Skip to main content
Erschienen in: European Radiology 12/2022

17.06.2022 | Nuclear Medicine

Combined [18F]FDG-PET with MRI structural patterns in predicting post-surgical seizure outcomes in temporal lobe epilepsy patients

verfasst von: Zhen-Ming Wang, Peng-Hu Wei, Chunxiu Wang, Yaqin Hou, Kun Guo, Bixiao Cui, Yongzhi Shan, Guo-Guang Zhao, Jie Lu

Erschienen in: European Radiology | Ausgabe 12/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To integrate the glucose metabolism measured using [18F]FDG PET/CT and anatomical features measured using MRI to forecast the post-surgical seizure outcomes of intractable temporal lobe epilepsy.

Methods

This retrospective study enrolled 63 patients with drug-resistant temporal lobe epilepsy. Z-transform of the patients’ PET images based on comparison with a database of healthy controls, cortical thickness, and quantitative anisotropy (QA) of the diffusion spectrum imaging concordant/non-concordant with cortical resection was adopted to quantify their predictive values for the post-surgical seizure outcomes.

Results

The PET hypometabolism region was concordant with the surgical field in 47 of the 63 patients. Forty-two patients were seizure-free post-surgery. The sensitivity and specificity of PET in predicting seizure freedom were 89.4% and 68.8%, respectively. Complete resection of foci with overlapped PET, cortical thickness, and QA abnormalities resulted in Engel I in 27 patients, which was a good predictor of seizure freedom with an odds ratio (OR) of 19.57 (95% CI 2.38–161.25, p = 0.006). Hypometabolism involved in multiple lobes (OR = 7.18, 95% CI 1.02–50.75, p = 0.048) and foci of hypometabolism with QA/cortical thickness abnormalities outside surgical field (OR = 14.72, 95% CI 2.13–101.56, p = 0.006) were two major predictors of Engel III/IV outcomes. ORs of QA to predict Engel I and seizure recurrence were 14.64 (95% CI 2.90–73.80, p = 0.001) and 12.01 (95% CI 2.91–49.65, p = 0.001), respectively.

Conclusion

Combined PET and structural pattern is helpful to predict the post-surgical seizure outcomes and worse outcomes of Engel III/IV. This might decrease unnecessary surgical injuries to patients who are potentially not amenable to surgery.

Key Points

A combined metabolic and structural pattern is helpful to predict the post-surgical seizure outcomes.
Favorable post-surgical seizure outcome was most likely reached in patients whose hypometabolism overlapped with the structural changes.
Hypometabolism in multiple lobes and QA or cortical thickness abnormalities outside the surgical field were predictors of worse seizure outcomes of Engel III/IV.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gok B, Jallo G, Hayeri R, Wahl R, Aygun N (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55:541–550CrossRefPubMed Gok B, Jallo G, Hayeri R, Wahl R, Aygun N (2013) The evaluation of FDG-PET imaging for epileptogenic focus localization in patients with MRI positive and MRI negative temporal lobe epilepsy. Neuroradiology 55:541–550CrossRefPubMed
2.
Zurück zum Zitat Barba C, Rheims S, Minotti L et al (2016) Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 139:444–451CrossRefPubMed Barba C, Rheims S, Minotti L et al (2016) Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 139:444–451CrossRefPubMed
3.
Zurück zum Zitat Tomás J, Pittau F, Hammers A et al (2019) The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 46:1806–1816CrossRefPubMed Tomás J, Pittau F, Hammers A et al (2019) The predictive value of hypometabolism in focal epilepsy: a prospective study in surgical candidates. Eur J Nucl Med Mol Imaging 46:1806–1816CrossRefPubMed
4.
Zurück zum Zitat Chassoux F, Semah F, Bouilleret V et al (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174CrossRefPubMed Chassoux F, Semah F, Bouilleret V et al (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174CrossRefPubMed
5.
Zurück zum Zitat De Blasi B, Barnes A, Galazzo IB et al (2018) Age-Specific (18)F-FDG image processing pipelines and analysis are essential for individual mapping of seizure foci in pediatric patients with intractable epilepsy. J Nucl Med 59:1590–1596CrossRefPubMedPubMedCentral De Blasi B, Barnes A, Galazzo IB et al (2018) Age-Specific (18)F-FDG image processing pipelines and analysis are essential for individual mapping of seizure foci in pediatric patients with intractable epilepsy. J Nucl Med 59:1590–1596CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat De Coster L, Van Laere K, Cleeren E et al (2018) On the optimal z-score threshold for SISCOM analysis to localize the ictal onset zone. EJNMMI Res 8:34CrossRefPubMedPubMedCentral De Coster L, Van Laere K, Cleeren E et al (2018) On the optimal z-score threshold for SISCOM analysis to localize the ictal onset zone. EJNMMI Res 8:34CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Guo K, Wei Y, Yuan M, Wei L, Lu J (2020) Identifying the characteristics of brain glucose metabolism using normal (18)F-FDG PET database in patients with temporal lobe epilepsy. Neurol Sci 41:3219–3226CrossRefPubMed Guo K, Wei Y, Yuan M, Wei L, Lu J (2020) Identifying the characteristics of brain glucose metabolism using normal (18)F-FDG PET database in patients with temporal lobe epilepsy. Neurol Sci 41:3219–3226CrossRefPubMed
8.
Zurück zum Zitat Choi JY, Kim SJ, Hong SB et al (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30:581–587CrossRefPubMed Choi JY, Kim SJ, Hong SB et al (2003) Extratemporal hypometabolism on FDG PET in temporal lobe epilepsy as a predictor of seizure outcome after temporal lobectomy. Eur J Nucl Med Mol Imaging 30:581–587CrossRefPubMed
10.
Zurück zum Zitat Pustina D, Avants B, Sperling M et al (2015) Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin 9:20–31CrossRefPubMedPubMedCentral Pustina D, Avants B, Sperling M et al (2015) Predicting the laterality of temporal lobe epilepsy from PET, MRI, and DTI: a multimodal study. Neuroimage Clin 9:20–31CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Boscolo Galazzo I, Mattoli MV, Pizzini FB et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling. Neuroimage Clin 11:648–657CrossRefPubMedPubMedCentral Boscolo Galazzo I, Mattoli MV, Pizzini FB et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of (18)F-FDG PET and arterial spin labeling. Neuroimage Clin 11:648–657CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Fernandez-Miranda JC, Pathak S, Engh J et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71:430–453CrossRefPubMed Fernandez-Miranda JC, Pathak S, Engh J et al (2012) High-definition fiber tractography of the human brain: neuroanatomical validation and neurosurgical applications. Neurosurgery 71:430–453CrossRefPubMed
13.
Zurück zum Zitat Yoshino M, Abhinav K, Yeh FC et al (2016) Visualization of cranial nerves using high-definition fiber tractography. Neurosurgery 79:146–165CrossRefPubMed Yoshino M, Abhinav K, Yeh FC et al (2016) Visualization of cranial nerves using high-definition fiber tractography. Neurosurgery 79:146–165CrossRefPubMed
15.
Zurück zum Zitat Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58:91–99CrossRefPubMed Yeh FC, Tseng WY (2011) NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. Neuroimage 58:91–99CrossRefPubMed
16.
Zurück zum Zitat Wang ZM, Wei PH, Shan Y et al (2020) Identifying and characterizing projections from the subthalamic nucleus to the cerebellum in humans. Neuroimage 210:116573CrossRefPubMed Wang ZM, Wei PH, Shan Y et al (2020) Identifying and characterizing projections from the subthalamic nucleus to the cerebellum in humans. Neuroimage 210:116573CrossRefPubMed
17.
Zurück zum Zitat Chassoux F, Artiges E, Semah F et al (2017) (18)F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology 88:1045–1053CrossRefPubMed Chassoux F, Artiges E, Semah F et al (2017) (18)F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology 88:1045–1053CrossRefPubMed
18.
Zurück zum Zitat Cahill V, Sinclair B, Malpas CB et al (2019) Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol 85:241–250CrossRefPubMed Cahill V, Sinclair B, Malpas CB et al (2019) Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol 85:241–250CrossRefPubMed
20.
Zurück zum Zitat Lagarde S, Boucekine M, McGonigal A et al (2020) Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 47:3130–3142CrossRefPubMed Lagarde S, Boucekine M, McGonigal A et al (2020) Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 47:3130–3142CrossRefPubMed
21.
Zurück zum Zitat Federico P, Wiebe S (2020) Is bad brain worse than no brain? Salvaging the cerebral cortex in epilepsy. Brain 143:3172–3175CrossRefPubMed Federico P, Wiebe S (2020) Is bad brain worse than no brain? Salvaging the cerebral cortex in epilepsy. Brain 143:3172–3175CrossRefPubMed
22.
23.
Zurück zum Zitat Wei PH, Mao ZQ, Cong F et al (2017) In vivo visualization of connections among revised Papez circuit hubs using full q-space diffusion spectrum imaging tractography. Neuroscience 357:400–410CrossRefPubMed Wei PH, Mao ZQ, Cong F et al (2017) In vivo visualization of connections among revised Papez circuit hubs using full q-space diffusion spectrum imaging tractography. Neuroscience 357:400–410CrossRefPubMed
24.
Zurück zum Zitat Larivière S, Rodríguez-Cruces R, Royer J et al (2020) Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study. Sci Adv 6:eabc6457CrossRefPubMedPubMedCentral Larivière S, Rodríguez-Cruces R, Royer J et al (2020) Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study. Sci Adv 6:eabc6457CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Galovic M, de Tisi J, McEvoy AW et al (2020) Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy. Brain 143:3262–3272CrossRefPubMedPubMedCentral Galovic M, de Tisi J, McEvoy AW et al (2020) Resective surgery prevents progressive cortical thinning in temporal lobe epilepsy. Brain 143:3262–3272CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Blumenfeld H, Varghese GI, Purcaro MJ et al (2009) Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 132:999–1012CrossRefPubMedPubMedCentral Blumenfeld H, Varghese GI, Purcaro MJ et al (2009) Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures. Brain 132:999–1012CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Ogren JA, Tripathi R, Macey PM et al (2018) Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin 20:205–215CrossRefPubMedPubMedCentral Ogren JA, Tripathi R, Macey PM et al (2018) Regional cortical thickness changes accompanying generalized tonic-clonic seizures. Neuroimage Clin 20:205–215CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635CrossRefPubMed Yeh FC, Wedeen VJ, Tseng WY (2010) Generalized q-sampling imaging. IEEE Trans Med Imaging 29:1626–1635CrossRefPubMed
29.
Zurück zum Zitat Celtikci P, Fernandes-Cabral DT, Yeh FC, Panesar SS, Fernandez-Miranda JC (2018) Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas. Neuroradiology 60:267–280CrossRefPubMed Celtikci P, Fernandes-Cabral DT, Yeh FC, Panesar SS, Fernandez-Miranda JC (2018) Generalized q-sampling imaging fiber tractography reveals displacement and infiltration of fiber tracts in low-grade gliomas. Neuroradiology 60:267–280CrossRefPubMed
30.
Zurück zum Zitat Wang YH, Wang ZM, Wei PH et al (2021) Lateralizing the affected side of hippocampal sclerosis with quantitative high angular resolution diffusion scalars: a preliminary approach validated by diffusion spectrum imaging. Ann Transl Med 9:297CrossRefPubMedPubMedCentral Wang YH, Wang ZM, Wei PH et al (2021) Lateralizing the affected side of hippocampal sclerosis with quantitative high angular resolution diffusion scalars: a preliminary approach validated by diffusion spectrum imaging. Ann Transl Med 9:297CrossRefPubMedPubMedCentral
Metadaten
Titel
Combined [18F]FDG-PET with MRI structural patterns in predicting post-surgical seizure outcomes in temporal lobe epilepsy patients
verfasst von
Zhen-Ming Wang
Peng-Hu Wei
Chunxiu Wang
Yaqin Hou
Kun Guo
Bixiao Cui
Yongzhi Shan
Guo-Guang Zhao
Jie Lu
Publikationsdatum
17.06.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
European Radiology / Ausgabe 12/2022
Print ISSN: 0938-7994
Elektronische ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-022-08912-2

Weitere Artikel der Ausgabe 12/2022

European Radiology 12/2022 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.