Skip to main content
Erschienen in: Lasers in Medical Science 2/2018

09.12.2017 | Original Article

Comparison between whole-body and head and neck neurovascular coils for 3-T magnetic resonance proton resonance frequency shift thermography guidance in the head and neck region

verfasst von: Daniel Thomas Ginat, Gregory J. Anthony, Gregory Christoforidis, Aytekin Oto, Leonard Dalag, Steffen Sammet

Erschienen in: Lasers in Medical Science | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

The purpose of this study is to compare the image quality of magnetic resonance (MR) treatment planning images and proton resonance frequency (PRF) shift thermography images and inform coil selection for MR-guided laser ablation of tumors in the head and neck region. Laser ablation was performed on an agar phantom and monitored via MR PRF shift thermography on a 3-T scanner, following acquisition of T1-weighted (T1W) planning images. PRF shift thermography images and T2-weighted (T2W) planning images were also performed in the neck region of five normal human volunteers. Signal-to-noise ratios (SNR) and temperature uncertainty were calculated and compared between scans acquired with the quadrature mode body integrated coil and a head and neck neurovascular coil. T1W planning images of the agar phantom produced SNRs of 4.0 and 12.2 for the quadrature mode body integrated coil and head and neck neurovascular coil, respectively. The SNR of the phantom MR thermography magnitude images obtained using the quadrature mode body integrated coil was 14.4 versus 59.6 using the head and neck coil. The average temperature uncertainty for MR thermography performed on the phantom with the quadrature mode body integrated coil was 1.1 versus 0.3 °C with the head and neck coil. T2W planning images of the neck in five human volunteers produced SNRs of 28.3 and 91.0 for the quadrature mode body integrated coil and head and neck coil, respectively. MR thermography magnitude images of the neck in the volunteers obtained using the quadrature mode body integrated coil had a signal-to-noise ratio of 8.3, while the SNR using the head and neck coil was 16.1. The average temperature uncertainty for MR thermography performed on the volunteers with the body coil was 2.5 versus 1.6 °C with the head and neck neurovascular coil. The quadrature mode body integrated coil provides inferior image quality for both basic treatment planning sequences and MR PRF shift thermography compared with a neurovascular coil, but may nevertheless be adequate for clinical purposes.
Literatur
1.
Zurück zum Zitat Oto A et al (2013) MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 267(3):932–940CrossRefPubMed Oto A et al (2013) MR imaging-guided focal laser ablation for prostate cancer: phase I trial. Radiology 267(3):932–940CrossRefPubMed
2.
Zurück zum Zitat Sercarz JA et al (2010) Outcomes of laser thermal therapy for recurrent head and neck cancer. Otolaryngol Head Neck Surg 142(3):344–350CrossRefPubMed Sercarz JA et al (2010) Outcomes of laser thermal therapy for recurrent head and neck cancer. Otolaryngol Head Neck Surg 142(3):344–350CrossRefPubMed
3.
Zurück zum Zitat Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38(1):79–100CrossRefPubMed Stafford RJ, Fuentes D, Elliott AA, Weinberg JS, Ahrar K (2010) Laser-induced thermal therapy for tumor ablation. Crit Rev Biomed Eng 38(1):79–100CrossRefPubMed
4.
Zurück zum Zitat Joo J, Sercarz JA, Paolini AA, Castro DJ, Paiva MB (2009) Laser-induced thermal therapy and cisplatin for recurrent head and neck cancer: a case characterized by an unusually long disease-free survival. Ear Nose Throat J 88(11):E13–E16PubMed Joo J, Sercarz JA, Paolini AA, Castro DJ, Paiva MB (2009) Laser-induced thermal therapy and cisplatin for recurrent head and neck cancer: a case characterized by an unusually long disease-free survival. Ear Nose Throat J 88(11):E13–E16PubMed
5.
Zurück zum Zitat Banerjee C, Snelling B, Berger MH, Shah A, Ivan ME, Komotar RJ (2015) The role of magnetic resonance-guided laser ablation in neurooncology. Br J Neurosurg 29(2):192–196CrossRefPubMed Banerjee C, Snelling B, Berger MH, Shah A, Ivan ME, Komotar RJ (2015) The role of magnetic resonance-guided laser ablation in neurooncology. Br J Neurosurg 29(2):192–196CrossRefPubMed
6.
Zurück zum Zitat Carpentier A et al (2011) Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med 43(10):943–950CrossRefPubMed Carpentier A et al (2011) Laser thermal therapy: real-time MRI-guided and computer-controlled procedures for metastatic brain tumors. Lasers Surg Med 43(10):943–950CrossRefPubMed
7.
Zurück zum Zitat Carpentier A et al (2008) Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63(1 Suppl 1):ONS21–ONS28 discussion ONS28-9PubMed Carpentier A et al (2008) Real-time magnetic resonance-guided laser thermal therapy for focal metastatic brain tumors. Neurosurgery 63(1 Suppl 1):ONS21–ONS28 discussion ONS28-9PubMed
8.
Zurück zum Zitat Eckardt A, Barth EL, Kokemueller H, Wegener G (2004) Recurrent carcinoma of the head and neck: treatment strategies and survival analysis in a 20-year period. Oral Oncol 40(4):427–432CrossRefPubMed Eckardt A, Barth EL, Kokemueller H, Wegener G (2004) Recurrent carcinoma of the head and neck: treatment strategies and survival analysis in a 20-year period. Oral Oncol 40(4):427–432CrossRefPubMed
9.
Zurück zum Zitat Pacella CM et al (2004) Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 232(1):272–280CrossRefPubMed Pacella CM et al (2004) Thyroid tissue: US-guided percutaneous laser thermal ablation. Radiology 232(1):272–280CrossRefPubMed
11.
Zurück zum Zitat Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L (2016) Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head Neck 38(5):677–682CrossRefPubMed Achille G, Zizzi S, Di Stasio E, Grammatica A, Grammatica L (2016) Ultrasound-guided percutaneous laser ablation in treating symptomatic solid benign thyroid nodules: our experience in 45 patients. Head Neck 38(5):677–682CrossRefPubMed
12.
Zurück zum Zitat Mack MG, Vogl TJ (2004) MR-guided ablation of head and neck tumors. Neuroimaging Clin N Am 14(4):853–859CrossRefPubMed Mack MG, Vogl TJ (2004) MR-guided ablation of head and neck tumors. Neuroimaging Clin N Am 14(4):853–859CrossRefPubMed
13.
Zurück zum Zitat Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533CrossRefPubMed Quesson B, de Zwart JA, Moonen CT (2000) Magnetic resonance temperature imaging for guidance of thermotherapy. J Magn Reson Imaging 12(4):525–533CrossRefPubMed
14.
Zurück zum Zitat Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385CrossRefPubMed Dietrich O, Raya JG, Reeder SB, Reiser MF, Schoenberg SO (2007) Measurement of signal-to-noise ratios in MR images: influence of multichannel coils, parallel imaging, and reconstruction filters. J Magn Reson Imaging 26(2):375–385CrossRefPubMed
15.
Zurück zum Zitat Lam MK, Huisman M, Nijenhuis RJ et al (2015) Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases. J Ther Ultrasound 3:5CrossRefPubMedPubMedCentral Lam MK, Huisman M, Nijenhuis RJ et al (2015) Quality of MR thermometry during palliative MR-guided high-intensity focused ultrasound (MR-HIFU) treatment of bone metastases. J Ther Ultrasound 3:5CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Wlodarczyk W et al (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624CrossRefPubMed Wlodarczyk W et al (1999) Comparison of four magnetic resonance methods for mapping small temperature changes. Phys Med Biol 44(2):607–624CrossRefPubMed
18.
Zurück zum Zitat Hayes CE, Axel L (1985) Noise performance of surface coils for magnetic resonance imaging at 1.5 T. Med Phys 12(5):604–607CrossRefPubMed Hayes CE, Axel L (1985) Noise performance of surface coils for magnetic resonance imaging at 1.5 T. Med Phys 12(5):604–607CrossRefPubMed
19.
Zurück zum Zitat Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962CrossRefPubMed Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42(5):952–962CrossRefPubMed
20.
Zurück zum Zitat Henry RG, Fischbein NJ, Dillon WP, Vigneron DB, Nelson SJ (2001) High-sensitivity coil array for head and neck imaging: technical note. AJNR Am J Neuroradiol 22(10):1881–1886PubMed Henry RG, Fischbein NJ, Dillon WP, Vigneron DB, Nelson SJ (2001) High-sensitivity coil array for head and neck imaging: technical note. AJNR Am J Neuroradiol 22(10):1881–1886PubMed
21.
Zurück zum Zitat Chung YC, Duerk JL, Shankaranarayanan A, Hampke M, Merkle EM, Lewin JS (1999) Temperature measurement using echo-shifted FLASH at low field for interventional MRI. J Magn Reson Imaging 10(1):108CrossRefPubMed Chung YC, Duerk JL, Shankaranarayanan A, Hampke M, Merkle EM, Lewin JS (1999) Temperature measurement using echo-shifted FLASH at low field for interventional MRI. J Magn Reson Imaging 10(1):108CrossRefPubMed
Metadaten
Titel
Comparison between whole-body and head and neck neurovascular coils for 3-T magnetic resonance proton resonance frequency shift thermography guidance in the head and neck region
verfasst von
Daniel Thomas Ginat
Gregory J. Anthony
Gregory Christoforidis
Aytekin Oto
Leonard Dalag
Steffen Sammet
Publikationsdatum
09.12.2017
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 2/2018
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-017-2397-1

Weitere Artikel der Ausgabe 2/2018

Lasers in Medical Science 2/2018 Zur Ausgabe