii through conjugation. Thus, antibiotic resistant bacteria have been rapidly increasing worldwide [27]. The bla OXA-24 and bla OXA-58 were not detected in any isolates from this study. The bla OXA-24/40 and bla OXA-58 genes were common in A. baumannii isolated from Europe [2, 28]. Recently, bla OXA-143 and bla OXA-235, which are novel class D β-lactamase genes in A. baumannii have been identified. To date, these determinants were detected only in Brazil, Mexico and the USA [29, 30]. ISAba1 was detected in widespread clones of A. baumannii worldwide. Our study found ISAba1 upstream of bla OXA-23 in all A. baumannii isolates. A correlation between A. baumannii clusters carrying the ISAba1/bla OXA-23 gene and increased minimal inhibitory concentrations for carbapenems was reported [31]. One isolate (AB-13) that was recovered from catheter tips of long-stay hospital patients showed an extreme drug resistance pattern (Additional file 1: Table S1). This isolate represented bla OXA-23, bla ADC and aphA6 genes. Further molecular study to detect other antibiotic resistance genes is needed to explain what factors correlated with extreme drug resistance. We also found one isolate (AB-25) harboring bla OXA-23, bla ADC and aphA6 genes was sensitive to all tested drugs (Additional file 1: Table S1). This may be due to the lack of promoter or mutation of ISAba1 or bla OXA-23 gene. Further study is needed to warrant the conclusion.
The bla NDM-1 carrying A. baumannii has recently been emerged in many countries, including Germany, Spain, Israel, Egypt, Switzerland, Libya, India, Pakistan and Nepal [11, 26, 32, 33]. The bla NDM-1 gene has been identified as a chimeric gene constructed by the fusion of the aminoglycoside-resistance gene aphA6 with a mannose-binding lectin gene. This event most likely occurs in Acinetobacter spp., indicating that these bacteria are likely the origin of this gene [34]. In this study, we identified 13.6% of A. baumannii carrying bla NDM-1 gene. Previous study has identified high prevalence (24.6%) of the A. baumannii harbored the bla NDM-1 gene in Nepal in 2013–2014 [26]. Taking into consideration the relationship between India, China and Nepal, the spread of bla NDM-1 is likely to occur rapidly, mostly through A. baumannii rather than Enterobacteriaceae. A. baumannii able to transfer the bla NDM-1 gene via conjugation to the recipients and Tn125 appears to be the main vehicle for dissemination of the bla NDM-1 genes in A. baumannii [35]. Poirel et al. reported that the bla NDM-1 gene was located within the composite transposon Tn125 bracketed by two copies of a strong promoter of bla NDM-1 gene called ISAba125 [11]. This report was correlated with our finding that found ISAba125 in 100% of NDM-1 producing A. baumannii.
The previous study reported that the most of A. baumannii isolates harboring bla NDM-1 belonged to ST85 and ST25 [3537]. In Libyan hospital, Libya, the main clone of imipenem-resistant NDM-1-producing A. baumannii belonged to ST2 [33]. We used rep-PCR typing to determine the clonal relationship in NDM-1 producing A. baumannii. Our study highlighted that most of NDM-1-producing A. baumannii isolates belonged to 4 genotypes using rep-PCR. Rep-PCR is a method that generates DNA fingerprints to discriminate between bacterial strains, and has been used to characterize A. baumannii isolates from hospitalized patients [38]. Our rep-PCR typing represented a high genetic diversity (A-G) among A. baumannii isolates from Nepal. Some clonally related groups (A, B, C and D) were observed in the all wards represented the disseminated of these clones in the hospital. Four genotypes (A, B, C, and D) of co-existence of bla OXA-23 and bla NDM-1 A. baumannii isolates were found. In addition, dissemination of these four genotypes into different wards also confirms as a major epidemic. Since rep-PCR is less discriminatory for molecular typing of bacterial strains, further study using multi-locus sequence typing could be useful for epidemiological investigations.

Conclusion

Antibiotic resistance in A. baumannii is considered to be a major future challenge in Nepal. Beyond OXA-type carbapenemase, there is no doubt the emergence and spreads of NDM-1 encoding A. baumannii–a superbug–will further limit chemotherapeutic options and threaten the public health of Nepal. The mechanism of hospital adaptiveness beyond antibiotic resistance will be more demanded in order to fully understand and combat MDR and XDR A. baumannii.

Acknowledgements

We thank Dr. Basant Pant, Neurosurgeon, Annapurna Neurological Institute and Allied Sciences for providing laboratory facility and moral support. We also acknowledge Nepal Health Research Council for approving this study.

Funding

This study was partial funding by Thailand Research Fund (RSA5780015).

Availability of data and materials

Please contact author for data requests.

Authors’ contributions

PRJ and MA designed the study, collected data, analyzed the data and prepared the manuscript, TK supervised the study, UL and RT collected data, SS, analyzed the data, supervised the study and prepared the manuscript. All authors read and approved the manuscript.

Competing interests

The authors declare that they have no competing interests.
Not applicable.
Ethical approval was obtained from the Ethical Review Board of Nepal Health Research Council (NHRC) (Reg. 27/2015). Informed consent was taken from all the patients or patients’ guardians. The research was in compliance with the Helsinki Declaration.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Yamamoto M, Nagao M, Matsumura Y, Matsushima A, Ito Y, Takakura S, et al. Interspecies dissemination of a novel class 1 integron carrying bla IMP-19 among Acinetobacter species in Japan. J Antimicrob Chemother. 2011;66:2480–3.CrossRefPubMed Yamamoto M, Nagao M, Matsumura Y, Matsushima A, Ito Y, Takakura S, et al. Interspecies dissemination of a novel class 1 integron carrying bla IMP-19 among Acinetobacter species in Japan. J Antimicrob Chemother. 2011;66:2480–3.CrossRefPubMed
2.
Zurück zum Zitat Villalon P, Valdezate S, Medina-Pascual MJ, Carrasco G, Vindel A, Saez-Nieto JA. Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysingoxacillinase and metallo-beta-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. J Antimicrob Chemother. 2013;68:550–3.CrossRefPubMed Villalon P, Valdezate S, Medina-Pascual MJ, Carrasco G, Vindel A, Saez-Nieto JA. Epidemiology of the Acinetobacter-derived cephalosporinase, carbapenem-hydrolysingoxacillinase and metallo-beta-lactamase genes, and of common insertion sequences, in epidemic clones of Acinetobacter baumannii from Spain. J Antimicrob Chemother. 2013;68:550–3.CrossRefPubMed
3.
Zurück zum Zitat Agodi A, Voulgari E, Barchitta M, Quattrocchi A, Bellocchi P, Poulou A, et al. Spread of a carbapenem- and colistin-resistant Acinetobacter baumannii ST2 clonal strain causing outbreaks in two Sicilian hospitals. J Hosp Infect. 2014;86:260–6.CrossRefPubMed Agodi A, Voulgari E, Barchitta M, Quattrocchi A, Bellocchi P, Poulou A, et al. Spread of a carbapenem- and colistin-resistant Acinetobacter baumannii ST2 clonal strain causing outbreaks in two Sicilian hospitals. J Hosp Infect. 2014;86:260–6.CrossRefPubMed
4.
Zurück zum Zitat Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49:3198–202.CrossRefPubMedPubMedCentral Heritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother. 2005;49:3198–202.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37:214–20.CrossRef Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis Off Publ Infect Dis Soc Am. 2003;37:214–20.CrossRef
6.
Zurück zum Zitat Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. bla IMP and bla VIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Develop Ctries. 2012;6:757–62.CrossRef Amudhan MS, Sekar U, Kamalanathan A, Balaraman S. bla IMP and bla VIM mediated carbapenem resistance in Pseudomonas and Acinetobacter species in India. J Infect Develop Ctries. 2012;6:757–62.CrossRef
7.
Zurück zum Zitat Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol. 2005;8:518–24.CrossRefPubMed Thomson JM, Bonomo RA. The threat of antibiotic resistance in Gram negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol. 2005;8:518–24.CrossRefPubMed
8.
Zurück zum Zitat Cicek AC, Saral A, Iraz M, Ceylan A, Duzgun AO, Peleg AY, et al. OXA- and GES-type beta-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect. 2014;20:410–5.CrossRefPubMed Cicek AC, Saral A, Iraz M, Ceylan A, Duzgun AO, Peleg AY, et al. OXA- and GES-type beta-lactamases predominate in extensively drug-resistant Acinetobacter baumannii isolates from a Turkish University Hospital. Clin Microbiol Infect. 2014;20:410–5.CrossRefPubMed
9.
Zurück zum Zitat Tsakris A, Ikonomidis A, Pournaras S, Tzouvelekis LS, Sofianou D, Legakis NJ, et al. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii. Emerg Infect Dis. 2006;12:981–3.CrossRefPubMedPubMedCentral Tsakris A, Ikonomidis A, Pournaras S, Tzouvelekis LS, Sofianou D, Legakis NJ, et al. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii. Emerg Infect Dis. 2006;12:981–3.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Kusradze I, Diene SM, Goderdzishvili M, Rolain JM. Molecular detection of OXA carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolates from Iraq and Georgia. Int J Antimicrob Agents. 2011;38:164–8.CrossRefPubMed Kusradze I, Diene SM, Goderdzishvili M, Rolain JM. Molecular detection of OXA carbapenemase genes in multidrug-resistant Acinetobacter baumannii isolates from Iraq and Georgia. Int J Antimicrob Agents. 2011;38:164–8.CrossRefPubMed
11.
Zurück zum Zitat Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:1087–9.CrossRefPubMedPubMedCentral Poirel L, Bonnin RA, Boulanger A, Schrenzel J, Kaase M, Nordmann P. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:1087–9.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Abbas M, Cherkaoui A, Fankhauser C, Schrenzel J, Harbarth S. Epidemiology and clinical implications of carbapenemase-producing bacteria in Switzerland. Rev Med Suisse. 2012;8:882–4.PubMed Abbas M, Cherkaoui A, Fankhauser C, Schrenzel J, Harbarth S. Epidemiology and clinical implications of carbapenemase-producing bacteria in Switzerland. Rev Med Suisse. 2012;8:882–4.PubMed
13.
Zurück zum Zitat Sarhaddi N, Soleimanpour S, Farsiani H, Mosavat A, Dolatabadi S, Salimizand H, et al. Elevated prevalence of multidrug-resistant Acinetobacter baumannii with extensive genetic diversity in the largest burn centre of northeast Iran. J Glob Antimicrob Resist. 2016;8:60–6.CrossRefPubMed Sarhaddi N, Soleimanpour S, Farsiani H, Mosavat A, Dolatabadi S, Salimizand H, et al. Elevated prevalence of multidrug-resistant Acinetobacter baumannii with extensive genetic diversity in the largest burn centre of northeast Iran. J Glob Antimicrob Resist. 2016;8:60–6.CrossRefPubMed
14.
Zurück zum Zitat Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50:4114–23.CrossRefPubMedPubMedCentral Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006;50:4114–23.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Misbah S, Hassan H, Yusof MY, Hanifah YS, Abu-Bakar S. Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing. Singapore. Med J. 2005;46:461–4. Misbah S, Hassan H, Yusof MY, Hanifah YS, Abu-Bakar S. Genomic species identification of Acinetobacter of clinical isolates by 16S rDNA sequencing. Singapore. Med J. 2005;46:461–4.
16.
Zurück zum Zitat Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27:351–3.CrossRefPubMed Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents. 2006;27:351–3.CrossRefPubMed
17.
Zurück zum Zitat Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, document M100-24. Wayne: Clinical and Laboratory Standards Institute; 2014. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing, document M100-24. Wayne: Clinical and Laboratory Standards Institute; 2014.
18.
Zurück zum Zitat Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRefPubMed Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18:268–81.CrossRefPubMed
19.
Zurück zum Zitat Liu Y, Liu X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance. Exp Ther Med. 2015;10:933–6.PubMedPubMedCentral Liu Y, Liu X. Detection of AmpC β-lactamases in Acinetobacter baumannii in the Xuzhou region and analysis of drug resistance. Exp Ther Med. 2015;10:933–6.PubMedPubMedCentral
20.
Zurück zum Zitat Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59:321–2.CrossRefPubMed Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59:321–2.CrossRefPubMed
21.
Zurück zum Zitat Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.CrossRefPubMed Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70:119–23.CrossRefPubMed
22.
Zurück zum Zitat Ruiz M, Marti S, Fernandez-Cuenca F, Pascual A, Vila J. Prevalence of IS (Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates. FEMS Microbiol Lett. 2007;274:63–6.CrossRefPubMed Ruiz M, Marti S, Fernandez-Cuenca F, Pascual A, Vila J. Prevalence of IS (Aba1) in epidemiologically unrelated Acinetobacter baumannii clinical isolates. FEMS Microbiol Lett. 2007;274:63–6.CrossRefPubMed
23.
Zurück zum Zitat Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40:3798–801.CrossRefPubMedPubMedCentral Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y. Imipenem-EDTA disk method for differentiation of metallo-beta-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2002;40:3798–801.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Vila J, Marcos MA, Jiminez de Anta MT. A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol. 1996;44:482–9.CrossRefPubMed Vila J, Marcos MA, Jiminez de Anta MT. A comparative study of different PCR-based DNA fingerprinting techniques for typing of the Acinetobacter calcoaceticus-A. baumannii complex. J Med Microbiol. 1996;44:482–9.CrossRefPubMed
25.
Zurück zum Zitat Grundmann HJ, Towner KJ, Dijkshoorn L, Gerner-Smidt P, Maher M, Seifert H, et al. Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp. J Clin Microbiol. 1997;35:3071–7.PubMedPubMedCentral Grundmann HJ, Towner KJ, Dijkshoorn L, Gerner-Smidt P, Maher M, Seifert H, et al. Multicenter study using standardized protocols and reagents for evaluation of reproducibility of PCR-based fingerprinting of Acinetobacter spp. J Clin Microbiol. 1997;35:3071–7.PubMedPubMedCentral
26.
Zurück zum Zitat Shrestha S, Tadab T, Miyoshi-Akiyamac T, Oharad H, Shimadab K, Satoue K, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage. Int J Antimicrob Agents. 2015;46:526–31.CrossRefPubMed Shrestha S, Tadab T, Miyoshi-Akiyamac T, Oharad H, Shimadab K, Satoue K, et al. Molecular epidemiology of multidrug-resistant Acinetobacter baumannii isolates in a university hospital in Nepal reveals the emergence of a novel epidemic clonal lineage. Int J Antimicrob Agents. 2015;46:526–31.CrossRefPubMed
27.
Zurück zum Zitat Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P, Carattoli A. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54:4168–77.CrossRefPubMedPubMedCentral Bertini A, Poirel L, Mugnier PD, Villa L, Nordmann P, Carattoli A. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54:4168–77.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Cherkaoui A, Emonet S, Renzi G, Schrenzel J. Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection. Ann Clin Microbiol Antimicrob. 2015;11:14–42. Cherkaoui A, Emonet S, Renzi G, Schrenzel J. Characteristics of multidrug-resistant Acinetobacter baumannii strains isolated in Geneva during colonization or infection. Ann Clin Microbiol Antimicrob. 2015;11:14–42.
29.
Zurück zum Zitat Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G, Seifert H. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57:2121–6.CrossRefPubMedPubMedCentral Higgins PG, Pérez-Llarena FJ, Zander E, Fernández A, Bou G, Seifert H. OXA-235, a novel class D β-lactamase involved in resistance to carbapenems in Acinetobacter baumannii. Antimicrob Agents Chemother. 2013;57:2121–6.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Zander E, Bonnin RA, Seifert H, Higgins PG. Characterization of bla OXA-143 variants in Acinetobacter baumannii and Acinetobacter pittii. Antimicrob Agents Chemother. 2014;58:2704–8.CrossRefPubMedPubMedCentral Zander E, Bonnin RA, Seifert H, Higgins PG. Characterization of bla OXA-143 variants in Acinetobacter baumannii and Acinetobacter pittii. Antimicrob Agents Chemother. 2014;58:2704–8.CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Viana GF, Zago MC, Moreira RR, Zarpellon MN, Menegucci TC, Cardoso CL, et al. ISAba1/bla OXA-23: A serious obstacle to controlling the spread and treatment of Acinetobacter baumannii strains. Am J Infect Control. 2016;44:593–5.CrossRefPubMed Viana GF, Zago MC, Moreira RR, Zarpellon MN, Menegucci TC, Cardoso CL, et al. ISAba1/bla OXA-23: A serious obstacle to controlling the spread and treatment of Acinetobacter baumannii strains. Am J Infect Control. 2016;44:593–5.CrossRefPubMed
33.
Zurück zum Zitat Mathlouthi N, El Salabi AA, Ben Jomàa-Jemili M, Bakour S, Al-Bayssari C, Zorgani AA, et al. Early detection of metallo-β-lactamase NDM-1- and OXA-23 carbapenemase-producing Acinetobacter baumannii in Libyan hospitals. Int J Antimicrob Agents. 2016;48:46–50.CrossRefPubMed Mathlouthi N, El Salabi AA, Ben Jomàa-Jemili M, Bakour S, Al-Bayssari C, Zorgani AA, et al. Early detection of metallo-β-lactamase NDM-1- and OXA-23 carbapenemase-producing Acinetobacter baumannii in Libyan hospitals. Int J Antimicrob Agents. 2016;48:46–50.CrossRefPubMed
34.
Zurück zum Zitat Toleman MA, Spencer J, Jones L, Walsh TR. bla NDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:2773–76.CrossRefPubMedPubMedCentral Toleman MA, Spencer J, Jones L, Walsh TR. bla NDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob Agents Chemother. 2012;56:2773–76.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Ramoul A, Loucif L, Bakour S, Amiri S, Dekhil M, Rolain JM. Co-occurrence of bla NDM-1 with bla OXA-23 or bla OXA-58 in clinical multidrug-resistant Acinetobacter baumannii isolates in Algeria. J Glob Antimicrob Resist. 2016;6:136–41. Ramoul A, Loucif L, Bakour S, Amiri S, Dekhil M, Rolain JM. Co-occurrence of bla NDM-1 with bla OXA-23 or bla OXA-58 in clinical multidrug-resistant Acinetobacter baumannii isolates in Algeria. J Glob Antimicrob Resist. 2016;6:136–41.
36.
Zurück zum Zitat Rafei R, Pailhoriès H, Hamze M, Eveillard M, Mallat H, Dabboussi F, et al. Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using bla OXA-51-like sequence based typing. BMC Microbiol. 2015;15:11–7.CrossRef Rafei R, Pailhoriès H, Hamze M, Eveillard M, Mallat H, Dabboussi F, et al. Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using bla OXA-51-like sequence based typing. BMC Microbiol. 2015;15:11–7.CrossRef
37.
Zurück zum Zitat Bakour S, Touati A, Bachiri T, Sahli F, Tiouit D, Naim M, et al. First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase NDM-1 in Algerian hospitals. 2014. J Infect Chemother. 2014;20:696–701.CrossRefPubMed Bakour S, Touati A, Bachiri T, Sahli F, Tiouit D, Naim M, et al. First report of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and rapid spread of metallo-β-lactamase NDM-1 in Algerian hospitals. 2014. J Infect Chemother. 2014;20:696–701.CrossRefPubMed
38.
Zurück zum Zitat Pasanen T, Koskela S, Mero S, Tarkka E, Tissari P, Vaara M, et al. Rapid molecular characterization of Acinetobacter baumannii clones with rep-PCR and evaluation of carbapenemase genes by new multiplex PCR in hospital district of Helsinki and Uusimaa. Plos One. 2014;9:e85854.CrossRefPubMedPubMedCentral Pasanen T, Koskela S, Mero S, Tarkka E, Tissari P, Vaara M, et al. Rapid molecular characterization of Acinetobacter baumannii clones with rep-PCR and evaluation of carbapenemase genes by new multiplex PCR in hospital district of Helsinki and Uusimaa. Plos One. 2014;9:e85854.CrossRefPubMedPubMedCentral
Metadaten
Titel
Co-existence of bla OXA-23 and bla NDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance
verfasst von
Prabhu Raj Joshi
Mahesh Acharya
Trishna Kakshapati
Udomluk Leungtongkam
Rapee Thummeepak
Sutthirat Sitthisak
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Antimicrobial Resistance & Infection Control / Ausgabe 1/2017
Elektronische ISSN: 2047-2994
DOI
https://doi.org/10.1186/s13756-017-0180-5

Weitere Artikel der Ausgabe 1/2017

Antimicrobial Resistance & Infection Control 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.