Skip to main content

01.12.2018 | Research | Ausgabe 1/2018 Open Access

Journal of Cardiovascular Magnetic Resonance 1/2018

Comparison of left ventricular strains and torsion derived from feature tracking and DENSE CMR

Journal of Cardiovascular Magnetic Resonance > Ausgabe 1/2018
Gregory J. Wehner, Linyuan Jing, Christopher M. Haggerty, Jonathan D. Suever, Jing Chen, Sean M. Hamlet, Jared A. Feindt, W. Dimitri Mojsejenko, Mark A. Fogel, Brandon K. Fornwalt
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12968-018-0485-4) contains supplementary material, which is available to authorized users.



Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac mechanics from cine CMR imaging, although validation against reference standard techniques has been limited. Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of feature tracking studies), can be quantified using contours from just two frames – end-diastole (ED) and end-systole (ES) – without requiring tracking software. We hypothesized that mechanics derived from feature tracking would not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE) imaging), and that peak strain from feature tracking would agree with that derived using simple processing of only ED and ES contours.


We retrospectively identified 88 participants with 186 pairs of DENSE and balanced steady state free precession (bSSFP) image slices acquired at the same locations across two institutions. Left ventricular (LV) strains, torsion, and dyssynchrony were quantified from both feature tracking (TomTec Imaging Systems, Circle Cardiovascular Imaging) and DENSE. Contour-based strains from bSSFP images were derived from ED and ES contours. Agreement was assessed with Bland-Altman analyses and coefficients of variation (CoV). All biases are reported in absolute percentage.


Comparison results were similar for both vendor packages (TomTec and Circle), and thus only TomTec Imaging System data are reported in the abstract for simplicity. Compared to DENSE, mid-ventricular circumferential strain (Ecc) from feature tracking had acceptable agreement (bias: − 0.4%, p = 0.36, CoV: 11%). However, feature tracking significantly overestimated the magnitude of Ecc at the base (bias: − 4.0% absolute, p < 0.001, CoV: 18%) and apex (bias: − 2.4% absolute, p = 0.01, CoV: 15%), underestimated torsion (bias: − 1.4 deg/cm, p < 0.001, CoV: 41%), and overestimated dyssynchrony (bias: 26 ms, p < 0.001, CoV: 76%). Longitudinal strain (Ell) had borderline-acceptable agreement (bias: − 0.2%, p = 0.77, CoV: 19%). Contour-based strains had excellent agreement with feature tracking (biases: − 1.3–0.2%, CoVs: 3–7%).


Compared to DENSE as a reference standard, feature tracking was inaccurate for quantification of apical and basal LV circumferential strains, longitudinal strain, torsion, and dyssynchrony. Feature tracking was only accurate for quantification of mid LV circumferential strain. Moreover, feature tracking is unnecessary for quantification of whole-slice strains (e.g. base, apex), since simplified processing of only ED and ES contours yields very similar results to those derived from feature tracking. Current feature tracking technology therefore has limited utility for quantification of cardiac mechanics.
Additional file 1: Literature Review. (DOCX 22 kb)
Additional file 2: Comparison between Endocardial Strain from Feature Tracking and DENSE. (DOCX 143 kb)
Additional file 3: Comparison of Strain Calculations. (DOCX 190 kb)
Additional file 4: Validation using a Second Feature Tracking Software. (DOCX 302 kb)
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Zur Ausgabe

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.