Skip to main content
Erschienen in: BMC Cancer 1/2019

Open Access 01.12.2019 | Study protocol

Comparing stereotactic ablative radiotherapy (SABR) versus re-trans-catheter arterial chemoembolization (re-TACE) for hepatocellular carcinoma patients who had incomplete response after initial TACE (TASABR): a randomized controlled trial

verfasst von: Liang-Cheng Chen, Wen-Yen Chiou, Hon-Yi Lin, Moon-Sing Lee, Yuan-Chen Lo, Li-Wen Huang, Chun-Ming Chang, Tsung-Hsing Hung, Chih-Wen Lin, Kuo-Chih Tseng, Dai-Wei Liu, Feng-Chun Hsu, Shih-Kai Hung

Erschienen in: BMC Cancer | Ausgabe 1/2019

insite
INHALT
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Hepatocellular carcinoma (HCC) accounts for 75–85% of primary liver cancers and is prevalent in the Asia-Pacific region. Till now, trans-arterial chemoembolization (TACE) is still one of common modalities in managing unresectable intermediate-stage HCC. However, post-TACE residual viable HCC is not uncommon, resulting in unsatisfied overall survival after TACE alone. Recently, stereotactic ablative radiotherapy (SABR) has been suggested to manage HCC curatively. However, evidence from phase-III trials is largely lacking.
Hence, the present phase III randomized trial is designed to compare clinical outcomes between SABR and re-TACE for unresectable HCC patients who had incomplete response after initial TACE.

Methods

The present study is an open-label, parallel, randomized controlled trial. A total of 120 patients will be included into two study groups, i.e., SABR and re-TACE, with a 1:1 allocation rate. A 3-year allocating period is planned. Patients with incomplete response after initial TACE will be enrolled and randomized. The primary endpoint is 1-year freedom-form-local-progression rate. Secondary endpoints are disease-progression-free survival, overall survival, local control, response rate, toxicity, and duration of response of the treated tumor.

Discussion

SABR has been reported as an effective modality in managing intermediate-stage HCC patients, but evidence from phase-III randomized trials is largely lacking. As a result, conducting randomized trials to demarcate the role of SABR in these patients is warranted, especially in the Asia-Pacific region, where HBV- and HCV-related HCCs are prevalent.

Trial registration

Before enrolling participants, the present study was registered prospectively on ClinicalTrials.gov (trial identifier, NCT02921139) on Sep. 29, 2016. This study is ongoing.
Hinweise
Liang-Cheng Chen and Wen-Yen Chiou contributed equally to this work.
Abkürzungen
AFP
Alpha-fetoprotein
AJCC
American Joint Committee on Cancer
BCLC
Barcelona Clinic Liver Cancer
CR
Complete response
CT
Computed tomography
CTCAE
Common terminology criteria of adverse events
FFLP
Freedom from local progression
HBV
Hepatitis B virus
HCC
Hepatocellular carcinoma
HCV
Hepatitis C virus
IGRT
Image-guided radiotherapy
IMRT
Intensity-modified radiotherapy
IRB
Institute Review Board
mRECIST
modified Response Evaluation Criteria in Solid Tumors
MRI
Magnetic Resonance Imaging
NCCN
National comprehensive cancer network
OPD
Out-patient department
PD
Progressive disease
PR
Partial response
PTV
Plan target volume
PVT
Portal vein thrombosis
RFA
Radiofrequency ablation
RILD
Radiation-induced liver disease
RPM
Real-time position management
RT
Radiotherapy
SABR
Stereotactic ablative radiotherapy
SBRT
Stereotactic body radiotherapy
SD
Stable disease
SIB
Simultaneously integrated boost
SIEB
Simultaneously integrated inner-escalated boost
SPIRIT
Standard Protocol Items: Recommendations for Interventional Trials
TACE
Trans-catheter arterial chemoembolization
VMAT
Volumetric-modulated arc radiotherapy

Background

Background and rationale

Hepatocellular carcinoma (HCC)

Liver cancers are sixth cause of cancer incidence and third cause of cancer death over the world – estimated 818,000 patient died in 2013 [1]. Of these, HCC accounts for 75–85% of primary liver cancers and is the third cause of cancer death in the Asia-Pacific region, where are also the endemic areas of chronic viral hepatitis (mainly hepatitis B and C) [24], leading to a combination of liver function impairment, such as liver cirrhosis, in HCC patients.
In addition to adverse effects of chronic viral hepatitis, most HCC patients were classified as intermediate to advanced stage at the time of diagnosis. As a result, though many treatment modalities can be chose for these patients [5, 6], 5-year survival rate is still poor, being less than 20% [7]. Note that the main failure pattern after tumor resection is intra-liver recurrence [8]. This observation still holds true for patients who undergo TACE or other local treatment modality alone.

Trans-arterial chemoembolization (TACE)

Although a Cochrane review failed to show significant survival benefits of TACE for unresectable HCC patients [9], TACE is still the most widely used locoregionally life-extending treatment for HCC patients with intermediate stage [6]. This recommendation is mainly based on six randomized prospective studies that demonstrate a survival benefit of TACE when compared with best supportive care or suboptimal therapies [10]. Note that most previously mentioned studies are investigated about ‘unresectable’ rather than “intermediate stage” HCC that classified by BCLC classification [11].

Stereotactic ablative radiotherapy (SABR)

When compared with conventional RT, SABR used a very precise way to delivering high dose of irradiation in a limited number of treatment fractions, demonstrating a large therapeutic benefit [12]. For maintaining a high precision of SABR, reliable immobilization, daily on-board image guidance, respiratory gating, and 360-degree Volumetric-Modulated Arc Therapy (VMAT) techniques are conducted clinically [13].
Recently, SABR, or alternatively named stereotactic body radiotherapy (SBRT), has been reported as a curative modality in managing early-stage HCC [1421]. Moreover, the role of SABR is gradually defined in HCC patients with relatively large size (i.e., > 3 cm) [22], advanced [23], unresectable [24], and oligometastatic disease [25]. Remarkably, a role of SABR has been also reported in post-TACE HCC patients, in terms of adjuvant [26] or salvage setting [27, 28]. However, till now, level-III evidence is still largely lacking, rising an importance to conduct randomized trials for this issue [2931].
Most studies showed that local control of inoperable HCC treated with SABR are about 72–89.8% at 1 year and 64% at 2 years, respectively [32, 33]. For selected patients, local control can be achieved as high as 99% at 1 and 2 years, respectively [34]. These outcomes of SABR were comparable with RFA, particularly for tumors > 2 cm [24, 35]. More notably, SABR showed a benefit of limited toxicities, even in elderly HCC patients [36].

Rationale to conduct SABR for incomplete TACE

As mentioned above, TACE is effective for managing HCC patients with early to intermediate stage. However, TACE alone cannot achieve satisfactory complete tumor response rate, demonstrating median response and complete response rates after TACE was 38% (range 3–86%) and 0 (range 0–35%), respectively [37]. The unsatisfactory complete response suggested the concept of combining local therapy to improve local control.
In this regard, TACE combined with RFA has been reported to be useful in local tumor control [38, 39]. Recently, image-guided high-precise radiotherapy, i.e., SABR, has been reported to play a role in managing incomplete TACE [27]. However, evidence from randomized phase III studies is largely lacking.
Hence, the main reason to conduct SABR for unresectable HCC patients who had incomplete response after TACE is to increase treatment response and to prolong patient survival [24, 26, 28, 4045]. In addition, post-TACE embolized materials were also useful to guide dose delivery of SABR, enhancing targeting precision.

Objective and hypothesis

Taken together, conducting a randomized clinical trial to test the role of SABR in eradicating HCC – particularly for post-TACE residual tumors – is strongly encouraged [2931]. As a result, the present phase-III trial intends to compare clinical outcomes between TACE plus SABR and TACE plus re-TACE for HCC patients who had post-TACE residual tumors.

Primary objective

The main goal of the present study is to assess the role of SABR in HCC patients who have incomplete response after initial TACE. Patients treated with re-TACE will be allocated into the active comparator group. Freedom form local progression (FFLP) is the primary end point.

Secondary objectives

Several secondary objectives are as follows: overall survival, tumor response rate, duration of tumor response, and side effects.

Hypothesis

We hypothesize that SABR is able to demonstrate better clinical outcomes than that of re-TACE for HCC patients who have incomplete response after their initial TACE, in terms of tumor response, local-progression-free and patient survival. In addition, limited treatment toxicities are expected to be observed in patients treated with SABR, as reported previously [45].

Trial design

The present study is a prospective, parallel, and open-label randomized controlled trial (RCT). An allocation ratio of 1:1 will be applied between the two study groups, i.e., SABR and re-TACE.

Methods/design

The present study will be conducted after a formal approval of Institute Review Board (Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medication Foundation; approval number: A10502001). Important protocol modifications, e.g., changes to eligibility criteria or outcome analyses, will be re-submitted to IRB and implemented only after a re-approval of IRB.
Written informed consent will be obtained for each participant. Details of the trial process, including pros and cons of interventions, will be explained by both physician and study nurse. Whole-day contact information of investigators will be provided for all participants and their families. Obtained data will be kept in a security locker. The present protocol is reported according to recommendation of SPIRIT 2013 [46]. Final analyses and results will be submitted for publication on a peer-reviewed journal after completion of the study.

Study setting

The present study will be conducted at a single regionally academic institute (i.e., Dalin Tzu Chi Hospital, Chia-Yi, Taiwan). Inter-institute cooperation for enrolling potential patients may be done under formal supervision of IRBs.

Inclusion criteria

Several inclusion criteria will be as follows.
(1)
Patients who are diagnosed with HCC via one of the following methods:
(a)
radiographically typical enhancement pattern with arterial enhancement and portal or delayed washed out on triple-phase dynamic Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), with or without an elevated value of alpha-fetoprotein (AFP); or,
 
(b)
histopathological confirmation of HCC.
 
 
(2)
HCC patients who are treated with initial TACE with incomplete response (i.e., partial response, stable disease, or disease progression).
 
(3)
Age ≥ 20 years old.
 
(4)
BCLC stage A-B and Child-Pugh score A-B.
 
(5)
Unresectable tumors, medically inoperable status, or refusal of surgery.
 
(6)
Clinically feasible for SABR or re-TACE.
 
(7)
SABR can be applied within 6 weeks of registration.
 
(8)
ECOG 0–1.
 
(9)
Life expectancy > 3 months.
 
(10)
Negative pregnancy.
 
(11)
No prior treatment, except for surgical resection and radiofrequency ablation (RFA).
 
(12)
Criteria of allowed laboratory data were as follows:
(a)
hemoglobin, ≥8.0 g/dl (may be post-transfusion if clinically indicated);
 
(b)
total bilirubin, ≤3.0 mg/dl;
 
(c)
AST (SGOT), ≤5-fold institutional upper limit of normal range;
 
(d)
ALT (SGPT), ≤5-fold institutional upper limit of normal range;
 
(e)
absolute neutrophil count, ≥1000/cumm;
 
(f)
platelet count, ≥20,000/cumm (may be post-transfusion if clinically indicated); and,
 
(g)
prothrombin time, international normalized ratio, ≥1.7.
 
 

Exclusion criteria

(1)
Prior radiotherapy to the upper abdomen.
 
(2)
Prior other malignancy – unless disease free for at least 3 years.
 
(3)
Medical condition unsuitable such as cardiac ischemia or cerebrovascular accident within last 6 months.
 
(4)
Psychosocial condition unsuitable.
 
(5)
History of sorafenib therapy within 21 days prior.
 

Interventions

We will recruit patients who have incomplete response after their initial TACE. All recruited patients will be allocated randomly to the SABR or re-TACE group (Fig. 1).

Arm A, the experimental group: SABR (planned n = 60)

SABR, or alternatively named Stereotactic Body Radiotherapy (SBRT), is a rapidly developing modern radiotherapy technique for liver tumors [47, 48]. TrueBeam™ (Varian Medical Systems, CA, USA) will be used to deliver SABR by using an extremely conformal radiation dose distribution and rapid fall-off of the peripheral dose, leading to a large sparing of surrounding normal tissues.
To achieve high precision, Image-guided Radiotherapy (IGRT) with respiratory-gated or breath-holding technique will be combined with SABR to overcome the effect of positioning uncertainty and respiratory motion. Real-time Position Management™ (RPM) system (Varian Medical System, CA, USA), version 1.7.5, will be used when breath-holding technique cannot be conducted confidentially. A CT scanner will be used for simulation (Somatom Emotion 6, Siemens Medical Solution, Forchheim, Germany). These techniques have been reported to improve treatment precision of irradiating targets that are affected by respiratory motion, such as lung, breast, and liver tumors [49].
SABR will be delivered in 5 fractions within 2 weeks, and the prescription dose will be ranged from 35 to 50 Gy, depending on tumor size, location, and normal tissue constrains. In some situations, treatment course will be prolonged to 8–10 fractions, for example, patients with poor liver function (e.g., Child B8–9) or their tumor location near the adjacent gastrointestinal tract, diaphragm, or the central zone of the liver (i.e., ≤1.5 cm around the main portal vein). The preferred inter-fraction time interval will be 48 h.
No expansion from Gross Target Volume (GTV) to CTV will be performed for most irradiating targets, and margins to generate Plan Target Volume (PTV) from Clinical Target Volume (CTV) will be ≤10 mm. The prescribed isodose should encompass 95% of PTV but 100% of CTV.
Critical organ constrains will be obeyed according to RTOG 1112 protocol [50]. Briefly, the 0.5-cc maximum dose regions of normal structures will be as follows: stomach, duodenum, small and large bowels, < 30 Gy; esophagus, < 32 Gy; and, 5 mm around the spinal cord, < 25 Gy. Bilateral mean kidney dose should be < 10 Gy. Allowed mean liver dose (MLD, the mean dose to the liver minus all GTV) should be kept < 13 Gy (if prescribed dose is 50 Gy) and < 15 Gy (if prescribed dose is 40–45 Gy).
Although the liver is considered as an organ with parallel functional subunits, the central hepatobiliary tract (cHBT) drained into the central hilum is more likely a serial structure. A 15-mm expansion of portal veins will be used as a surrogate for cHBT, and its constrains in 5-fraction SABR will be V26 < 37 c.c. and V21 < 45 c.c., as reported previously [51].

Arm B, the active comparator group: re-TACE (planned n = 60)

TACE will be conducted by using a catheter to deliver chemotherapeutic agent and embolic materials into the blood vessels that supply to the tumor. Generally the procedure time will be completed within 1–2 h, and the hospitalization course will be 3 days.
Before each TACE, laboratory data will be checked, and abdominal images will be reviewed. Treatment plan will be discussed and determined by radiologists and gastrointestinal physicians. The planned catheter-inserted site will be the groin. A guide wire will be inserted into the femoral artery. A curve Angiographic Catheters (COOK MEDICAL INC., Bloomington, USA) followed by a superselective microcatheter (Terumo®, Tokyo, Japan) will be sent to the target artery in the liver.
As the catheter approach to the target, several series of angiography will be done to identify the lesion sites. After the target site is determined, catheter will be inserted to the feeding artery branch. Chemotherapy agent (Epirubicin, 30 mg), oil-based radio-opaque contrast agent (LIPIODOL® [ethiodized oil], 5–10 ml, according to tumor size), several 1 × 1 mm Sterile Sponge (Gelfoam®), contrast (XENETIX 350 [350 mg/ml], and solution for injection 10 ml) will be mixed together and then injected to the tumor site.
Post-procedure care will be prescribed, including keeping absolute bed rest for 12 h after the procedure. The incision wound will be compressed by a 2-Kg sandbag for 4–6 h for hemostasis. The medical care team will closely monitor vital signs, pulse of the distant limb, and awareness of whether TACE-associated complication occurred, such as nausea, vomiting, and allergic reactions. Proper treatments will be provided if complication occurs.

Assignment of interventions: randomization and allocation

Computer-generated random numbers will be used for participant allocation. Two factors will be used as stratification factors, i.e., BCLC cancer stage and level of total bilirubin. A 2-by-2 cross table will be used for randomizing and blocking: total bilirubin (< 2 versus 2–3 g/dl) and BCLC (A versus B), with a block size of 4 in each stratification.
Opaque and sealed envelopes will be used for implementing the randomization and allocation sequence. When the participants are ready to be randomized, the study investigator will pull the very next randomization envelope by sequence from the envelope file, which will be locked in secure locker. The study nurse will record associated information on the study randomization list and the participant’s case report form. Finally, the envelope will be opened to reveal the subject’s treatment assignment and second study staff will double check the envelope file in real time to verify correct treatment assignment. An inspection of envelopes will be completed by data and safety monitoring board (DSMB) during routine monitoring visit. Note that blinding in either sides (i.e., physician or participants) cannot be done because of intervention natures.

Criteria for discontinuing or modifying allocated interventions

All participants have full rights to request discontinuing intervention in any stage of trial allocation. For patients treated with SABR, if during-RT follow-up tests suggest impairment of liver function, such as GOT/GPT > 5-fold upper limit of normal range or total bilirubin > 2.0 g/dl, irradiation dose and treatment schedule will be considered to modify for consolidating patient safety.

Strategies to improve adherence to intervention protocols

All participants will be followed up weekly during intervention period via both outpatient department (OPD) visit and phone contact, respectively. For patients with any grade 3 toxicity of CTCAE, in-patient care with aggressive management will be recommended and provided accordingly.

Strategies for achieving adequate participant enrolment

Several strategies will be conducted for achieving an adequate enrolment of study participants. First, IRB-approved recruitment materials, including hard copy and electronic documents, will be posted in suitable platforms of hospitals and communities. Second, enrolment messages will be announced among national-level special societies, including – but not limited – gastrointestinal, surgical oncology, internal oncology, and radiation oncology. Third, inter-institute cooperation for potential patient enrolments may be done under formal supervision of IRBs.

Relevant concomitant care and interventions that are permitted or prohibited during the trial

For all participants, relevant concomitant care and interventions for managing medical comorbidities, such as hypertension, type II diabetes mellitus, and hepatitis B/C infection, will be permitted. Permitted targeted therapy for HCC will be allowed to be prescribed subsequently – but not concomitantly – with SABR. However, chemotherapy agents, including intra-venous or oral forms, may be prohibited before a formal agreement of investigator committee.

Follow-up measurement, assessment and outcomes

Timing of assessments

Participants will be recruited from Dec. 2016 to Dec. 2019. All recruited participants will be followed up according to National Comprehensive Cancer Network (NCCN) guideline [6]. Table 1 shows a follow-up schedule and checklist according to recommendation of SPIRIT 2013 [46]. Follow-up data will be collected per 3 month since the baseline till 2 years. The timing to decide treatment response will be defined at the week 6 from the date of baseline. Other clinical outcome data regarding patient survival, response rate, and treatment toxicity, will be recorded systemically by schedule.
Table 1
Timeline schedule for participants: screen, intervention, and follow-up
 
Screening
Baseline/Enrollment Visit 0 (V0)
Treatment visit 1 (V1)
Follow up visit 2 (V2, week 6)
Follow up visit 3 (V3, week 12)
Follow up visit 4 (V4, week 24)
Follow up visit 5 (V5, week 36)
Follow up visit 6 (V6, week 48)
Follow up visit 7 (V7, week 60)
Follow up visit 8 (V8, week 72)
Follow up visit 9 (V9, week 84)
Follow up visit 10 (V10, week 96)
Informed consent form
 
          
Randomization
 
          
Demographics
           
Medical history
           
Physical examinationa
Vital signs
Performance status
Concomitant medications
Hemotologyb
Serum biochemistryc
Hepatic disease examinationd
          
Abdominal CT or MRI
   
 
 
 
 
Whole-body CT scan
     
 
 
 
EKG (as indicated)
           
Fibrosis evaluation (Acoustic Radiation Force Impulse; ARFI)
 
          
Pregnancy test (urine)e
 
          
Adverse event evaluation
  
aInclusion of physical examinations for abdominal condition, ascites, encephalopathy, body temperature, weight, height, pulse, and blood pressure
bInclusion of CBC/DC, PLT, WBC classification, ANC, and PT/APTT
cInclusion of AST, ALT, Albumin, alkaline phosphatase, LDH, total protein, total bilirubin, direct bilirubin, BUN, Cr, sodium ([NA+]), potassium ([K+]), AFP, GGT, INR
dInclusion of HBsAg and Anti-HCV. Note that the following items are selective: HBeAg, HBeAb, HBcAg, HBV DNA, and HCV-RNA
eWomen with childbearing potential only
Note 1: It was desirable to follow the study calendar as outlined, despite progression disease (PD). For per monthly tests, +/− 1 week was permitted, and for per 3, 6 and 12 monthly tests, +/− 2 weeks were permitted
Note 2: This table was modified from recommendation of SPIRIT 2013 [46]
Abbreviation: CBC/DC complete blood count/differential count, PLT platelet, WBC white blood cell, ANC absolute neutrophil count, PT/APTT prothrombin time/activated partial thromboplastin time, AST Aspartate Aminotransferase, ALT alanine aminotransferase, LDH lactate dehydrogenase, BUN blood urea nitrogen, Cr Creatinine, AFP alpha-fetoprotein, GGT γ-Glutamyltransferase, INR international normalized ratio, HAV hepatitis A virus, HBsAg hepatitis B surface antigen, HCV hepatitis C virus, CT computed tomography, MRI magnetic resonance imaging

Plans to promote participant retention and complete follow-up

All investigators, including a specific study nurse, will promote participants retention and follow-up by using a team-work manner. A trial-specific information platform will be used. Follow-up data will be checked at least weekly. Loss of follow-up will be aggressively avoided by using multidisciplinary efforts.

Outcome measures

Primary outcome measure

The primary outcome measure is freedom from local progression (FFLP) [24]. FFLP will be defined as time with no in-field progressive disease. Response for target lesions will be defined according to the RECIST version 1.1 and modified RECIST (mRECIST) [52]. The target lesions should show intra-tumor arterial enhancement on contrast-enhanced CT or MRI and can be accurately measured in at least one dimension as 1 cm or more [53, 54].
Several tumor responses will be defined by two independent physicians (one hepatic-specific radiologist and one radiation oncologist): complete response (CR), total disappearance; partial response (PR), 30% decrease in single longest diameter (SLD) of contrast-enhanced part; stable disease (SD), neither partial response nor progressive disease met; and, progressive disease (PD), 20% increase of SLD or new lesion(s).

Secondary outcome measure

Several secondary outcomes will be measured at 1 and 2 years, as follows: (1), overall survival; (2), progression-free survival; (3), tumor response rate; and (4), toxicity. Post-intervention complete or partial response will be defined as having a tumor response. Treatment-associated toxicity will be classified according to CTCAE, v.4.03 [55]. Toxicity within 3 months after initiation of interventions will be recorded as acute toxicity. And, toxicity that developed after 3 months will be considered as late toxicity. Liver-specific toxicity including classic and non-classic radiation-induced liver disease (RILD) will also be assessed. Degree of toxicities will be documented, such as ascites (i.e., absent, mild to moderate, and severe/refractory) and encephalopathy (i.e., absent, mild [I-II], and severe [III-IV]).
Several image and laboratory studies will be conducted for assessing treatment response and toxicities. First, CT, MRI, or abdominal sonography will be done per 3 months within the first two-year follow-up, then per 6 months thereafter for another 3 years. Second, specific laboratory studies will be followed up regularly, such as AST, ALT, and Bilirubin (both total and direct; Table 1). All adverse and potential harming events will be systemically collected and then analyzed in investigator meetings. Severe adverse events will be reported to IRB within 2 weeks as the IRB-monitoring guideline.

Salvage management after SABR or re-TACE

For allocated patients who have incomplete response after SBRT or re-TACE, several re-salvage modalities will be evaluated as the following order: (1), surgical resection; (2), RFA; (3), TACE; (4), SABR; and, (5), conventional RT. Note that re-SABR or conventional RT may not be indicated for patients with post-SABR recurrence because of limitation of normal tissue tolerance.

Data collection methods

Data will be collected primarily through the use of a paper-based case report forms (CRF), which will be completed by a specific study nurse and then confirmed by a physician. Subsequently, the data will be keyed in to the electronic research-incorporated database system (i.e., IROIP) that will be securely hosted at the Dalin Tzu Chi Hospital. Two independent investigators will be assigned to audit the process of data collection and correctness of the data. Baseline data will be collected routinely, including age, sex, ethnicity, education, economic, chronic hepatitis, prior treatments of HCC, and relevant medical comorbidities. All collected clinical data will be cross-linked with electronic laboratory data from the hospital HIS system.

Sample size calculation

According to prior studies, response rates have been reported: 38% in patients treated with TACE alone [37] and 76.6% in those treated with TACE then salvage SABR [44]. As a result, an absolute increase of 30% in response rate will be considered as having a clinical significance. By using probability of type I error (α, 0.05; and, power [1 - β], 80%), 46 patients will be required in both the two study groups, resulting in a total study cases of 92. With an estimate of drop-out rate of 20%, we will enroll an additional 24 patients to counter potential attrition, reaching a final sample size of 120.

Data management and access to data

All data collected in this study will be kept strictly confidential. All information from patients will be protected and stored in our data security system against unauthorized access. Only members in research can access to records, data, and samples. All information or data concerning the study will not be approached by any unauthorized third party.

Data monitoring and auditing

During the whole study process, data accuracy and security will be monitored regularly by Data Safety Monitor Board (DSMB). All members of DSMB are independent from the sponsor and competing interests.
DSMB will perform planned interim analyses, and its members will decide whether the present trial should be terminated if stopping criteria are fitted. Stopping criteria include early identifications of significant benefits (i.e., between-group difference of absolute response rate > 30%) or harms (i.e., between-group difference of grade ≥ 3 toxicities > 20%). Final decision to stop the trial will require full agreement of all DSMB members.
Adverse events should be reported to the DSMB and IRB simultaneously, especially unexpected or severe adverse events. For every adverse event, potential avoidable etiologies will be checked systemically by both investigators and audit members of DSMB.

Statistical methods and data analysis

Data will be analyzed by using SAS (version 9.2; SAS Institute, Inc., Cary, NC, USA) and SPSS (version 17, SPSS Inc., Chicago, IL, USA), accordingly. Demographic data will be examined differences between groups by using chi-square test (for categorical variables) and Wilcoxon rank sum test (for continuous variables).
Time-to-event outcomes, such as FFLP (time to in-field target-tumor progression), progression-free (time to local, regional, or distance progression) and overall survival (time to patient death from any cause) will be evaluated by using Kaplan-Meier method. Curve difference between groups will be assessed by using log-rank test. Multivariate analysis will be done by using Cox proportional hazard regression. Hazard ratio with 95% confidence interval will be provided in conjunction with p values to demarcate effective size. All statistical analysis will be performed by using a two-tailed approach. A p value of < 0.05 will be considered as having a statistical significance.

Discussion

SABR has been reported as an effective modality in all-stage HCC patients, but evidence from phase-III randomized trials is largely lacking

For patients with intermediate stage of BCLC classification, most patients received TACE as their local-regional therapies. However, TACE alone seldom achieves satisfactory complete response and demonstrates a dismal 5-year survival rate of < 20% [56]. Recently, modern high-dose SABR achieves 60–100% tumor response rate when combined with TACE [11 17–22]. Phase I and II trials also showed promising results of SABR on local control (1-year, 87%; 2-year, 94.6%) and survival rate (1-year, 55%; 2-year, 68.7%) [24, 25]. Thus, based on these results, SABR has been suggested as an effective modality for HCC patients with early-stage lesions [19, 24, 57, 58], unresectable tumors (i.e., ≤10 cm) [59], and post-TACE residual tumor [20, 44]. However, level 1 evidence from randomized trials for liver SABR is largely lacking.
A lack of level-III evidence is the main barrier for recommending SABR as a standard of care in most international treatment guidelines. As a result, conducting randomized trials to demarcate the role of SABR in HCC patients is warranted, especially in the Asia-Pacific region, where HBV- and HCV-related HCCs are predominated [2, 3].

Conventional radiotherapy

Previously, the role of conventional external beam radiation therapy has been limited to palliative or salvage setting for large unresectable HCC, portal vein thrombosis, obstructive jaundice, and failure of prior TACE/RFA [6]. Nowadays, recent advances in irradiating technology lead the radiotherapy from palliation to cure in HCC management [47]. Local response rates range from 40 to 90%, and the median survival range from 10 to 25 months when treated with RT with or without TACE [60]. Remarkably, a recently published randomized trial showed that TACE plus conventional external beam radiation therapy can prolong progression-free survival at 12 and 24 weeks in locally advanced HCC patients when compares with sorafenib treatment [61]. Thus, in the present study, conventional RT will be allowed as one of alternative modalities for managing HCC patients who have incomplete response after SABR (the Arm A) or re-TACE (the Arm B) and for those patients who cannot (or do not) receive re-salvage treatment of TACE, SABR, or RFA.

Current status

Study enrolment has been started since Dec. 2016. Participant recruitment is expected to be completed in Dec. 2020.

Limitations of the study

The major limitation of the present study is small sample size. The relatively small sample size may increase the likelihood of a Type II error that skews the results.

Acknowledgements

We gratefully acknowledge the contribution of all members involved in implementing and evaluating the TASABR trial, including staffs of Buddhist Dalin Tzu Chi Hospital and Tzu Chi Medication Foundation. We specifically thank the contribution of Hsuan Ju Yang.

Funding

This study is financially supported by: (1), Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation; and (2), Cross-institute Research Committee, Buddhist Tzu Chi Medical Foundation. Note that both above two trial sponsors and funders play no role in study design, data collection, and protocol reporting.

Availability of data and materials

Not applicable.

Authors’ information

Not applicable.
The present study will be conducted after a formal approval of Institute Review Board (Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medication Foundation; approval number: A10502001). Important protocol modifications, e.g., changes to eligibility criteria or outcome analyses, will be re-submitted to IRB and implemented only after a re-approval of IRB. All participants will provide informed written consent before their entry into the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
insite
INHALT
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R et al: The global burden of Cancer 2013. JAMA Oncol, 2015, 1(4):505–527. Global Burden of Disease Cancer C, Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, Allen C, Hansen G, Woodbrook R et al: The global burden of Cancer 2013. JAMA Oncol, 2015, 1(4):505–527.
2.
3.
Zurück zum Zitat Chang IC, Huang SF, Chen PJ, Chen CL, Chen CL, Wu CC, Tsai CC, Lee PH, Chen MF, Lee CM, et al. The hepatitis viral status in patients with hepatocellular carcinoma: a study of 3843 patients from Taiwan liver Cancer network. Medicine. 2016;95(15):e3284.PubMedPubMedCentralCrossRef Chang IC, Huang SF, Chen PJ, Chen CL, Chen CL, Wu CC, Tsai CC, Lee PH, Chen MF, Lee CM, et al. The hepatitis viral status in patients with hepatocellular carcinoma: a study of 3843 patients from Taiwan liver Cancer network. Medicine. 2016;95(15):e3284.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ, Lai MS. Incidence and survival of adult cancer patients in Taiwan, 2002–2012. Journal of the Formosan Medical Association = Taiwan yi zhi. 2016. Chiang CJ, Lo WC, Yang YW, You SL, Chen CJ, Lai MS. Incidence and survival of adult cancer patients in Taiwan, 2002–2012. Journal of the Formosan Medical Association = Taiwan yi zhi. 2016.
5.
Zurück zum Zitat Kudo M, Trevisani F, Abou-Alfa GK, Rimassa L. Hepatocellular carcinoma: therapeutic guidelines and medical treatment. Liver Cancer. 2016;6(1):16–26.PubMedPubMedCentralCrossRef Kudo M, Trevisani F, Abou-Alfa GK, Rimassa L. Hepatocellular carcinoma: therapeutic guidelines and medical treatment. Liver Cancer. 2016;6(1):16–26.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat McMasters KM, Vauthey JN. Hepatocellular carcinoma: targeted therapy and multidisciplinary care. New York: Springer; 2011.CrossRef McMasters KM, Vauthey JN. Hepatocellular carcinoma: targeted therapy and multidisciplinary care. New York: Springer; 2011.CrossRef
8.
Zurück zum Zitat Cha C, Fong Y, Jarnagin WR, Blumgart LH, DeMatteo RP. Predictors and patterns of recurrence after resection of hepatocellular carcinoma. J Am Coll Surg. 2003;197(5):753–8.PubMedCrossRef Cha C, Fong Y, Jarnagin WR, Blumgart LH, DeMatteo RP. Predictors and patterns of recurrence after resection of hepatocellular carcinoma. J Am Coll Surg. 2003;197(5):753–8.PubMedCrossRef
9.
Zurück zum Zitat Oliveri RS, Wetterslev J, Gluud C. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. The Cochrane database of systematic reviews. 2011;3:CD004787. Oliveri RS, Wetterslev J, Gluud C. Transarterial (chemo)embolisation for unresectable hepatocellular carcinoma. The Cochrane database of systematic reviews. 2011;3:CD004787.
10.
Zurück zum Zitat Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.PubMedCrossRef Llovet JM, Bruix J. Systematic review of randomized trials for unresectable hepatocellular carcinoma: chemoembolization improves survival. Hepatology. 2003;37(2):429–42.PubMedCrossRef
11.
Zurück zum Zitat Grieco A, Pompili M, Caminiti G, Miele L, Covino M, Alfei B, Rapaccini GL, Gasbarrini G. Prognostic factors for survival in patients with early-intermediate hepatocellular carcinoma undergoing non-surgical therapy: comparison of Okuda, CLIP, and BCLC staging systems in a single Italian Centre. Gut. 2005;54(3):411–8.PubMedPubMedCentralCrossRef Grieco A, Pompili M, Caminiti G, Miele L, Covino M, Alfei B, Rapaccini GL, Gasbarrini G. Prognostic factors for survival in patients with early-intermediate hepatocellular carcinoma undergoing non-surgical therapy: comparison of Okuda, CLIP, and BCLC staging systems in a single Italian Centre. Gut. 2005;54(3):411–8.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Matsuo Y, Yoshida K, Nishimura H, Ejima Y, Miyawaki D, Uezono H, Ishihara T, Mayahara H, Fukumoto T, Ku Y, et al. Efficacy of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein tumor thrombosis/inferior vena cava tumor thrombosis: evaluation by comparison with conventional three-dimensional conformal radiotherapy. J Radiat Res. 2016;57(5):512–23.PubMedPubMedCentralCrossRef Matsuo Y, Yoshida K, Nishimura H, Ejima Y, Miyawaki D, Uezono H, Ishihara T, Mayahara H, Fukumoto T, Ku Y, et al. Efficacy of stereotactic body radiotherapy for hepatocellular carcinoma with portal vein tumor thrombosis/inferior vena cava tumor thrombosis: evaluation by comparison with conventional three-dimensional conformal radiotherapy. J Radiat Res. 2016;57(5):512–23.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Yoon K, Kwak J, Cho B, Park JH, Yoon SM, Lee SW, Kim JH. Gated Volumetric-Modulated Arc Therapy vs. Tumor-Tracking CyberKnife Radiotherapy as Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Dosimetric Comparison Study Focused on the Impact of Respiratory Motion Managements. PLoS One. 2016;11(11) e0166927. Yoon K, Kwak J, Cho B, Park JH, Yoon SM, Lee SW, Kim JH. Gated Volumetric-Modulated Arc Therapy vs. Tumor-Tracking CyberKnife Radiotherapy as Stereotactic Body Radiotherapy for Hepatocellular Carcinoma: A Dosimetric Comparison Study Focused on the Impact of Respiratory Motion Managements. PLoS One. 2016;11(11) e0166927.
14.
Zurück zum Zitat Su TS, Liang P, Liang J, Lu HZ, Jiang HY, Cheng T, Huang Y, Tang Y, Deng X. Long-term survival analysis of stereotactic ablative radiotherapy versus liver resection for small hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2017;98(3):639–46.PubMedCrossRef Su TS, Liang P, Liang J, Lu HZ, Jiang HY, Cheng T, Huang Y, Tang Y, Deng X. Long-term survival analysis of stereotactic ablative radiotherapy versus liver resection for small hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2017;98(3):639–46.PubMedCrossRef
15.
Zurück zum Zitat Seo YS, Kim MS, Yoo HJ, Jang WI, Paik EK, Han CJ, Lee BH. Radiofrequency ablation versus stereotactic body radiotherapy for small hepatocellular carcinoma: a Markov model-based analysis. Cancer Med. 2016;5(11):3094–101.PubMedPubMedCentralCrossRef Seo YS, Kim MS, Yoo HJ, Jang WI, Paik EK, Han CJ, Lee BH. Radiofrequency ablation versus stereotactic body radiotherapy for small hepatocellular carcinoma: a Markov model-based analysis. Cancer Med. 2016;5(11):3094–101.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Kimura T, Aikata H, Takahashi S, Takahashi I, Nishibuchi I, Doi Y, Kenjo M, Murakami Y, Honda Y, Kakizawa H, et al. Stereotactic body radiotherapy for patients with small hepatocellular carcinoma ineligible for resection or ablation therapies. Hepatol Res. 2015;45(4):378–86.PubMedCrossRef Kimura T, Aikata H, Takahashi S, Takahashi I, Nishibuchi I, Doi Y, Kenjo M, Murakami Y, Honda Y, Kakizawa H, et al. Stereotactic body radiotherapy for patients with small hepatocellular carcinoma ineligible for resection or ablation therapies. Hepatol Res. 2015;45(4):378–86.PubMedCrossRef
17.
Zurück zum Zitat Jung J, Yoon SM, Han S, Shim JH, Kim KM, Lim YS, Lee HC, Kim SY, Park JH, Kim JH. Alpha-fetoprotein normalization as a prognostic surrogate in small hepatocellular carcinoma after stereotactic body radiotherapy: a propensity score matching analysis. BMC Cancer. 2015;15:987.PubMedPubMedCentralCrossRef Jung J, Yoon SM, Han S, Shim JH, Kim KM, Lim YS, Lee HC, Kim SY, Park JH, Kim JH. Alpha-fetoprotein normalization as a prognostic surrogate in small hepatocellular carcinoma after stereotactic body radiotherapy: a propensity score matching analysis. BMC Cancer. 2015;15:987.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Takeda A, Sanuki N, Eriguchi T, Kobayashi T, Iwabutchi S, Matsunaga K, Mizuno T, Yashiro K, Nisimura S, Kunieda E. Stereotactic ablative body radiotherapy for previously untreated solitary hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29(2):372–9.PubMedCrossRef Takeda A, Sanuki N, Eriguchi T, Kobayashi T, Iwabutchi S, Matsunaga K, Mizuno T, Yashiro K, Nisimura S, Kunieda E. Stereotactic ablative body radiotherapy for previously untreated solitary hepatocellular carcinoma. J Gastroenterol Hepatol. 2014;29(2):372–9.PubMedCrossRef
19.
Zurück zum Zitat Sanuki N, Takeda A, Oku Y, Mizuno T, Aoki Y, Eriguchi T, Iwabuchi S, Kunieda E. Stereotactic body radiotherapy for small hepatocellular carcinoma: a retrospective outcome analysis in 185 patients. Acta Oncol. 2014;53(3):399–404.PubMedCrossRef Sanuki N, Takeda A, Oku Y, Mizuno T, Aoki Y, Eriguchi T, Iwabuchi S, Kunieda E. Stereotactic body radiotherapy for small hepatocellular carcinoma: a retrospective outcome analysis in 185 patients. Acta Oncol. 2014;53(3):399–404.PubMedCrossRef
20.
Zurück zum Zitat Takeda A, Sanuki N, Tsurugai Y, Iwabuchi S, Matsunaga K, Ebinuma H, Imajo K, Aoki Y, Saito H, Kunieda E. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer. 2016;122(13):2041–9.PubMedCrossRef Takeda A, Sanuki N, Tsurugai Y, Iwabuchi S, Matsunaga K, Ebinuma H, Imajo K, Aoki Y, Saito H, Kunieda E. Phase 2 study of stereotactic body radiotherapy and optional transarterial chemoembolization for solitary hepatocellular carcinoma not amenable to resection and radiofrequency ablation. Cancer. 2016;122(13):2041–9.PubMedCrossRef
21.
Zurück zum Zitat Kim JW, Seong J, Lee IJ, Woo JY, Han KH. Phase I dose escalation study of helical intensity-modulated radiotherapy-based stereotactic body radiotherapy for hepatocellular carcinoma. Oncotarget. 2016;7(26):40756–66.PubMedPubMedCentral Kim JW, Seong J, Lee IJ, Woo JY, Han KH. Phase I dose escalation study of helical intensity-modulated radiotherapy-based stereotactic body radiotherapy for hepatocellular carcinoma. Oncotarget. 2016;7(26):40756–66.PubMedPubMedCentral
22.
Zurück zum Zitat Guarneri A, Franco P, Trino E, Campion D, Faletti R, Mirabella S, Gaia S, Ragona R, Diotallevi M, Saracco G, et al. Stereotactic ablative radiotherapy in the treatment of hepatocellular carcinoma >3 cm. Med Oncol. 2016;33(10):104.PubMedCrossRef Guarneri A, Franco P, Trino E, Campion D, Faletti R, Mirabella S, Gaia S, Ragona R, Diotallevi M, Saracco G, et al. Stereotactic ablative radiotherapy in the treatment of hepatocellular carcinoma >3 cm. Med Oncol. 2016;33(10):104.PubMedCrossRef
23.
Zurück zum Zitat Lo CH, Yang JF, Liu MY, Jen YM, Lin CS, Chao HL, Huang WY. Survival and prognostic factors for patients with advanced hepatocellular carcinoma after stereotactic ablative radiotherapy. PLoS One. 2017;12(5):e0177793.PubMedPubMedCentralCrossRef Lo CH, Yang JF, Liu MY, Jen YM, Lin CS, Chao HL, Huang WY. Survival and prognostic factors for patients with advanced hepatocellular carcinoma after stereotactic ablative radiotherapy. PLoS One. 2017;12(5):e0177793.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, Schipper MJ, Feng M. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol. 2016;34(5):452–9.PubMedCrossRef Wahl DR, Stenmark MH, Tao Y, Pollom EL, Caoili EM, Lawrence TS, Schipper MJ, Feng M. Outcomes after stereotactic body radiotherapy or radiofrequency ablation for hepatocellular carcinoma. J Clin Oncol. 2016;34(5):452–9.PubMedCrossRef
25.
Zurück zum Zitat Palma DA, Haasbeek CJ, Rodrigues GB, Dahele M, Lock M, Yaremko B, Olson R, Liu M, Panarotto J, Griffioen GH, et al. Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic tumors (SABR-COMET): study protocol for a randomized phase II trial. BMC Cancer. 2012;12:305.PubMedPubMedCentralCrossRef Palma DA, Haasbeek CJ, Rodrigues GB, Dahele M, Lock M, Yaremko B, Olson R, Liu M, Panarotto J, Griffioen GH, et al. Stereotactic ablative radiotherapy for comprehensive treatment of oligometastatic tumors (SABR-COMET): study protocol for a randomized phase II trial. BMC Cancer. 2012;12:305.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Jacob R, Turley F, Redden DT, Saddekni S, Aal AK, Keene K, Yang E, Zarzour J, Bolus D, Smith JK, et al. Adjuvant stereotactic body radiotherapy following transarterial chemoembolization in patients with non-resectable hepatocellular carcinoma tumours of >/= 3 cm. HPB (Oxford). 2015;17(2):140–9.CrossRef Jacob R, Turley F, Redden DT, Saddekni S, Aal AK, Keene K, Yang E, Zarzour J, Bolus D, Smith JK, et al. Adjuvant stereotactic body radiotherapy following transarterial chemoembolization in patients with non-resectable hepatocellular carcinoma tumours of >/= 3 cm. HPB (Oxford). 2015;17(2):140–9.CrossRef
27.
Zurück zum Zitat Paik EK, Kim MS, Jang WI, Seo YS, Cho CK, Yoo HJ, Han CJ, Park SC, Kim SB, Kim YH. Benefits of stereotactic ablative radiotherapy combined with incomplete transcatheter arterial chemoembolization in hepatocellular carcinoma. Radiat Oncol. 2016;11:22.PubMedPubMedCentralCrossRef Paik EK, Kim MS, Jang WI, Seo YS, Cho CK, Yoo HJ, Han CJ, Park SC, Kim SB, Kim YH. Benefits of stereotactic ablative radiotherapy combined with incomplete transcatheter arterial chemoembolization in hepatocellular carcinoma. Radiat Oncol. 2016;11:22.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Lo CH, Huang WY, Lee MS, Lin KT, Lin TP, Chang PY, Fan CY, Jen YM. Stereotactic ablative radiotherapy for unresectable hepatocellular carcinoma patients who failed or were unsuitable for transarterial chemoembolization. Eur J Gastroenterol Hepatol. 2014;26(3):345–52.PubMedCrossRef Lo CH, Huang WY, Lee MS, Lin KT, Lin TP, Chang PY, Fan CY, Jen YM. Stereotactic ablative radiotherapy for unresectable hepatocellular carcinoma patients who failed or were unsuitable for transarterial chemoembolization. Eur J Gastroenterol Hepatol. 2014;26(3):345–52.PubMedCrossRef
29.
Zurück zum Zitat Yang JF, Lo CH, Huang WY. Is stereotactic body radiotherapy better than radiofrequency ablation for the treatment of hepatocellular carcinoma? J Clin Oncol. 2016;34(23):2797.PubMedPubMedCentralCrossRef Yang JF, Lo CH, Huang WY. Is stereotactic body radiotherapy better than radiofrequency ablation for the treatment of hepatocellular carcinoma? J Clin Oncol. 2016;34(23):2797.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat De Bari B, Ozsahin M, Bize P, Boussaha T, Deplanque G, Wagner D, Bourhis J, Denys A. Can stereotactic body radiotherapy really be considered the preferred treatment in large hepatocellular carcinoma? J Clin Oncol. 2016;34(23):2798–9.PubMedPubMedCentralCrossRef De Bari B, Ozsahin M, Bize P, Boussaha T, Deplanque G, Wagner D, Bourhis J, Denys A. Can stereotactic body radiotherapy really be considered the preferred treatment in large hepatocellular carcinoma? J Clin Oncol. 2016;34(23):2798–9.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK, Chung KW. Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer. 2010;10:475.PubMedPubMedCentralCrossRef Kwon JH, Bae SH, Kim JY, Choi BO, Jang HS, Jang JW, Choi JY, Yoon SK, Chung KW. Long-term effect of stereotactic body radiation therapy for primary hepatocellular carcinoma ineligible for local ablation therapy or surgical resection. Stereotactic radiotherapy for liver cancer. BMC Cancer. 2010;10:475.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Meng M, Wang H, Zeng X, Zhao L, Yuan Z, Wang P, Hao X. Stereotactic body radiation therapy: a novel treatment modality for inoperable hepatocellular carcinoma. Drug Discov Ther. 2015;9(5):372–9.PubMedCrossRef Meng M, Wang H, Zeng X, Zhao L, Yuan Z, Wang P, Hao X. Stereotactic body radiation therapy: a novel treatment modality for inoperable hepatocellular carcinoma. Drug Discov Ther. 2015;9(5):372–9.PubMedCrossRef
33.
Zurück zum Zitat Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, Dinniwell RE, Kassam Z, Ringash J, Cummings B, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631–9.PubMedCrossRef Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, Dinniwell RE, Kassam Z, Ringash J, Cummings B, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631–9.PubMedCrossRef
34.
Zurück zum Zitat Huertas A, Baumann AS, Saunier-Kubs F, Salleron J, Oldrini G, Croise-Laurent V, Barraud H, Ayav A, Bronowicki JP, Peiffert D. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol. 2015;115(2):211–6.PubMedCrossRef Huertas A, Baumann AS, Saunier-Kubs F, Salleron J, Oldrini G, Croise-Laurent V, Barraud H, Ayav A, Bronowicki JP, Peiffert D. Stereotactic body radiation therapy as an ablative treatment for inoperable hepatocellular carcinoma. Radiother Oncol. 2015;115(2):211–6.PubMedCrossRef
35.
Zurück zum Zitat Jang WI, Kim MS, Bae SH, Cho CK, Yoo HJ, Seo YS, Kang JK, Kim SY, Lee DH, Han CJ, et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol. 2013;8:250.PubMedPubMedCentralCrossRef Jang WI, Kim MS, Bae SH, Cho CK, Yoo HJ, Seo YS, Kang JK, Kim SY, Lee DH, Han CJ, et al. High-dose stereotactic body radiotherapy correlates increased local control and overall survival in patients with inoperable hepatocellular carcinoma. Radiat Oncol. 2013;8:250.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Teraoka Y, Kimura T, Aikata H, Daijo K, Osawa M, Honda F, Nakamura Y, Morio K, Morio R, Hatooka M, et al. Clinical outcomes of stereotactic body radiotherapy for elderly patients with hepatocellular carcinoma. Hepatol Res. 2017. Teraoka Y, Kimura T, Aikata H, Daijo K, Osawa M, Honda F, Nakamura Y, Morio K, Morio R, Hatooka M, et al. Clinical outcomes of stereotactic body radiotherapy for elderly patients with hepatocellular carcinoma. Hepatol Res. 2017.
37.
Zurück zum Zitat Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, Tibballs J, Meyer T, Patch DW, Burroughs AK. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30(1):6–25.PubMedCrossRef Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, Tibballs J, Meyer T, Patch DW, Burroughs AK. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. 2007;30(1):6–25.PubMedCrossRef
38.
Zurück zum Zitat Veltri A, Moretto P, Doriguzzi A, Pagano E, Carrara G, Gandini G. Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol. 2006;16(3):661–9.PubMedCrossRef Veltri A, Moretto P, Doriguzzi A, Pagano E, Carrara G, Gandini G. Radiofrequency thermal ablation (RFA) after transarterial chemoembolization (TACE) as a combined therapy for unresectable non-early hepatocellular carcinoma (HCC). Eur Radiol. 2006;16(3):661–9.PubMedCrossRef
39.
Zurück zum Zitat Guo W, He X, Li Z, Li Y. Combination of Transarterial chemoembolization (TACE) and radiofrequency ablation (RFA) vs. surgical resection (SR) on survival outcome of early hepatocellular carcinoma: a meta-analysis. Hepatogastroenterology. 2015;62(139):710–4.PubMed Guo W, He X, Li Z, Li Y. Combination of Transarterial chemoembolization (TACE) and radiofrequency ablation (RFA) vs. surgical resection (SR) on survival outcome of early hepatocellular carcinoma: a meta-analysis. Hepatogastroenterology. 2015;62(139):710–4.PubMed
40.
Zurück zum Zitat Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, Yoon SK, Chai GY, Kang KM. Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer. 2008;8:351.PubMedPubMedCentralCrossRef Choi BO, Choi IB, Jang HS, Kang YN, Jang JS, Bae SH, Yoon SK, Chai GY, Kang KM. Stereotactic body radiation therapy with or without transarterial chemoembolization for patients with primary hepatocellular carcinoma: preliminary analysis. BMC Cancer. 2008;8:351.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Honda Y, Kimura T, Aikata H, Nakahara T, Naeshiro N, Tanaka M, Miyaki D, Nagaoki Y, Kawaoka T, Takaki S, et al. Pilot study of stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. Hepatogastroenterology. 2014;61(129):31–6.PubMed Honda Y, Kimura T, Aikata H, Nakahara T, Naeshiro N, Tanaka M, Miyaki D, Nagaoki Y, Kawaoka T, Takaki S, et al. Pilot study of stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. Hepatogastroenterology. 2014;61(129):31–6.PubMed
42.
Zurück zum Zitat Honda Y, Kimura T, Aikata H, Kobayashi T, Fukuhara T, Masaki K, Nakahara T, Naeshiro N, Ono A, Miyaki D, et al. Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28(3):530–6.PubMedCrossRef Honda Y, Kimura T, Aikata H, Kobayashi T, Fukuhara T, Masaki K, Nakahara T, Naeshiro N, Ono A, Miyaki D, et al. Stereotactic body radiation therapy combined with transcatheter arterial chemoembolization for small hepatocellular carcinoma. J Gastroenterol Hepatol. 2013;28(3):530–6.PubMedCrossRef
43.
Zurück zum Zitat Janoray G, Mornex F. follow-up after stereotactic body radiation therapy for liver tumours: a review of the literature and recommendations. Cancer Radiother. 2015;19(6–7):573–81.PubMedCrossRef Janoray G, Mornex F. follow-up after stereotactic body radiation therapy for liver tumours: a review of the literature and recommendations. Cancer Radiother. 2015;19(6–7):573–81.PubMedCrossRef
44.
Zurück zum Zitat Kang JK, Kim MS, Cho CK, Yang KM, Yoo HJ, Kim JH, Bae SH, Jung da H, Kim KB, Lee DH, et al. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer. 2012;118(21):5424–31.PubMedCrossRef Kang JK, Kim MS, Cho CK, Yang KM, Yoo HJ, Kim JH, Bae SH, Jung da H, Kim KB, Lee DH, et al. Stereotactic body radiation therapy for inoperable hepatocellular carcinoma as a local salvage treatment after incomplete transarterial chemoembolization. Cancer. 2012;118(21):5424–31.PubMedCrossRef
45.
Zurück zum Zitat Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH, Han CJ, Park SC, Lee BH, Kim YH, et al. Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol. 2010;102(3):209–14.PubMedCrossRef Seo YS, Kim MS, Yoo SY, Cho CK, Choi CW, Kim JH, Han CJ, Park SC, Lee BH, Kim YH, et al. Preliminary result of stereotactic body radiotherapy as a local salvage treatment for inoperable hepatocellular carcinoma. J Surg Oncol. 2010;102(3):209–14.PubMedCrossRef
46.
Zurück zum Zitat Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: new guidance for content of clinical trial protocols. Lancet. 2013;381(9861):91–2.PubMedCrossRef Chan AW, Tetzlaff JM, Altman DG, Dickersin K, Moher D. SPIRIT 2013: new guidance for content of clinical trial protocols. Lancet. 2013;381(9861):91–2.PubMedCrossRef
47.
Zurück zum Zitat Meyer J. IMRT, IGRT, SBRT : advances in the treatment planning and delivery of radiotherapy. Basel. New York: Karger; 2007.CrossRef Meyer J. IMRT, IGRT, SBRT : advances in the treatment planning and delivery of radiotherapy. Basel. New York: Karger; 2007.CrossRef
48.
Zurück zum Zitat Kirichenko A, Gayou O, Parda D, Kudithipudi V, Tom K, Khan A, Abrams P, Szramowski M, Oliva J, Monga D, et al. Stereotactic body radiotherapy (SBRT) with or without surgery for primary and metastatic liver tumors. HPB (Oxford). 2016;18(1):88–97.CrossRef Kirichenko A, Gayou O, Parda D, Kudithipudi V, Tom K, Khan A, Abrams P, Szramowski M, Oliva J, Monga D, et al. Stereotactic body radiotherapy (SBRT) with or without surgery for primary and metastatic liver tumors. HPB (Oxford). 2016;18(1):88–97.CrossRef
49.
Zurück zum Zitat Habermehl D, Naumann P, Bendl R, Oelfke U, Nill S, Debus J, Combs SE. Evaluation of inter- and intrafractional motion of liver tumors using interstitial markers and implantable electromagnetic radiotransmitters in the context of image-guided radiotherapy (IGRT) - the ESMERALDA trial. Radiat Oncol. 2015;10:143.PubMedPubMedCentralCrossRef Habermehl D, Naumann P, Bendl R, Oelfke U, Nill S, Debus J, Combs SE. Evaluation of inter- and intrafractional motion of liver tumors using interstitial markers and implantable electromagnetic radiotransmitters in the context of image-guided radiotherapy (IGRT) - the ESMERALDA trial. Radiat Oncol. 2015;10:143.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Toesca DA, Osmundson EC, Eyben RV, Shaffer JL, Lu P, Koong AC, Chang DT. Central liver toxicity after SBRT: An expanded analysis and predictive nomogram. Radiother Oncol. 2016. Toesca DA, Osmundson EC, Eyben RV, Shaffer JL, Lu P, Koong AC, Chang DT. Central liver toxicity after SBRT: An expanded analysis and predictive nomogram. Radiother Oncol. 2016.
52.
Zurück zum Zitat Seyal AR, Gonzalez-Guindalini FD, Arslanoglu A, Harmath CB, Lewandowski RJ, Salem R, Yaghmai V. Reproducibility of mRECIST in assessing response to transarterial radioembolization therapy in hepatocellular carcinoma. Hepatology. 2015;62(4):1111–21.PubMedCrossRef Seyal AR, Gonzalez-Guindalini FD, Arslanoglu A, Harmath CB, Lewandowski RJ, Salem R, Yaghmai V. Reproducibility of mRECIST in assessing response to transarterial radioembolization therapy in hepatocellular carcinoma. Hepatology. 2015;62(4):1111–21.PubMedCrossRef
53.
Zurück zum Zitat Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.CrossRefPubMed
54.
Zurück zum Zitat Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.PubMedCrossRef Lencioni R, Llovet JM. Modified RECIST (mRECIST) assessment for hepatocellular carcinoma. Semin Liver Dis. 2010;30(1):52–60.PubMedCrossRef
56.
Zurück zum Zitat Zhang X, Wang K, Wang M, Yang G, Ye X, Wu M, Cheng S. Transarterial chemoembolization (TACE) combined with sorafenib versus TACE for hepatocellular carcinoma with portal vein tumor thrombus: a systematic review and meta-analysis. Oncotarget. 2017;8(17):29416–27.PubMedPubMedCentral Zhang X, Wang K, Wang M, Yang G, Ye X, Wu M, Cheng S. Transarterial chemoembolization (TACE) combined with sorafenib versus TACE for hepatocellular carcinoma with portal vein tumor thrombus: a systematic review and meta-analysis. Oncotarget. 2017;8(17):29416–27.PubMedPubMedCentral
57.
Zurück zum Zitat Yoon SM, Lim YS, Park MJ, Kim SY, Cho B, Shim JH, Kim KM, Lee HC, Chung YH, Lee YS, et al. Stereotactic body radiation therapy as an alternative treatment for small hepatocellular carcinoma. PLoS One. 2013;8(11):e79854.PubMedPubMedCentralCrossRef Yoon SM, Lim YS, Park MJ, Kim SY, Cho B, Shim JH, Kim KM, Lee HC, Chung YH, Lee YS, et al. Stereotactic body radiation therapy as an alternative treatment for small hepatocellular carcinoma. PLoS One. 2013;8(11):e79854.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Shiozawa K, Watanabe M, Ikehara T, Matsukiyo Y, Kogame M, Kishimoto Y, Okubo Y, Makino H, Tsukamoto N, Igarashi Y, et al. Comparison of percutaneous radiofrequency ablation and CyberKnife((R)) for initial solitary hepatocellular carcinoma: a pilot study. World J Gastroenterol. 2015;21(48):13490–9.PubMedPubMedCentralCrossRef Shiozawa K, Watanabe M, Ikehara T, Matsukiyo Y, Kogame M, Kishimoto Y, Okubo Y, Makino H, Tsukamoto N, Igarashi Y, et al. Comparison of percutaneous radiofrequency ablation and CyberKnife((R)) for initial solitary hepatocellular carcinoma: a pilot study. World J Gastroenterol. 2015;21(48):13490–9.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Barry A, Knox JJ, Wei AC, Dawson LA. Can stereotactic body radiotherapy effectively treat hepatocellular carcinoma? J Clin Oncol. 2016;34(5):404–8.PubMedCrossRef Barry A, Knox JJ, Wei AC, Dawson LA. Can stereotactic body radiotherapy effectively treat hepatocellular carcinoma? J Clin Oncol. 2016;34(5):404–8.PubMedCrossRef
60.
Zurück zum Zitat Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma: from palliation to cure. Cancer. 2006;106(8):1653–63.PubMedCrossRef Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma: from palliation to cure. Cancer. 2006;106(8):1653–63.PubMedCrossRef
61.
Zurück zum Zitat Yoon SM, Ryoo BY, Lee SJ, Kim JH, Shin JH, An JH, Lee HC, Lim YS. Efficacy and safety of Transarterial chemoembolization plus external beam radiotherapy vs Sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: a randomized clinical trial. JAMA Oncol. 2018. Yoon SM, Ryoo BY, Lee SJ, Kim JH, Shin JH, An JH, Lee HC, Lim YS. Efficacy and safety of Transarterial chemoembolization plus external beam radiotherapy vs Sorafenib in hepatocellular carcinoma with macroscopic vascular invasion: a randomized clinical trial. JAMA Oncol. 2018.
Metadaten
Titel
Comparing stereotactic ablative radiotherapy (SABR) versus re-trans-catheter arterial chemoembolization (re-TACE) for hepatocellular carcinoma patients who had incomplete response after initial TACE (TASABR): a randomized controlled trial
verfasst von
Liang-Cheng Chen
Wen-Yen Chiou
Hon-Yi Lin
Moon-Sing Lee
Yuan-Chen Lo
Li-Wen Huang
Chun-Ming Chang
Tsung-Hsing Hung
Chih-Wen Lin
Kuo-Chih Tseng
Dai-Wei Liu
Feng-Chun Hsu
Shih-Kai Hung
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2019
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-019-5461-3

Weitere Artikel der Ausgabe 1/2019

BMC Cancer 1/2019 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.