Skip to main content
Erschienen in:

07.05.2018

Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network

verfasst von: Maryam Akhavan Aghdam, Arash Sharifi, Mir Mohsen Pedram

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

In recent years, the use of advanced magnetic resonance (MR) imaging methods such as functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging (sMRI) has recorded a great increase in neuropsychiatric disorders. Deep learning is a branch of machine learning that is increasingly being used for applications of medical image analysis such as computer-aided diagnosis. In a bid to classify and represent learning tasks, this study utilized one of the most powerful deep learning algorithms (deep belief network (DBN)) for the combination of data from Autism Brain Imaging Data Exchange I and II (ABIDE I and ABIDE II) datasets. The DBN was employed so as to focus on the combination of resting-state fMRI (rs-fMRI), gray matter (GM), and white matter (WM) data. This was done based on the brain regions that were defined using the automated anatomical labeling (AAL), in order to classify autism spectrum disorders (ASDs) from typical controls (TCs). Since the diagnosis of ASD is much more effective at an early age, only 185 individuals (116 ASD and 69 TC) ranging in age from 5 to 10 years were included in this analysis. In contrast, the proposed method is used to exploit the latent or abstract high-level features inside rs-fMRI and sMRI data while the old methods consider only the simple low-level features extracted from neuroimages. Moreover, combining multiple data types and increasing the depth of DBN can improve classification accuracy. In this study, the best combination comprised rs-fMRI, GM, and WM for DBN of depth 3 with 65.56% accuracy (sensitivity = 84%, specificity = 32.96%, F1 score = 74.76%) obtained via 10-fold cross-validation. This result outperforms previously presented methods on ABIDE I dataset.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Rapin I, Tuchman RF: What is new in autism? Curr Opin Neurol. Apr 1 21(2):143–149, 2008CrossRef Rapin I, Tuchman RF: What is new in autism? Curr Opin Neurol. Apr 1 21(2):143–149, 2008CrossRef
2.
Zurück zum Zitat Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T: Functional and Structural MR Imaging in Neuropsychiatric Disorders, Part 2: Application in Schizophrenia and Autism. AJNR Am J Neuroradiol 33:2033–2037, 2012CrossRef Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T: Functional and Structural MR Imaging in Neuropsychiatric Disorders, Part 2: Application in Schizophrenia and Autism. AJNR Am J Neuroradiol 33:2033–2037, 2012CrossRef
3.
Zurück zum Zitat Office of Special Education Programs, United States Department Of Education, Twenty-Seventh Annual Report to Congress on the Implementation of the Individuals with Dis- abilities Education Act, 2005. Office of Special Education Programs, United States Department Of Education, Twenty-Seventh Annual Report to Congress on the Implementation of the Individuals with Dis- abilities Education Act, 2005.
4.
Zurück zum Zitat Levy SE, Mandell DS, Schultz RT: Autism. The Lancet 374(9701):1627–1638, 2009CrossRef Levy SE, Mandell DS, Schultz RT: Autism. The Lancet 374(9701):1627–1638, 2009CrossRef
5.
Zurück zum Zitat Coleman M, Gillberg C: The Autisms. Oxford; Oxford University Press, 2012 Coleman M, Gillberg C: The Autisms. Oxford; Oxford University Press, 2012
6.
Zurück zum Zitat Waterhouse L: Rethinking Autism: Variation and Complexity. London: Academic Press, 2013 Waterhouse L: Rethinking Autism: Variation and Complexity. London: Academic Press, 2013
7.
Zurück zum Zitat Fernell E, Eriksson MA, Gillberg C: Early diagnosis of autism and impact on prognosis: a narrative review. Clin. Epidemiol. 5:33–43, 2013CrossRef Fernell E, Eriksson MA, Gillberg C: Early diagnosis of autism and impact on prognosis: a narrative review. Clin. Epidemiol. 5:33–43, 2013CrossRef
9.
Zurück zum Zitat Saniano M, Pellegrino L, Casadio M, Summa S, Garbanio E, Rossi V, Dall’Agata D, Sanguineti V, Natural interface and virtual environments for the acquisition of street crossing and path following skills in adults with Autism Spectrum Disorders: a feasibility study. J Neuroeng Rehabil, 2015. Saniano M, Pellegrino L, Casadio M, Summa S, Garbanio E, Rossi V, Dall’Agata D, Sanguineti V, Natural interface and virtual environments for the acquisition of street crossing and path following skills in adults with Autism Spectrum Disorders: a feasibility study. J Neuroeng Rehabil, 2015.
10.
Zurück zum Zitat Yerys BE, Pennington BF: How do we establish a biological marker for a behaviorally defined disorder? Autism as a test case. Autism Res. 4(4):239–241, 2011CrossRef Yerys BE, Pennington BF: How do we establish a biological marker for a behaviorally defined disorder? Autism as a test case. Autism Res. 4(4):239–241, 2011CrossRef
11.
Zurück zum Zitat Plitt M, Barnes KA, Martin A: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 7:359–366, 2015CrossRef Plitt M, Barnes KA, Martin A: Functional connectivity classification of autism identifies highly predictive brain features but falls short of biomarker standards. Neuroimage Clin. 7:359–366, 2015CrossRef
12.
Zurück zum Zitat Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T: Functional and Structural MR Imaging in Neuropsychiatric Disorders, Part 1: Imaging Techniques and Their Application in Mild Cognitive Impairment and Alzheimer Disease. AJNR Am J Neuroradiol 33:2033–2037, 2012CrossRef Mueller S, Keeser D, Reiser MF, Teipel S, Meindl T: Functional and Structural MR Imaging in Neuropsychiatric Disorders, Part 1: Imaging Techniques and Their Application in Mild Cognitive Impairment and Alzheimer Disease. AJNR Am J Neuroradiol 33:2033–2037, 2012CrossRef
13.
Zurück zum Zitat Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL: Functional connectivity magnetic resonance imaging classification of autism. Brain. 134(12):3742–3754, 2011CrossRef Anderson JS, Nielsen JA, Froehlich AL, DuBray MB, Druzgal TJ, Cariello AN, Cooperrider JR, Zielinski BA, Ravichandran C, Fletcher PT, Alexander AL: Functional connectivity magnetic resonance imaging classification of autism. Brain. 134(12):3742–3754, 2011CrossRef
14.
Zurück zum Zitat Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, Ryali S, Menon V: Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70(8):869–879, 2013CrossRef Uddin LQ, Supekar K, Lynch CJ, Khouzam A, Phillips J, Feinstein C, Ryali S, Menon V: Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70(8):869–879, 2013CrossRef
15.
Zurück zum Zitat Nielsen JA, Zielinski BA et al.: Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci 7 (September:599, 2013CrossRef Nielsen JA, Zielinski BA et al.: Multisite functional connectivity MRI classification of autism: ABIDE results. Front Hum Neurosci 7 (September:599, 2013CrossRef
16.
Zurück zum Zitat Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller RA: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. Neuroimage Clin. 8:238–245, 2015CrossRef Chen CP, Keown CL, Jahedi A, Nair A, Pflieger ME, Bailey BA, Müller RA: Diagnostic classification of intrinsic functional connectivity highlights somatosensory, default mode, and visual regions in autism. Neuroimage Clin. 8:238–245, 2015CrossRef
17.
Zurück zum Zitat Ghiassian S, Greiner R, Jin P, Brown MRG: Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. PLoS ONE. 11(12):e0166934, 2016CrossRef Ghiassian S, Greiner R, Jin P, Brown MRG: Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. PLoS ONE. 11(12):e0166934, 2016CrossRef
18.
Zurück zum Zitat Greimel E, Nehrkorn B, Schulte-Rüther M, Fink GR, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff SB: Changes in grey matter development in autism spectrum disorder. Brain Struct Funct. 218(4):929–942, 2013CrossRef Greimel E, Nehrkorn B, Schulte-Rüther M, Fink GR, Nickl-Jockschat T, Herpertz-Dahlmann B, Konrad K, Eickhoff SB: Changes in grey matter development in autism spectrum disorder. Brain Struct Funct. 218(4):929–942, 2013CrossRef
19.
Zurück zum Zitat Wilkinson M, Wang R, van der Kouwe A, Takahashi E: White and gray matter fiber pathways in autism spectrum disorder revealed by ex vivo diffusion MR tractography. Brain Behav 6(7):e00483, 2016CrossRef Wilkinson M, Wang R, van der Kouwe A, Takahashi E: White and gray matter fiber pathways in autism spectrum disorder revealed by ex vivo diffusion MR tractography. Brain Behav 6(7):e00483, 2016CrossRef
20.
Zurück zum Zitat Bakhtiari R, Zürcher NR, Rogier O, Russo B, Hippolyte L, Granziera C, Araabi BN, Nili Ahmadabadi M, Hadjikhani N: Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. Neuroimage Clin. 1(1):48–56, 2012CrossRef Bakhtiari R, Zürcher NR, Rogier O, Russo B, Hippolyte L, Granziera C, Araabi BN, Nili Ahmadabadi M, Hadjikhani N: Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study. Neuroimage Clin. 1(1):48–56, 2012CrossRef
21.
Zurück zum Zitat McCarley RW, Nakamura M, Shenton ME, Salisbury DF: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder. Clin EEG Neurosci 39(2):57–60, 2008CrossRef McCarley RW, Nakamura M, Shenton ME, Salisbury DF: Combining ERP and structural MRI information in first episode schizophrenia and bipolar disorder. Clin EEG Neurosci 39(2):57–60, 2008CrossRef
22.
Zurück zum Zitat Michael AM, Baum SA, White T, Demirci O, Andreasen NC, Segall JM, Jung RE, Pearlson G, Clark VP, Gollub RL, Schulz SC, Roffman JL, Lim KO, Ho BC, Bockholt HJ, Calhoun VD: Does function follow form? Methods to fuse structural and functional brain images show decreased linkage in schizophrenia. Neuroimage. 49(3):2626–2637, 2010CrossRef Michael AM, Baum SA, White T, Demirci O, Andreasen NC, Segall JM, Jung RE, Pearlson G, Clark VP, Gollub RL, Schulz SC, Roffman JL, Lim KO, Ho BC, Bockholt HJ, Calhoun VD: Does function follow form? Methods to fuse structural and functional brain images show decreased linkage in schizophrenia. Neuroimage. 49(3):2626–2637, 2010CrossRef
23.
Zurück zum Zitat Sui J, Pearlson G, Caprihan A, Adali T, Kiehl KA, Liu J, Yamamoto J, Calhoun VD: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model. Neuroimage. 57(3):839–855, 2011CrossRef Sui J, Pearlson G, Caprihan A, Adali T, Kiehl KA, Liu J, Yamamoto J, Calhoun VD: Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA+joint ICA model. Neuroimage. 57(3):839–855, 2011CrossRef
24.
Zurück zum Zitat Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson G, Mayer A, Bustillo J, Canive J, Calhoun VD, Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA + jICA. Fron Hum Neurosci, 7,2013. Sui J, He H, Yu Q, Chen J, Rogers J, Pearlson G, Mayer A, Bustillo J, Canive J, Calhoun VD, Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA + jICA. Fron Hum Neurosci, 7,2013.
25.
Zurück zum Zitat Le Roux N, Bengio Y: Deep belief networks are compact universal approximators. Neural Comput. 22(8):2192–2207, 2010CrossRef Le Roux N, Bengio Y: Deep belief networks are compact universal approximators. Neural Comput. 22(8):2192–2207, 2010CrossRef
26.
Zurück zum Zitat Plis SM, Hjelm D, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, Johnson HJ, Paulsen J, Turner JA, Calhoun VD: Deep learning for neuroimaging: a validation study. Front Neurosci, 8, 2014. Plis SM, Hjelm D, Salakhutdinov R, Allen EA, Bockholt HJ, Long JD, Johnson HJ, Paulsen J, Turner JA, Calhoun VD: Deep learning for neuroimaging: a validation study. Front Neurosci, 8, 2014.
28.
Zurück zum Zitat Suk HI, Lee SW, Shen D: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Func 220(2):841–859, 2015CrossRef Suk HI, Lee SW, Shen D: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Struct Func 220(2):841–859, 2015CrossRef
31.
Zurück zum Zitat Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ: Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging 30:449–459, 2017CrossRef Akkus Z, Galimzianova A, Hoogi A, Rubin DL, Erickson BJ: Deep Learning for Brain MRI Segmentation: State of the Art and Future Directions. J Digit Imaging 30:449–459, 2017CrossRef
32.
Zurück zum Zitat Olshausen BA: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609, 1996CrossRef Olshausen BA: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381:607–609, 1996CrossRef
33.
Zurück zum Zitat Hinton GE, Salakhutdinov RR: Reducing the dimensionality of data with neural networks. Science 313(5786):504–507, 2006CrossRef Hinton GE, Salakhutdinov RR: Reducing the dimensionality of data with neural networks. Science 313(5786):504–507, 2006CrossRef
34.
Zurück zum Zitat Hinton GE, Osindero S, Teh YW: A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554, 2006CrossRef Hinton GE, Osindero S, Teh YW: A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554, 2006CrossRef
35.
Zurück zum Zitat Kuang D, Guo X, An X, Zhao Y, He L: Discrimination of ADHD based on fMRI data with Deep Belief Network. In: International Conference on Intelligent Computing, Aug 3.Springer, Cham, 2014, pp 225–232 Kuang D, Guo X, An X, Zhao Y, He L: Discrimination of ADHD based on fMRI data with Deep Belief Network. In: International Conference on Intelligent Computing, Aug 3.Springer, Cham, 2014, pp 225–232
37.
Zurück zum Zitat Autism Brain Imaging Data Exchange, http://fcon_1000.projects.nitrc.org/indi/abide/, accessed at 1/10/2017 Autism Brain Imaging Data Exchange, http://​fcon_​1000.​projects.​nitrc.​org/​indi/​abide/​, accessed at 1/10/2017
39.
Zurück zum Zitat Jenkinson M, Smith SM: Pre-Processing of BOLD FMRI Data. Oxford University Centre for Functional MRI of the Brain (FMRIB), 2006. Jenkinson M, Smith SM: Pre-Processing of BOLD FMRI Data. Oxford University Centre for Functional MRI of the Brain (FMRIB), 2006.
41.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M: Automated Anatomical Labeling of activations in SPM using a Macroscopic Anatomical Parcellation of the MNI MRI single-subject brain. NeuroImage. 15(1):273–289, 2002CrossRef Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M: Automated Anatomical Labeling of activations in SPM using a Macroscopic Anatomical Parcellation of the MNI MRI single-subject brain. NeuroImage. 15(1):273–289, 2002CrossRef
43.
Zurück zum Zitat Erickson BJ, Korfiatis P, Akkus Z, Kline TL: Machine Learning for Medical Imaging. RadioGraphics. Feb 17 37(2):505–515, 2017CrossRef Erickson BJ, Korfiatis P, Akkus Z, Kline TL: Machine Learning for Medical Imaging. RadioGraphics. Feb 17 37(2):505–515, 2017CrossRef
45.
Zurück zum Zitat Katuwal GJ, Cahill ND, Baum SA, Michael AM: The predictive power of structural MRI in Autism diagnosis. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015, p 4270–4273 Katuwal GJ, Cahill ND, Baum SA, Michael AM: The predictive power of structural MRI in Autism diagnosis. In 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2015, p 4270–4273
46.
Zurück zum Zitat Cody H, Pelphrey K, Piven J: Structural and functional magnetic resonance imaging of autism. Int J Dev Neurosci 20(3–5):421–438, 2002CrossRef Cody H, Pelphrey K, Piven J: Structural and functional magnetic resonance imaging of autism. Int J Dev Neurosci 20(3–5):421–438, 2002CrossRef
47.
Zurück zum Zitat Bennett MR, Lagopoulos J: Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia. Int J Dev Neurosci 46:132–143, 2015CrossRef Bennett MR, Lagopoulos J: Neurodevelopmental sequelae associated with gray and white matter changes and their cellular basis: A comparison between Autism Spectrum Disorder, ADHD and dyslexia. Int J Dev Neurosci 46:132–143, 2015CrossRef
48.
Zurück zum Zitat Minshew NJ, Keller TA: The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23(2):124–130, 2010CrossRef Minshew NJ, Keller TA: The nature of brain dysfunction in autism: functional brain imaging studies. Curr Opin Neurol 23(2):124–130, 2010CrossRef
49.
Zurück zum Zitat LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521:436–444, 2015CrossRef LeCun Y, Bengio Y, Hinton G: Deep learning. Nature 521:436–444, 2015CrossRef
50.
Zurück zum Zitat Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep Dec 12 6:38897, 2016CrossRef Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep Dec 12 6:38897, 2016CrossRef
Metadaten
Titel
Combination of rs-fMRI and sMRI Data to Discriminate Autism Spectrum Disorders in Young Children Using Deep Belief Network
verfasst von
Maryam Akhavan Aghdam
Arash Sharifi
Mir Mohsen Pedram
Publikationsdatum
07.05.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 6/2018
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-018-0093-8

Neu im Fachgebiet Radiologie

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Stören weiße Wände und viel Licht die Bildqualitätskontrolle?

Wenn es darum geht, die technische Qualität eines Mammogramms zu beurteilen, könnten graue Wandfarbe und reduzierte Beleuchtung im Bildgebungsraum von Vorteil sein. Darauf deuten zumindest Ergebnisse einer kleinen Studie hin. 

PMBCL mit CMR: Radiatio kann ohne Risiko weggelassen werden

Patienten mit primär mediastinalem B-Zell-Lymphom (PMBCL), die nach der Induktionstherapie eine komplette metabolische Remission (CMR) erreichen und keine konsolidierende Bestrahlung erhalten, müssen offenbar keine Überlebensnachteile fürchten.

Hypoxisch-ischämische Enzephalopathie: Indikatoren für eine ungünstige Prognose

Eine US-amerikanische Studie widmete sich der Identifizierung prognostischer Parameter bei Neugeborenen mit mittelschwerer oder schwerer hypoxisch-ischämischer Enzephalopathie (HIE), die mittels induzierter Hypoxie behandelt wurden. Besonders im 24-Stunden-EEG und der MRT konnten relevante Hinweise gefunden werden.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.