Skip to main content
Erschienen in: Documenta Ophthalmologica 3/2016

12.04.2016 | Original Research Article

Comparison of photopic negative response (PhNR) between focal macular and full-field electroretinograms in monkeys

verfasst von: Junzo Kinoshita, Shunsuke Takada, Noriaki Iwata, Yoshiro Tani

Erschienen in: Documenta Ophthalmologica | Ausgabe 3/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To compare the characteristics of the photopic negative response (PhNR) between the focal macular and full-field electroretinograms (ERGs) in monkeys.

Methods

Both focal macular and full-field photopic ERGs were recorded in four cynomolgus monkeys under identical stimulus and recording conditions except for which area of the retina was illuminated. The luminance and duration of red flash stimuli were varied in the presence of steady blue background illumination. These ERGs were recorded before and after intravitreal injection of tetrodotoxin (TTX).

Results

Several differences were identified between the focal macular and full-field ERGs, including: (1) The PhNR/b-wave amplitude ratio was higher in the focal macular than in the full-field ERGs, and (2) the stimulus threshold of the focal macular PhNR was lower than that of the full-field PhNR. For both macular and full-field stimulation conditions, (1) PhNR amplitude generally increased with increasing stimulus luminance; (2) PhNR implicit time was independent of the stimulus luminance; (3) PhNR amplitude and implicit time increased with increasing stimulus duration up to 50 ms, while a further increase in stimulus duration produced no change in amplitude or implicit time; and (4) PhNR amplitude was selectively attenuated by TTX.

Conclusions

Both the focal macular and full-field PhNRs reflect the functional properties of the inner retina including the retinal ganglion cells (RGCs). Relative to the b-wave, the contribution is weighted more heavily in the focal macular than in the full-field PhNR. Furthermore, these results support the idea that the focal macular PhNR can be an indicator of the function of the macular RGCs.
Literatur
1.
Zurück zum Zitat Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL III (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136PubMed Viswanathan S, Frishman LJ, Robson JG, Harwerth RS, Smith EL III (1999) The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma. Invest Ophthalmol Vis Sci 40(6):1124–1136PubMed
2.
Zurück zum Zitat Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522PubMed Viswanathan S, Frishman LJ, Robson JG, Walters JW (2001) The photopic negative response of the flash electroretinogram in primary open angle glaucoma. Invest Ophthalmol Vis Sci 42(2):514–522PubMed
4.
Zurück zum Zitat Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837. doi:10.1167/iovs.04-0458 CrossRefPubMed Rangaswamy NV, Frishman LJ, Dorotheo EU, Schiffman JS, Bahrani HM, Tang RA (2004) Photopic ERGs in patients with optic neuropathies: comparison with primate ERGs after pharmacologic blockade of inner retina. Invest Ophthalmol Vis Sci 45(10):3827–3837. doi:10.​1167/​iovs.​04-0458 CrossRefPubMed
5.
Zurück zum Zitat Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci 52(11):8527–8533. doi:10.1167/iovs.11-8034 CrossRefPubMed Moon CH, Hwang SC, Kim BT, Ohn YH, Park TK (2011) Visual prognostic value of optical coherence tomography and photopic negative response in chiasmal compression. Invest Ophthalmol Vis Sci 52(11):8527–8533. doi:10.​1167/​iovs.​11-8034 CrossRefPubMed
7.
Zurück zum Zitat Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(5):2201–2207. doi:10.1167/iovs.07-0887 CrossRefPubMed Machida S, Gotoh Y, Toba Y, Ohtaki A, Kaneko M, Kurosaka D (2008) Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes. Invest Ophthalmol Vis Sci 49(5):2201–2207. doi:10.​1167/​iovs.​07-0887 CrossRefPubMed
8.
Zurück zum Zitat Tamada K, Machida S, Yokoyama D, Kurosaka D (2009) Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol 53(6):608–614. doi:10.1007/s10384-009-0731-2 CrossRefPubMed Tamada K, Machida S, Yokoyama D, Kurosaka D (2009) Photopic negative response of full-field and focal macular electroretinograms in patients with optic nerve atrophy. Jpn J Ophthalmol 53(6):608–614. doi:10.​1007/​s10384-009-0731-2 CrossRefPubMed
9.
Zurück zum Zitat Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, Kurosaka D (2011) Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. doi:10.1155/2011/564131 PubMedPubMedCentral Machida S, Tamada K, Oikawa T, Gotoh Y, Nishimura T, Kaneko M, Kurosaka D (2011) Comparison of photopic negative response of full-field and focal electroretinograms in detecting glaucomatous eyes. J Ophthalmol. doi:10.​1155/​2011/​564131 PubMedPubMedCentral
10.
Zurück zum Zitat Kondo M, Kurimoto Y, Sakai T, Koyasu T, Miyata K, Ueno S, Terasaki H (2008) Recording focal macular photopic negative response (PhNR) from monkeys. Invest Ophthalmol Vis Sci 49(8):3544–3550. doi:10.1167/iovs.08-1798 CrossRefPubMed Kondo M, Kurimoto Y, Sakai T, Koyasu T, Miyata K, Ueno S, Terasaki H (2008) Recording focal macular photopic negative response (PhNR) from monkeys. Invest Ophthalmol Vis Sci 49(8):3544–3550. doi:10.​1167/​iovs.​08-1798 CrossRefPubMed
11.
12.
Zurück zum Zitat Fortune B, Bui BV, Cull G, Wang L, Cioffi GA (2004) Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp Eye Res 78(1):83–93CrossRefPubMed Fortune B, Bui BV, Cull G, Wang L, Cioffi GA (2004) Inter-ocular and inter-session reliability of the electroretinogram photopic negative response (PhNR) in non-human primates. Exp Eye Res 78(1):83–93CrossRefPubMed
15.
Zurück zum Zitat Hille B (1966) Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210(5042):1220–1222CrossRefPubMed Hille B (1966) Common mode of action of three agents that decrease the transient change in sodium permeability in nerves. Nature 210(5042):1220–1222CrossRefPubMed
16.
Zurück zum Zitat Bloomfield SA (1996) Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J Neurophysiol 75(5):1878–1893PubMed Bloomfield SA (1996) Effect of spike blockade on the receptive-field size of amacrine and ganglion cells in the rabbit retina. J Neurophysiol 75(5):1878–1893PubMed
18.
Zurück zum Zitat Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vis Res 25(12):1795–1810CrossRefPubMed Perry VH, Cowey A (1985) The ganglion cell and cone distributions in the monkey’s retina: implications for central magnification factors. Vis Res 25(12):1795–1810CrossRefPubMed
19.
Zurück zum Zitat Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236(4801):579–582CrossRefPubMed Curcio CA, Sloan KR Jr, Packer O, Hendrickson AE, Kalina RE (1987) Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236(4801):579–582CrossRefPubMed
21.
Zurück zum Zitat Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed Sieving PA, Murayama K, Naarendorp F (1994) Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave. Vis Neurosci 11(3):519–532CrossRefPubMed
Metadaten
Titel
Comparison of photopic negative response (PhNR) between focal macular and full-field electroretinograms in monkeys
verfasst von
Junzo Kinoshita
Shunsuke Takada
Noriaki Iwata
Yoshiro Tani
Publikationsdatum
12.04.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Documenta Ophthalmologica / Ausgabe 3/2016
Print ISSN: 0012-4486
Elektronische ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-016-9538-x

Weitere Artikel der Ausgabe 3/2016

Documenta Ophthalmologica 3/2016 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Open Access 22.02.2024 | Peeling | Originalien

Selektive Vitalfarbstoffe in der Makulachirurgie

Erhöhen sie die Wahrscheinlichkeit der intraoperativen ILM-Identifizierung auch bei einem erfahrenen Operateur?

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.