Skip to main content
Erschienen in: Pediatric Radiology 8/2021

09.03.2021 | Original Article

Cochlear signal alterations using pseudo-color perceptual enhancement for patients with sensorineural hearing loss

verfasst von: Matthew T. Whitehead, Lori M. Guillot, Brian K. Reilly

Erschienen in: Pediatric Radiology | Ausgabe 8/2021

Einloggen, um Zugang zu erhalten

Abstract

Background

Neuroimaging detection of sensorineural hearing loss (SNHL)-related temporal bone abnormalities is limited (20–50%). We hypothesize that cochlear signal differences in gray-scale data may exceed the threshold of human eye detection. Gray-scale images can be post-processed to enhance perception of tonal difference using “pseudo-color” schemes.

Objective

To compare patients with unilateral SNHL to age-matched normal magnetic resonance imaging (MRI) exams for “labyrinthine color differences” employing pseudo-color post-processing.

Materials and methods

The MRI database at an academic children’s hospital was queried for “hearing loss.” Only unilateral SNHL cases were analyzed. Sixty-nine imaging exams were reviewed. Thirteen age-matched normal MR exams in children without hearing loss were chosen for comparison. Pseudo-color was applied with post-processing assignment of specific hues to each gray-scale intensity value. Gray-scale and pseudo-color images were qualitatively evaluated for signal asymmetries by a board-certified neuroradiologist blinded to the side of SNHL.

Results

Twenty-six SNHL (mean: 7.6±3 years) and 13 normal control exams (mean: 7.3±4 years) were included. All patients had normal gray-scale cochlear signal and all controls had symmetrical pseudo-color signal. However, pseudo-color images revealed occult asymmetries localizing to the SNHL ear with lower values in 38%. Ninety-one percent of these cases showed concordance between the side of pseudo-color positivity and the side of hearing loss.

Conclusion

Pseudo-color perceptual image enhancement reveals intra-labyrinthine fluid alterations on MR exams in children with unilateral SNHL. Pseudo-color image enhancement techniques improve detection of cochlear pathology and could have therapeutic implications.
Literatur
1.
Zurück zum Zitat Billings KR, Kenna MA (1999) Causes of pediatric sensorineural hearing loss: yesterday and today. Arch Otolaryngol Head Neck Surg 125:517–521CrossRef Billings KR, Kenna MA (1999) Causes of pediatric sensorineural hearing loss: yesterday and today. Arch Otolaryngol Head Neck Surg 125:517–521CrossRef
2.
Zurück zum Zitat Davidson J, Hyde ML, Alberti PW (1989) Epidemiologic patterns in childhood hearing loss: a review. Int J Pediatr Otorhinolaryngol 17:239–266CrossRef Davidson J, Hyde ML, Alberti PW (1989) Epidemiologic patterns in childhood hearing loss: a review. Int J Pediatr Otorhinolaryngol 17:239–266CrossRef
3.
Zurück zum Zitat DeMarcantonio M, Choo DI (2015) Radiographic evaluation of children with hearing loss. Otolaryngol Clin N Am 48:913–932CrossRef DeMarcantonio M, Choo DI (2015) Radiographic evaluation of children with hearing loss. Otolaryngol Clin N Am 48:913–932CrossRef
4.
Zurück zum Zitat American Academy of Pediatrics, Joint Committee on Infant Hearing (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 20:898–921CrossRef American Academy of Pediatrics, Joint Committee on Infant Hearing (2007) Year 2007 position statement: principles and guidelines for early hearing detection and intervention programs. Pediatrics 20:898–921CrossRef
5.
Zurück zum Zitat Beck RL, Aschendorff A, Hassepaß F et al (2017) Cochlear implantation in children with congenital unilateral deafness: a case series. Otol Neurotol 38:e570–e576CrossRef Beck RL, Aschendorff A, Hassepaß F et al (2017) Cochlear implantation in children with congenital unilateral deafness: a case series. Otol Neurotol 38:e570–e576CrossRef
6.
Zurück zum Zitat Hassepaß F, Aschendorff A, Wesarg T et al (2013) Unilateral deafness in children: audiologic and subjective assessment of hearing ability after cochlear implantation. Otol Neurotol 34:53–60CrossRef Hassepaß F, Aschendorff A, Wesarg T et al (2013) Unilateral deafness in children: audiologic and subjective assessment of hearing ability after cochlear implantation. Otol Neurotol 34:53–60CrossRef
7.
Zurück zum Zitat Ross DS, Visser SN, Holstrum WJ et al (2010) Highly variable population-based prevalence rates of unilateral hearing loss after the application of common case definitions. Ear Hear 31:126–133CrossRef Ross DS, Visser SN, Holstrum WJ et al (2010) Highly variable population-based prevalence rates of unilateral hearing loss after the application of common case definitions. Ear Hear 31:126–133CrossRef
8.
Zurück zum Zitat Holstrum WJ, Gaffney M, Gravel JS et al (2008) Early intervention for children with unilateral and mild bilateral degrees of hearing loss. Trends Amplif 12:35–41CrossRef Holstrum WJ, Gaffney M, Gravel JS et al (2008) Early intervention for children with unilateral and mild bilateral degrees of hearing loss. Trends Amplif 12:35–41CrossRef
9.
Zurück zum Zitat Haffey T, Fowler N, Anne S (2013) Evaluation of unilateral sensorineural hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 77:955–958 Haffey T, Fowler N, Anne S (2013) Evaluation of unilateral sensorineural hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 77:955–958
10.
Zurück zum Zitat Anne S, Lieu JEC, Cohen MS (2017) Speech and language consequences of unilateral hearing loss: a systematic review. Otolaryngol Head Neck Surg 157:572–579CrossRef Anne S, Lieu JEC, Cohen MS (2017) Speech and language consequences of unilateral hearing loss: a systematic review. Otolaryngol Head Neck Surg 157:572–579CrossRef
11.
Zurück zum Zitat Liming BJ, Carter J, Cheng A et al (2016) International pediatric otolaryngology group (IPOG) consensus recommendations: hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 90:251–258CrossRef Liming BJ, Carter J, Cheng A et al (2016) International pediatric otolaryngology group (IPOG) consensus recommendations: hearing loss in the pediatric patient. Int J Pediatr Otorhinolaryngol 90:251–258CrossRef
12.
Zurück zum Zitat Huang BY, Zdanski C, Castillo M (2012) Pediatric sensorineural hearing loss, part 1: practical aspects for neuroradiologists. AJNR Am J Neuroradiol 33:211–217CrossRef Huang BY, Zdanski C, Castillo M (2012) Pediatric sensorineural hearing loss, part 1: practical aspects for neuroradiologists. AJNR Am J Neuroradiol 33:211–217CrossRef
13.
Zurück zum Zitat Huang BY, Zdanski C, Castillo M (2012) Pediatric sensorineural hearing loss, part 2: syndromic and acquired causes. AJNR Am J Neuroradiol 33:399–406CrossRef Huang BY, Zdanski C, Castillo M (2012) Pediatric sensorineural hearing loss, part 2: syndromic and acquired causes. AJNR Am J Neuroradiol 33:399–406CrossRef
14.
Zurück zum Zitat Hasso AN, Drayer BP, Anderson RE et al (2000) Vertigo and hearing loss. American College of Radiology. ACR Appropriateness Criteria. Radiology 215 Suppl:471–478 Hasso AN, Drayer BP, Anderson RE et al (2000) Vertigo and hearing loss. American College of Radiology. ACR Appropriateness Criteria. Radiology 215 Suppl:471–478
15.
Zurück zum Zitat Gruber M, Brown C, Mahadevan M et al (2016) The yield of multigene testing in the management of pediatric unilateral sensorineural hearing loss. Otol Neurotol 37:1066–1070CrossRef Gruber M, Brown C, Mahadevan M et al (2016) The yield of multigene testing in the management of pediatric unilateral sensorineural hearing loss. Otol Neurotol 37:1066–1070CrossRef
16.
Zurück zum Zitat Preciado DA, Lim LHY, Cohen AP et al (2004) A diagnostic paradigm for childhood idiopathic sensorineural hearing loss. Otolaryngol Head Neck Surg 131:804–809CrossRef Preciado DA, Lim LHY, Cohen AP et al (2004) A diagnostic paradigm for childhood idiopathic sensorineural hearing loss. Otolaryngol Head Neck Surg 131:804–809CrossRef
17.
Zurück zum Zitat Lowe LH, Vezina LG (1997) Sensorineural hearing loss in children. Radiographics 17:1079–1093CrossRef Lowe LH, Vezina LG (1997) Sensorineural hearing loss in children. Radiographics 17:1079–1093CrossRef
18.
Zurück zum Zitat Madden C, Halsted M, Benton C et al (2003) Enlarged vestibular aqueduct syndrome in the pediatric population. Otol Neurotol 24:625–632CrossRef Madden C, Halsted M, Benton C et al (2003) Enlarged vestibular aqueduct syndrome in the pediatric population. Otol Neurotol 24:625–632CrossRef
19.
Zurück zum Zitat McClay JE, Booth TN, Parry DA et al (2008) Evaluation of pediatric sensorineural hearing loss with magnetic resonance imaging. Arch Otolaryngol Head Neck Surg 134:945–952CrossRef McClay JE, Booth TN, Parry DA et al (2008) Evaluation of pediatric sensorineural hearing loss with magnetic resonance imaging. Arch Otolaryngol Head Neck Surg 134:945–952CrossRef
20.
Zurück zum Zitat Sheppard JJ, Stratton RH, Gazley C Jr (1969) Pseudocolor as a means of image enhancement. Am J Optom Arch Am Acad Optom 46:735–754CrossRef Sheppard JJ, Stratton RH, Gazley C Jr (1969) Pseudocolor as a means of image enhancement. Am J Optom Arch Am Acad Optom 46:735–754CrossRef
21.
Zurück zum Zitat Zabala-Travers S, Choi M, Cheng W-C, Badano A (2015) Effect of color visualization and display hardware on the visual assessment of pseudo-color medical images. Med Phys 42:2942–2954CrossRef Zabala-Travers S, Choi M, Cheng W-C, Badano A (2015) Effect of color visualization and display hardware on the visual assessment of pseudo-color medical images. Med Phys 42:2942–2954CrossRef
22.
Zurück zum Zitat Liao W-H, Wu H-M, Wu H-Y et al (2016) Revisiting the relationship of three-dimensional fluid attenuation inversion recovery imaging and hearing outcomes in adults with idiopathic unilateral sudden sensorineural hearing loss. Eur J Radiol 85:2188–2194CrossRef Liao W-H, Wu H-M, Wu H-Y et al (2016) Revisiting the relationship of three-dimensional fluid attenuation inversion recovery imaging and hearing outcomes in adults with idiopathic unilateral sudden sensorineural hearing loss. Eur J Radiol 85:2188–2194CrossRef
23.
Zurück zum Zitat Naganawa S, Kawai H, Taoka T et al (2016) Heavily T2-weighted 3D-FLAIR improves the detection of cochlear lymph fluid signal abnormalities in patients with sudden sensorineural hearing loss. Magn Reson Med Sci 15:203–211CrossRef Naganawa S, Kawai H, Taoka T et al (2016) Heavily T2-weighted 3D-FLAIR improves the detection of cochlear lymph fluid signal abnormalities in patients with sudden sensorineural hearing loss. Magn Reson Med Sci 15:203–211CrossRef
24.
Zurück zum Zitat Ryu IS, Yoon TH, Ahn JH et al (2011) Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in sudden sensorineural hearing loss: correlations with audiologic and vestibular testing. Otol Neurotol 32:1205–1209CrossRef Ryu IS, Yoon TH, Ahn JH et al (2011) Three-dimensional fluid-attenuated inversion recovery magnetic resonance imaging in sudden sensorineural hearing loss: correlations with audiologic and vestibular testing. Otol Neurotol 32:1205–1209CrossRef
25.
Zurück zum Zitat Marciniak R, Kociatkiewicz E, Jarnicki K (1993) Digitalized pseudo-color radiography of bones. Preliminary report on color significance in image processing. In: Pesch HJ, Stöß H, Kummer B (eds) Osteologie aktuell VII. Springer, Heidelberg, pp 555–556CrossRef Marciniak R, Kociatkiewicz E, Jarnicki K (1993) Digitalized pseudo-color radiography of bones. Preliminary report on color significance in image processing. In: Pesch HJ, Stöß H, Kummer B (eds) Osteologie aktuell VII. Springer, Heidelberg, pp 555–556CrossRef
26.
Zurück zum Zitat Kats L, Vered M (2014) Pseudo-color filter in two-dimensional imaging in dentistry. Refuat Hapeh Vehashinayim 31:13–15 59 Kats L, Vered M (2014) Pseudo-color filter in two-dimensional imaging in dentistry. Refuat Hapeh Vehashinayim 31:13–15 59
27.
Zurück zum Zitat Jakia A, Va’Juanna W, Umbaugh SE (2010) Frequency domain pseudo-color to enhance ultrasound images. Comput Inform Sci 3:24–35 Jakia A, Va’Juanna W, Umbaugh SE (2010) Frequency domain pseudo-color to enhance ultrasound images. Comput Inform Sci 3:24–35
28.
Zurück zum Zitat Umbaugh SE (2005) Computer imaging: digital image analysis and processing. CRC Press, Boca Raton Umbaugh SE (2005) Computer imaging: digital image analysis and processing. CRC Press, Boca Raton
29.
Zurück zum Zitat Umbaugh SE (2010) Digital image processing and analysis: human and computer vision applications with CVIPtools. CRC Press, Boca RatonCrossRef Umbaugh SE (2010) Digital image processing and analysis: human and computer vision applications with CVIPtools. CRC Press, Boca RatonCrossRef
30.
Zurück zum Zitat Tijahjadi T, Bowen DK (1989) The use of color in image enhancement of x-ray microtomographs. J Xray Sci Technol 1:171–189 Tijahjadi T, Bowen DK (1989) The use of color in image enhancement of x-ray microtomographs. J Xray Sci Technol 1:171–189
31.
Zurück zum Zitat Park MS, Byun JY, Yeo SG, Lee HY (2011) Use of pseudocolor for detecting otologic structures in CT. In: Homma N (ed) Theory and applications of CT imaging and analysis. Intech Europe, Rejeka, pp 205–212 Park MS, Byun JY, Yeo SG, Lee HY (2011) Use of pseudocolor for detecting otologic structures in CT. In: Homma N (ed) Theory and applications of CT imaging and analysis. Intech Europe, Rejeka, pp 205–212
32.
Zurück zum Zitat Crowe EJ, Sharp PF, Undrill PE, Ross PG (1988) Effectiveness of colour in displaying radionuclide images. Med Biol Eng Comput 26:57–61CrossRef Crowe EJ, Sharp PF, Undrill PE, Ross PG (1988) Effectiveness of colour in displaying radionuclide images. Med Biol Eng Comput 26:57–61CrossRef
33.
Zurück zum Zitat Stapleton SJ, Caldwell CB, Leonhardt CL et al (1994) Determination of thresholds for detection of cerebellar blood flow deficits in SPECT images. J Nucl Med 35:1547–1555PubMed Stapleton SJ, Caldwell CB, Leonhardt CL et al (1994) Determination of thresholds for detection of cerebellar blood flow deficits in SPECT images. J Nucl Med 35:1547–1555PubMed
34.
Zurück zum Zitat Pizer SM, Zimmerman JB (1983) Color display in ultrasonography. Ultrasound Med Biol 9:331–345CrossRef Pizer SM, Zimmerman JB (1983) Color display in ultrasonography. Ultrasound Med Biol 9:331–345CrossRef
35.
Zurück zum Zitat Saba L, Argiolas GM, Raz E et al (2014) Carotid artery dissection on non-contrast CT: does color improve the diagnostic confidence? Eur J Radiol 83:2288–2293CrossRef Saba L, Argiolas GM, Raz E et al (2014) Carotid artery dissection on non-contrast CT: does color improve the diagnostic confidence? Eur J Radiol 83:2288–2293CrossRef
36.
Zurück zum Zitat Goodall AF, Siddiq MA (2015) Current understanding of the pathogenesis of autoimmune inner ear disease: a review. Clin Otolaryngol 40:412–419CrossRef Goodall AF, Siddiq MA (2015) Current understanding of the pathogenesis of autoimmune inner ear disease: a review. Clin Otolaryngol 40:412–419CrossRef
37.
Zurück zum Zitat Pizer SM, ter Haar Romeny BM (1991) Fundamental properties of medical image perception. J Digit Imaging 4:1–20CrossRef Pizer SM, ter Haar Romeny BM (1991) Fundamental properties of medical image perception. J Digit Imaging 4:1–20CrossRef
38.
Zurück zum Zitat Deeb SS (2005) The molecular basis of variation in human color vision. Clin Genet 67:369–377CrossRef Deeb SS (2005) The molecular basis of variation in human color vision. Clin Genet 67:369–377CrossRef
Metadaten
Titel
Cochlear signal alterations using pseudo-color perceptual enhancement for patients with sensorineural hearing loss
verfasst von
Matthew T. Whitehead
Lori M. Guillot
Brian K. Reilly
Publikationsdatum
09.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Pediatric Radiology / Ausgabe 8/2021
Print ISSN: 0301-0449
Elektronische ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-04987-z

Weitere Artikel der Ausgabe 8/2021

Pediatric Radiology 8/2021 Zur Ausgabe

Hermes

Hermes

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.