Skip to main content
Erschienen in: Journal of Digital Imaging 4/2018

17.10.2017

Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease

verfasst von: Guk Bae Kim, Kyu-Hwan Jung, Yeha Lee, Hyun-Jun Kim, Namkug Kim, Sanghoon Jun, Joon Beom Seo, David A. Lynch

Erschienen in: Journal of Imaging Informatics in Medicine | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

This study aimed to compare shallow and deep learning of classifying the patterns of interstitial lung diseases (ILDs). Using high-resolution computed tomography images, two experienced radiologists marked 1200 regions of interest (ROIs), in which 600 ROIs were each acquired using a GE or Siemens scanner and each group of 600 ROIs consisted of 100 ROIs for subregions that included normal and five regional pulmonary disease patterns (ground-glass opacity, consolidation, reticular opacity, emphysema, and honeycombing). We employed the convolution neural network (CNN) with six learnable layers that consisted of four convolution layers and two fully connected layers. The classification results were compared with the results classified by a shallow learning of a support vector machine (SVM). The CNN classifier showed significantly better performance for accuracy compared with that of the SVM classifier by 6–9%. As the convolution layer increases, the classification accuracy of the CNN showed better performance from 81.27 to 95.12%. Especially in the cases showing pathological ambiguity such as between normal and emphysema cases or between honeycombing and reticular opacity cases, the increment of the convolution layer greatly drops the misclassification rate between each case. Conclusively, the CNN classifier showed significantly greater accuracy than the SVM classifier, and the results implied structural characteristics that are inherent to the specific ILD patterns.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Raghu G et al.: Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816, 2006CrossRefPubMed Raghu G et al.: Incidence and prevalence of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 174(7):810–816, 2006CrossRefPubMed
2.
Zurück zum Zitat Scatarige JC et al.: Utility of high-resolution CT for management of diffuse lung disease: Results of a survey of US pulmonary physicians. Acad Radiol 10(2):167–175, 2003CrossRefPubMed Scatarige JC et al.: Utility of high-resolution CT for management of diffuse lung disease: Results of a survey of US pulmonary physicians. Acad Radiol 10(2):167–175, 2003CrossRefPubMed
3.
Zurück zum Zitat Grenier P et al.: Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high-resolution CT. Radiology 179(1):123–132, 1991CrossRefPubMed Grenier P et al.: Chronic diffuse interstitial lung disease: Diagnostic value of chest radiography and high-resolution CT. Radiology 179(1):123–132, 1991CrossRefPubMed
4.
Zurück zum Zitat Kalender WA et al.: Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT. Radiology 175(1):265–268, 1990CrossRefPubMed Kalender WA et al.: Measurement of pulmonary parenchymal attenuation: Use of spirometric gating with quantitative CT. Radiology 175(1):265–268, 1990CrossRefPubMed
5.
Zurück zum Zitat Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at CT 1. Radiology 228(3):871–877, 2003CrossRefPubMed Chabat F, Yang G-Z, Hansell DM: Obstructive lung diseases: Texture classification for differentiation at CT 1. Radiology 228(3):871–877, 2003CrossRefPubMed
6.
Zurück zum Zitat Fujisaki T et al.: Effects of density changes in the chest on lung stereotactic radiotherapy. Radiat Med 22(4):233–238, 2003 Fujisaki T et al.: Effects of density changes in the chest on lung stereotactic radiotherapy. Radiat Med 22(4):233–238, 2003
7.
Zurück zum Zitat Xu Y et al.: MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25(4):464–475, 2006CrossRefPubMed Xu Y et al.: MDCT-based 3-D texture classification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging 25(4):464–475, 2006CrossRefPubMed
8.
Zurück zum Zitat Delorme S et al.: Usual interstitial pneumonia: Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Investig Radiol 32(9):566–574, 1997CrossRef Delorme S et al.: Usual interstitial pneumonia: Quantitative assessment of high-resolution computed tomography findings by computer-assisted texture-based image analysis. Investig Radiol 32(9):566–574, 1997CrossRef
9.
Zurück zum Zitat Xu Y et al.: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13(8):969–978, 2006CrossRefPubMed Xu Y et al.: Computer-aided classification of interstitial lung diseases via MDCT: 3D adaptive multiple feature method (3D AMFM). Acad Radiol 13(8):969–978, 2006CrossRefPubMed
10.
Zurück zum Zitat Yuan R et al.: The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest J 132(2):617–623, 2007CrossRef Yuan R et al.: The effects of radiation dose and CT manufacturer on measurements of lung densitometry. Chest J 132(2):617–623, 2007CrossRef
11.
Zurück zum Zitat Lee Y et al.: Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT). Comput Methods Prog Biomed 93(2):206–215, 2009CrossRef Lee Y et al.: Performance testing of several classifiers for differentiating obstructive lung diseases based on texture analysis at high-resolution computerized tomography (HRCT). Comput Methods Prog Biomed 93(2):206–215, 2009CrossRef
12.
Zurück zum Zitat Park YS et al.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: Comparison with density-based quantification and correlation with pulmonary function test. Investig Radiol 43(6):395–402, 2008CrossRef Park YS et al.: Texture-based quantification of pulmonary emphysema on high-resolution computed tomography: Comparison with density-based quantification and correlation with pulmonary function test. Investig Radiol 43(6):395–402, 2008CrossRef
13.
Zurück zum Zitat Hoffman EA et al.: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function 1. Acad Radiol 10(10):1104–1118, 2003CrossRefPubMed Hoffman EA et al.: Characterization of the interstitial lung diseases via density-based and texture-based analysis of computed tomography images of lung structure and function 1. Acad Radiol 10(10):1104–1118, 2003CrossRefPubMed
14.
Zurück zum Zitat Uppaluri R et al.: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654, 1999CrossRefPubMed Uppaluri R et al.: Computer recognition of regional lung disease patterns. Am J Respir Crit Care Med 160(2):648–654, 1999CrossRefPubMed
15.
Zurück zum Zitat Wang J et al.: Computerized detection of diffuse lung disease in MDCT: The usefulness of statistical texture features. Phys Med Biol 54(22):6881, 2009CrossRefPubMed Wang J et al.: Computerized detection of diffuse lung disease in MDCT: The usefulness of statistical texture features. Phys Med Biol 54(22):6881, 2009CrossRefPubMed
16.
Zurück zum Zitat Yoon RG et al.: Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol 23(3):692–701, 2013PubMed Yoon RG et al.: Quantitative assessment of change in regional disease patterns on serial HRCT of fibrotic interstitial pneumonia with texture-based automated quantification system. Eur Radiol 23(3):692–701, 2013PubMed
17.
Zurück zum Zitat Park SO et al.: Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: Quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system. Korean J Radiol 12(3):297–307, 2011CrossRefPubMedPubMedCentral Park SO et al.: Comparison of usual interstitial pneumonia and nonspecific interstitial pneumonia: Quantification of disease severity and discrimination between two diseases on HRCT using a texture-based automated system. Korean J Radiol 12(3):297–307, 2011CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Chang Y et al.: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40(5):051912, 2013CrossRefPubMed Chang Y et al.: A support vector machine classifier reduces interscanner variation in the HRCT classification of regional disease pattern in diffuse lung disease: Comparison to a Bayesian classifier. Med Phys 40(5):051912, 2013CrossRefPubMed
19.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 1097–1105, 2012 Krizhevsky A, Sutskever I, Hinton GE: Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst 1097–1105, 2012
20.
Zurück zum Zitat Mo D: A survey on deep learning: One small step toward AI. Albuquerque: Dept. Computer Science, Univ. of New Mexico, 2012 Mo D: A survey on deep learning: One small step toward AI. Albuquerque: Dept. Computer Science, Univ. of New Mexico, 2012
21.
Zurück zum Zitat Goodfellow IJ et al.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013 Goodfellow IJ et al.: Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv preprint arXiv:1312.6082, 2013
22.
Zurück zum Zitat Cruz-Roa AA et al.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. Springer, 2013, pp 403–410 Cruz-Roa AA et al.: A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013. Springer, 2013, pp 403–410
23.
Zurück zum Zitat Bai W et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109, 2015CrossRefPubMed Bai W et al.: Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109, 2015CrossRefPubMed
24.
Zurück zum Zitat de BrebissonA, Montana G: Deep Neural Networks for Anatomical Brain Segmentation. arXiv preprint arXiv:1502.02445, 2015 de BrebissonA, Montana G: Deep Neural Networks for Anatomical Brain Segmentation. arXiv preprint arXiv:1502.02445, 2015
25.
Zurück zum Zitat Li Q et al.: Medical image classification with convolutional neural network. Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on 844–848, 2014 Li Q et al.: Medical image classification with convolutional neural network. Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on 844–848, 2014
26.
Zurück zum Zitat Gao M et al.: Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks. crcv.ucf.edu Gao M et al.: Holistic Classification of CT Attenuation Patterns for Interstitial Lung Diseases via Deep Convolutional Neural Networks. crcv.​ucf.​edu
27.
Zurück zum Zitat van Tulder G, de Bruijne M: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272, 2016CrossRefPubMed van Tulder G, de Bruijne M: Combining generative and discriminative representation learning for lung CT analysis with convolutional restricted boltzmann machines. IEEE Trans Med Imaging 35(5):1262–1272, 2016CrossRefPubMed
28.
Zurück zum Zitat Anthimopoulos M et al.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216, 2016CrossRefPubMed Anthimopoulos M et al.: Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE Trans Med Imaging 35(5):1207–1216, 2016CrossRefPubMed
29.
Zurück zum Zitat Shin H-C et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298, 2016CrossRefPubMed Shin H-C et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298, 2016CrossRefPubMed
30.
Zurück zum Zitat Szegedy C et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014 Szegedy C et al.: Going deeper with convolutions. arXiv preprint arXiv:1409.4842, 2014
Metadaten
Titel
Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease
verfasst von
Guk Bae Kim
Kyu-Hwan Jung
Yeha Lee
Hyun-Jun Kim
Namkug Kim
Sanghoon Jun
Joon Beom Seo
David A. Lynch
Publikationsdatum
17.10.2017
Verlag
Springer International Publishing
Erschienen in
Journal of Imaging Informatics in Medicine / Ausgabe 4/2018
Print ISSN: 2948-2925
Elektronische ISSN: 2948-2933
DOI
https://doi.org/10.1007/s10278-017-0028-9

Weitere Artikel der Ausgabe 4/2018

Journal of Digital Imaging 4/2018 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.