Skip to main content
Erschienen in:

05.08.2023 | Original Article

Comparative analysis of machine learning-based ultrasound radiomics in predicting malignancy of partially cystic thyroid nodules

verfasst von: Tianhan Zhou, Tao Hu, Zhongkai Ni, Chun Yao, Yangyang Xie, Haimin Jin, Dingcun Luo, Hai Huang

Erschienen in: Endocrine | Ausgabe 1/2024

Einloggen, um Zugang zu erhalten

Abstract

Objective

To investigate the application of machine learning (ML) model-based thyroid ultrasound radiomics in the evaluation of malignancy in partially cystic thyroid nodules (PCTNs).

Methods

One hundred and ninety-two patients with 197 nodules PCTNs from January 2020 to December 2020 were retrospectively analyzed. Radiomics features were extracted based on hand-crafted features from the ultrasound images, and machine learning methods were used to build a classification model by radiomics features. The least absolute shrinkage and selection operator regression was applied to select the features of nonzero coefficients from radiomics features. The prediction performance of the established model was mainly evaluated by the area under the curve (AUC) and accuracy, sensitivity, and specificity.

Results

Nineteen radiomics features were extracted from the original images for each nodule. Eight ML classifiers were able to differentiate malignancy in PCTNs. The AUC, accuracy, sensitivity, and specificity of k-Nearest Neighbor (KNN) model were 0.909, 82.95%, 83.33%, and 89.90%, respectively, on the test cohort. The comparative result showed statistically equivalent performance for thyroid nodule diagnosis based on image fusion and single image. In addition, the ML-Based ultrasound radiomics system showed a better AUC as compared with ACR TI-RADS model and the ultrasound features model.

Conclusion

The novel ultrasonic-based ML model has an important clinical value for predicting malignancy in PCTNs. It can provide clinicians with a preoperative non-invasive primary screening method for PCTN diagnosis to avoid unnecessary medical investment and improve treatment outcomes.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat R. Wong, S.G. Farrell, M. Grossmann, Thyroid nodules: diagnosis and management. Med J. Aust. 209, 92–98 (2018).CrossRefPubMed R. Wong, S.G. Farrell, M. Grossmann, Thyroid nodules: diagnosis and management. Med J. Aust. 209, 92–98 (2018).CrossRefPubMed
2.
Zurück zum Zitat K.D. Burman, L. Wartofsky, CLINICAL PRACTICE. Thyroid Nodules. N. Engl. J. Med 373(24), 2347–2356 (2015).CrossRefPubMed K.D. Burman, L. Wartofsky, CLINICAL PRACTICE. Thyroid Nodules. N. Engl. J. Med 373(24), 2347–2356 (2015).CrossRefPubMed
3.
Zurück zum Zitat E.K. Alexander, E.S. Cibas, Diagnosis of thyroid nodules. Lancet Diabetes Endocrinol. 10(7), 533–539 (2022).CrossRefPubMed E.K. Alexander, E.S. Cibas, Diagnosis of thyroid nodules. Lancet Diabetes Endocrinol. 10(7), 533–539 (2022).CrossRefPubMed
4.
Zurück zum Zitat B.R. Haugen, E.K. Alexander, K.C. Bible et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016(26), 1–133 (2015). B.R. Haugen, E.K. Alexander, K.C. Bible et al. American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016(26), 1–133 (2015).
5.
Zurück zum Zitat F.N. Tessler, W.D. Middleton, E.G. Grant et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radio. 14, 587–595 (2017).CrossRef F.N. Tessler, W.D. Middleton, E.G. Grant et al. ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radio. 14, 587–595 (2017).CrossRef
6.
Zurück zum Zitat T. Zhou, H. Huang, H. Dong, Z. Ni, H. Sun, T. He, C. Ma, Ultrasound-Based Risk Stratification System for the Assessment of Partially Cystic Thyroid Nodules. Endocr. Pr. 29(6), 428–435 (2023).CrossRef T. Zhou, H. Huang, H. Dong, Z. Ni, H. Sun, T. He, C. Ma, Ultrasound-Based Risk Stratification System for the Assessment of Partially Cystic Thyroid Nodules. Endocr. Pr. 29(6), 428–435 (2023).CrossRef
7.
Zurück zum Zitat Y.J. Lee, J.Y. Kim, D.G. Na et al. Malignancy risk of thyroid nodules with minimal cystic changes: a multicenter retrospective study. Ultrasonography 41(4), 670–677 (2022).CrossRefPubMedPubMedCentral Y.J. Lee, J.Y. Kim, D.G. Na et al. Malignancy risk of thyroid nodules with minimal cystic changes: a multicenter retrospective study. Ultrasonography 41(4), 670–677 (2022).CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Y. Xin, F. Liu, Y. Shi, X. Yan, L. Liu, J. Zhu, A Scoring System for Assessing the Risk of Malignant Partially Cystic Thyroid Nodules Based on Ultrasound Features. Front Oncol. 11, 731779 (2021).CrossRefPubMedPubMedCentral Y. Xin, F. Liu, Y. Shi, X. Yan, L. Liu, J. Zhu, A Scoring System for Assessing the Risk of Malignant Partially Cystic Thyroid Nodules Based on Ultrasound Features. Front Oncol. 11, 731779 (2021).CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Y.J.B.J. Choi, H.S. Park, W.H. Shim, T.Y. Kim, Y.K. Shong, J.H. Lee, A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment. Thyroid 27, 546–52. (2017).CrossRefPubMed Y.J.B.J. Choi, H.S. Park, W.H. Shim, T.Y. Kim, Y.K. Shong, J.H. Lee, A Computer-Aided Diagnosis System Using Artificial Intelligence for the Diagnosis and Characterization of Thyroid Nodules on Ultrasound: Initial Clinical Assessment. Thyroid 27, 546–52. (2017).CrossRefPubMed
10.
Zurück zum Zitat X.Z.S. Li, Q. Zhang, X. Wei, Y. Pan, J. Zhao, X. Xin, C. Qin, X. Wang, J. Li, F. Yang, Y. Zhao, M. Yang, Q. Wang, Z. Zheng, X. Zheng, X. Yang, C.T. Whitlow, M.N. Gurcan, L. Zhang, X. Wang, B.C. Pasche, M. Gao, W. Zhang, K. Chen, Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 20, 193–201 (2019)CrossRefPubMed X.Z.S. Li, Q. Zhang, X. Wei, Y. Pan, J. Zhao, X. Xin, C. Qin, X. Wang, J. Li, F. Yang, Y. Zhao, M. Yang, Q. Wang, Z. Zheng, X. Zheng, X. Yang, C.T. Whitlow, M.N. Gurcan, L. Zhang, X. Wang, B.C. Pasche, M. Gao, W. Zhang, K. Chen, Diagnosis of thyroid cancer using deep convolutional neural network models applied to sonographic images: a retrospective, multicohort, diagnostic study. Lancet Oncol. 20, 193–201 (2019)CrossRefPubMed
11.
Zurück zum Zitat S. Peng, Y. Liu, W. Lv et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Health 3, e250–e9. (2021)CrossRefPubMed S. Peng, Y. Liu, W. Lv et al. Deep learning-based artificial intelligence model to assist thyroid nodule diagnosis and management: a multicentre diagnostic study. Lancet Digit Health 3, e250–e9. (2021)CrossRefPubMed
12.
Zurück zum Zitat J.M. Park, Y. Choi, H.J. Kwag, Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J. Radio. 13(5), 530–535 (2012).CrossRef J.M. Park, Y. Choi, H.J. Kwag, Partially cystic thyroid nodules: ultrasound findings of malignancy. Korean J. Radio. 13(5), 530–535 (2012).CrossRef
13.
Zurück zum Zitat T. Zhou, H. Huang, H. Dong, Z. Ni, H. Sun, T. He, C. Ma, Ultrasound-Based Risk Stratification System for the Assessment of Partially Cystic Thyroid Nodules. Endocr. Pr. 29(6), 428–435 (2023).CrossRef T. Zhou, H. Huang, H. Dong, Z. Ni, H. Sun, T. He, C. Ma, Ultrasound-Based Risk Stratification System for the Assessment of Partially Cystic Thyroid Nodules. Endocr. Pr. 29(6), 428–435 (2023).CrossRef
14.
Zurück zum Zitat X. Shi, R. Liu, L. Gao, Y. Xia, Y. Jiang, Diagnostic Value of Sonographic Features in Distinguishing Malignant Partially Cystic Thyroid Nodules: A Systematic Review and Meta-Analysis. Front Endocrinol. 12, 624409 (2021).CrossRef X. Shi, R. Liu, L. Gao, Y. Xia, Y. Jiang, Diagnostic Value of Sonographic Features in Distinguishing Malignant Partially Cystic Thyroid Nodules: A Systematic Review and Meta-Analysis. Front Endocrinol. 12, 624409 (2021).CrossRef
15.
Zurück zum Zitat W. Li, Q. Zhu, Y. Jiang, Q. Zhang, Z. Meng, J. Sun, J. Li, Q. Dai, Partially cystic thyroid nodules in ultrasound-guided fine needle aspiration: Prevalence of thyroid carcinoma and ultrasound features. Medicine 96(46), e8689 (2017).CrossRefPubMedPubMedCentral W. Li, Q. Zhu, Y. Jiang, Q. Zhang, Z. Meng, J. Sun, J. Li, Q. Dai, Partially cystic thyroid nodules in ultrasound-guided fine needle aspiration: Prevalence of thyroid carcinoma and ultrasound features. Medicine 96(46), e8689 (2017).CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Y.Z. Shi, Y. Jin, L. Zheng, Partially cystic thyroid nodules on ultrasound: The associated factors for malignancy. Clin. Hemorheol. Microcirc. 74(4), 373–381 (2020)CrossRefPubMed Y.Z. Shi, Y. Jin, L. Zheng, Partially cystic thyroid nodules on ultrasound: The associated factors for malignancy. Clin. Hemorheol. Microcirc. 74(4), 373–381 (2020)CrossRefPubMed
17.
Zurück zum Zitat B. Zhang, J. Tian, S. Pei, Y. Chen, X. He, Y. Dong, L. Zhang, X. Mo, W. Huang, S. Cong, S. Zhang, Machine Larning-Assisted System for Thyroid Nodule Diagnosis. Thyroid 29(6), 858–867 (2019).CrossRefPubMed B. Zhang, J. Tian, S. Pei, Y. Chen, X. He, Y. Dong, L. Zhang, X. Mo, W. Huang, S. Cong, S. Zhang, Machine Larning-Assisted System for Thyroid Nodule Diagnosis. Thyroid 29(6), 858–867 (2019).CrossRefPubMed
19.
Zurück zum Zitat H. Wu, Z. Deng, B. Zhang, Q. Liu, J. Chen, Classifier Model Based on Machine Learning Algorithms: Application to Differential Diagnosis of Suspicious Thyroid Nodules via Sonography. AJR Am. J. Roentgenol. 207(4), 859–864 (2016).CrossRefPubMed H. Wu, Z. Deng, B. Zhang, Q. Liu, J. Chen, Classifier Model Based on Machine Learning Algorithms: Application to Differential Diagnosis of Suspicious Thyroid Nodules via Sonography. AJR Am. J. Roentgenol. 207(4), 859–864 (2016).CrossRefPubMed
20.
Zurück zum Zitat H.A. Abu Alfeilat, A.B.A. Hassanat, O. Lasassmeh, A.S. Tarawneh, M.B. Alhasanat, H.S. Eyal Salman, V.B.S. Prasath, Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 7(4), 221–248 (2019).CrossRefPubMed H.A. Abu Alfeilat, A.B.A. Hassanat, O. Lasassmeh, A.S. Tarawneh, M.B. Alhasanat, H.S. Eyal Salman, V.B.S. Prasath, Effects of Distance Measure Choice on K-Nearest Neighbor Classifier Performance: A Review. Big Data 7(4), 221–248 (2019).CrossRefPubMed
21.
Zurück zum Zitat W.C. Lo, P.W. Cheng, C.T. Wang, S.T. Yeh, L.J. Liao, Pain levels associated with ultrasound-guided fine-needle aspiration biopsy for neck masses. Head. Neck 36(2), 252–256 (2014).CrossRefPubMed W.C. Lo, P.W. Cheng, C.T. Wang, S.T. Yeh, L.J. Liao, Pain levels associated with ultrasound-guided fine-needle aspiration biopsy for neck masses. Head. Neck 36(2), 252–256 (2014).CrossRefPubMed
22.
Zurück zum Zitat C. Cappelli, I. Pirola, B. Agosti, A. Tironi, E. Gandossi, P. Incardona, F. Marini, A. Guerini, M. Castellano, Complications after fine-needle aspiration cytology: a retrospective study of 7449 consecutive thyroid nodules. Br. J. Oral. Maxillofac. Surg. 55(3), 266–269 (2017).CrossRefPubMed C. Cappelli, I. Pirola, B. Agosti, A. Tironi, E. Gandossi, P. Incardona, F. Marini, A. Guerini, M. Castellano, Complications after fine-needle aspiration cytology: a retrospective study of 7449 consecutive thyroid nodules. Br. J. Oral. Maxillofac. Surg. 55(3), 266–269 (2017).CrossRefPubMed
Metadaten
Titel
Comparative analysis of machine learning-based ultrasound radiomics in predicting malignancy of partially cystic thyroid nodules
verfasst von
Tianhan Zhou
Tao Hu
Zhongkai Ni
Chun Yao
Yangyang Xie
Haimin Jin
Dingcun Luo
Hai Huang
Publikationsdatum
05.08.2023
Verlag
Springer US
Erschienen in
Endocrine / Ausgabe 1/2024
Print ISSN: 1355-008X
Elektronische ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-023-03461-0

Kompaktes Leitlinien-Wissen Innere Medizin (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Innere Medizin

Nierenzellkarzinom: Kein Nachteil durch subkutan appliziertes Nivolumab

Die subkutane Applikation von Nivolumab ist nach Daten einer Phase-3-Studie ähnlich gut wirksam wie die intravenöse: Die Pharmakokinetik ist vergleichbar, die objektive Response war in der Studie sogar leicht besser als in der Gruppe mit Infusionen.

Vorteile für Androgenentzug plus Androgenrezeptorblockade

Für Männer mit metastasiertem hormonsensitivem Prostata-Ca. (mHSPC), die keine Hormonchemotherapie wollen oder vertragen, ist der Androgenentzug plus Darolutamid eine Alternative: Das Progressionsrisiko wird im Vergleich zum alleinigen Androgenentzug fast halbiert.

Mit Lidocain kommt der Darm nicht schneller in Schwung

Verzögertes Wiederanspringen der Darmfunktion ist ein Hauptfaktor dafür, wenn Patientinnen und Patienten nach einer Kolonresektion länger als geplant im Krankenhaus bleiben müssen. Ob man diesem Problem mit Lidocain vorbeugen kann, war Thema einer Studie.

Koronare Herzkrankheit: Das waren die Top-Studien 2024

Zum Thema Koronare Herzkrankheit gab es 2024 wichtige neue Studien. Beleuchtet wurden darin unter anderem der Stellenwert von Betablockern nach Herzinfarkt, neue Optionen für eine Lipidsenkung sowie die Therapie bei infarktbedingtem kardiogenem Schock.

EKG Essentials: EKG befunden mit System (Link öffnet in neuem Fenster)

In diesem CME-Kurs können Sie Ihr Wissen zur EKG-Befundung anhand von zwölf Video-Tutorials auffrischen und 10 CME-Punkte sammeln.
Praxisnah, relevant und mit vielen Tipps & Tricks vom Profi.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.