Skip to main content
Erschienen in: International Journal of Diabetes in Developing Countries 1/2016

01.03.2016 | Original Article

Comparison of sulfur transferases in various tissue and mitochondria of rats with type 1 diabetes mellitus induced by streptozotocin

verfasst von: Hüseyin Aydın, Veysel Kenan Çelik, İsmail Sarı, Yusuf Kenan Tekin, Özlem Demirpençe, Sevtap Bakır

Erschienen in: International Journal of Diabetes in Developing Countries | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

This study aims to investigate the relationship between sulfurtransferase (STS) activities [rhodanese (TST), mercaptopyruvate sulfurtransferase (MST)] involved in the catalysis of several biochemical reactions including detoxification of cyanide (CN), restructuring of Fe-S cluster in proteins, and detoxification of oxygen radicals. Rats with type 1 diabetes mellitus induced by streptozotocin (STZ) were anesthetized at 14th day, and liver, lung, kidney, and heart tissues were extracted. All samples were homogenized, and mitochondrial parts were separated. Same processes were performed also in the control group, and TST and MST activities were measured in each part. The homogenate MST (MST Homo .) activities of the type 1 diabetes mellitus group were compared with the control group, and a decrease was observed in the lung, liver, and kidney, respectively; at the same time, an increase was seen in the heart tissue. The mitochondrial MST (MST Mito .) activities of rats with type 1 diabetes mellitus group were compared with the control group, and a decrease was found in all tissues. The highest decrease in the TST Mito . level of rats with type 1 diabetes mellitus was observed in kidney tissue. The TST activities of the type 1 diabetes mellitus group were compared with the control group, and a decrease was observed in the liver, lung, and kidney, respectively; at the same time, an increase was seen in the heart tissue. It is demonstrated in the present study that decreases occur both in enzyme levels of tissue homogenates and in mitochondria, of rats with induced type 1 diabetes mellitus. However, these results were not statistically significant. In the presence of these findings, we think that kidney, liver, lung, and heart tissue can be affected by type 1 diabetes in the long term.
Literatur
1.
Zurück zum Zitat Agboola FK, Okonji RE. Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) Liver. J Biochem Mol Biol. 2004;37:275–81.CrossRefPubMed Agboola FK, Okonji RE. Presence of rhodanese in the cytosolic fraction of the fruit bat (Eidolon helvum) Liver. J Biochem Mol Biol. 2004;37:275–81.CrossRefPubMed
2.
Zurück zum Zitat Wasylewski Z, Basztura B, Koj A. Comparison of some physicochemical properties of rat and beef liver rhodanese. Bull Acad Pol Sci [Biol]. 1979;27:807–14. Wasylewski Z, Basztura B, Koj A. Comparison of some physicochemical properties of rat and beef liver rhodanese. Bull Acad Pol Sci [Biol]. 1979;27:807–14.
3.
Zurück zum Zitat Ogata K, Volini M. Mitochondrial rhodanese: membrane-bound and complexed activity. J Biol Chem. 1990;265:8087–93.PubMed Ogata K, Volini M. Mitochondrial rhodanese: membrane-bound and complexed activity. J Biol Chem. 1990;265:8087–93.PubMed
4.
Zurück zum Zitat Westley J. Thiosulfate: cyanide sulfurtransferase (rhodanese). Methods Enzymol. 1981;77:285–91.CrossRefPubMed Westley J. Thiosulfate: cyanide sulfurtransferase (rhodanese). Methods Enzymol. 1981;77:285–91.CrossRefPubMed
5.
Zurück zum Zitat Dooley TP, Nair SK, Garcia R, Courtney BC. Mouse rhodanese gene (Tst): cDNA cloning, sequencing, and recombinant protein expression. Biochem Biophys Res Commun. 1995;216:1101–9.CrossRefPubMed Dooley TP, Nair SK, Garcia R, Courtney BC. Mouse rhodanese gene (Tst): cDNA cloning, sequencing, and recombinant protein expression. Biochem Biophys Res Commun. 1995;216:1101–9.CrossRefPubMed
6.
Zurück zum Zitat Nagahara N, Okazaki T, Nishino T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem. 1995;270:16230–5.CrossRefPubMed Nagahara N, Okazaki T, Nishino T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J Biol Chem. 1995;270:16230–5.CrossRefPubMed
7.
Zurück zum Zitat Berni R, Cannella C, Monaco HL, Rossi GL. New crystalline derivatives of bovine liver rhodanese. Biochem Int. 1986;12:733–40.PubMed Berni R, Cannella C, Monaco HL, Rossi GL. New crystalline derivatives of bovine liver rhodanese. Biochem Int. 1986;12:733–40.PubMed
8.
Zurück zum Zitat Colnaghi R, Pagani S, Kennedy C, Drummond M. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. Eur J Biochem. 1996;236:240–8.CrossRefPubMed Colnaghi R, Pagani S, Kennedy C, Drummond M. Cloning, sequence analysis and overexpression of the rhodanese gene of Azotobacter vinelandii. Eur J Biochem. 1996;236:240–8.CrossRefPubMed
9.
Zurück zum Zitat Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, et al. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. J Mol Biol. 2000;298:691–704.CrossRefPubMed Bordo D, Deriu D, Colnaghi R, Carpen A, Pagani S, et al. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. J Mol Biol. 2000;298:691–704.CrossRefPubMed
10.
Zurück zum Zitat Aird BA, Heinrikson RL, Westley J. Isolation and characterization of a prokaryotic sulfurtransferase. J Biol Chem. 1987;262:17327–35.PubMed Aird BA, Heinrikson RL, Westley J. Isolation and characterization of a prokaryotic sulfurtransferase. J Biol Chem. 1987;262:17327–35.PubMed
11.
Zurück zum Zitat Lányi B. Rhodanese activity: a simple and reliable taxonomic tool for gram negative bacteria. J Med Microbiol. 1982;15(2):263–6.CrossRefPubMed Lányi B. Rhodanese activity: a simple and reliable taxonomic tool for gram negative bacteria. J Med Microbiol. 1982;15(2):263–6.CrossRefPubMed
12.
Zurück zum Zitat Alexander K, Volini M. Properties of an Escherichia coli rhodanese. J Biol Chem. 1987;262:6595–604.PubMed Alexander K, Volini M. Properties of an Escherichia coli rhodanese. J Biol Chem. 1987;262:6595–604.PubMed
13.
Zurück zum Zitat Villarejo M, Westley J. Sulfur metabolism of Bacillus subtilis. Biochim Biophys Acta. 1966;117:209–16.CrossRefPubMed Villarejo M, Westley J. Sulfur metabolism of Bacillus subtilis. Biochim Biophys Acta. 1966;117:209–16.CrossRefPubMed
14.
Zurück zum Zitat Laudenbach DE, Ehrhardt D, Green L, Grossmann A. Isolation and characterization of a sulfur-regulated gene encoding a periplasmatically localized protein with sequence similarity to rhodanese. J Bacteriol. 1991;173:2751–60.PubMedPubMedCentral Laudenbach DE, Ehrhardt D, Green L, Grossmann A. Isolation and characterization of a sulfur-regulated gene encoding a periplasmatically localized protein with sequence similarity to rhodanese. J Bacteriol. 1991;173:2751–60.PubMedPubMedCentral
15.
Zurück zum Zitat Vennesland B, Castric PA, Conn EE, Solomonson LP, Volini M, et al. Cyanide metabolism. Fed Proc. 1982;41:2639–48.PubMed Vennesland B, Castric PA, Conn EE, Solomonson LP, Volini M, et al. Cyanide metabolism. Fed Proc. 1982;41:2639–48.PubMed
16.
Zurück zum Zitat Nagahara N, Ito T, Minami M. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Histol Histopathol. 1999;14:1277–86.PubMed Nagahara N, Ito T, Minami M. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxification. Histol Histopathol. 1999;14:1277–86.PubMed
17.
Zurück zum Zitat Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39:335–47.CrossRefPubMed Blachier F, Davila AM, Mimoun S, Benetti PH, Atanasiu C, Andriamihaja M, et al. Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids. 2010;39:335–47.CrossRefPubMed
18.
Zurück zum Zitat Wood JL, Fiedler H. β-mercaptopyruvate, a substrate for rhodanese. J Biol Chem. 1953;205:231–4.PubMed Wood JL, Fiedler H. β-mercaptopyruvate, a substrate for rhodanese. J Biol Chem. 1953;205:231–4.PubMed
19.
Zurück zum Zitat Westley J, Adler H, Westley L, Nishida C. The sulfurtransferases. Fundam Appl Toxicol. 1983;3:377–82.CrossRefPubMed Westley J, Adler H, Westley L, Nishida C. The sulfurtransferases. Fundam Appl Toxicol. 1983;3:377–82.CrossRefPubMed
20.
Zurück zum Zitat Nagahara N, Nishino T. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and sitedirected mutagenesis. J Biol Chem. 1996;271:27395–401.CrossRefPubMed Nagahara N, Nishino T. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. CDNA cloning, overexpression, and sitedirected mutagenesis. J Biol Chem. 1996;271:27395–401.CrossRefPubMed
21.
Zurück zum Zitat Westley JE. Ciba Foundation Symposium 140 - cyanide compounds in biology: mammalian cyanide detoxification with sulphane sulphur. Ciba Foundation;1988 Westley JE. Ciba Foundation Symposium 140 - cyanide compounds in biology: mammalian cyanide detoxification with sulphane sulphur. Ciba Foundation;1988
22.
Zurück zum Zitat Nandi DL, Horowitz PM, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol. 2000;32:465–73.CrossRefPubMed Nandi DL, Horowitz PM, Westley J. Rhodanese as a thioredoxin oxidase. Int J Biochem Cell Biol. 2000;32:465–73.CrossRefPubMed
23.
Zurück zum Zitat Sabelli R, Iorio E, De Martino A, Podo F, Ricci A, Viticchiè G, et al. Rhodanese-thioredoxin system and allyl sulfur compounds. FEBS J. 2008;275:3884–99.CrossRefPubMed Sabelli R, Iorio E, De Martino A, Podo F, Ricci A, Viticchiè G, et al. Rhodanese-thioredoxin system and allyl sulfur compounds. FEBS J. 2008;275:3884–99.CrossRefPubMed
24.
Zurück zum Zitat Bonomi F, Pagani S, Cerletti P, Cannella C. Rhodanese mediated sulfur transfer to succinate dehydrogenase. Eur J Bioche. 1977;72:17–24.CrossRef Bonomi F, Pagani S, Cerletti P, Cannella C. Rhodanese mediated sulfur transfer to succinate dehydrogenase. Eur J Bioche. 1977;72:17–24.CrossRef
25.
Zurück zum Zitat Pagani S, Bonomi F, Cerletti P. Enzymic synthesis of the ironsulfur cluster of spinach ferredoxin. Eur J Biochem. 1984;142:361–6.CrossRefPubMed Pagani S, Bonomi F, Cerletti P. Enzymic synthesis of the ironsulfur cluster of spinach ferredoxin. Eur J Biochem. 1984;142:361–6.CrossRefPubMed
26.
Zurück zum Zitat Pagani S, Eldridge M, Eady RR. Nitrogenase of Klebsiella pneumoniae: rhodanese-catalyzed restoration of activity of inactive 2Fe species of the Fe protein. Biochem J. 1987;244:485–8.CrossRefPubMedPubMedCentral Pagani S, Eldridge M, Eady RR. Nitrogenase of Klebsiella pneumoniae: rhodanese-catalyzed restoration of activity of inactive 2Fe species of the Fe protein. Biochem J. 1987;244:485–8.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Max SR, Garbbus J, Wehmen HJ. Simple procedure for rapid isolation of functionally intact mitochondria from human and rat skeletal muscles. Anal Biochem. 1972;46:576–84.CrossRefPubMed Max SR, Garbbus J, Wehmen HJ. Simple procedure for rapid isolation of functionally intact mitochondria from human and rat skeletal muscles. Anal Biochem. 1972;46:576–84.CrossRefPubMed
28.
Zurück zum Zitat Mousa HM, Davis RH. Alternative sulphur donors for detoxification of cyanide in the chicken. Comp Biochem Physiol C. 1991;99:309–15.CrossRefPubMed Mousa HM, Davis RH. Alternative sulphur donors for detoxification of cyanide in the chicken. Comp Biochem Physiol C. 1991;99:309–15.CrossRefPubMed
29.
Zurück zum Zitat Tornqvist H, Belfrage P. Determination of protein in adipose tissue extracts. J Lipid Res. 1976;17:542–5.PubMed Tornqvist H, Belfrage P. Determination of protein in adipose tissue extracts. J Lipid Res. 1976;17:542–5.PubMed
30.
Zurück zum Zitat Pagani S, Galante YM. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Biochim Biophys Acta. 1983;742:278–84.CrossRefPubMed Pagani S, Galante YM. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Biochim Biophys Acta. 1983;742:278–84.CrossRefPubMed
31.
Zurück zum Zitat Matthies A, Rajagopalan KV, Mendel RR, Leimkühler S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci U S A. 2004;101:5946–51.CrossRefPubMedPubMedCentral Matthies A, Rajagopalan KV, Mendel RR, Leimkühler S. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci U S A. 2004;101:5946–51.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Leimkühler S, Rajagopalan KV. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem. 2001;276:22024–31.CrossRefPubMed Leimkühler S, Rajagopalan KV. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem. 2001;276:22024–31.CrossRefPubMed
33.
Zurück zum Zitat Palenchar PM, Buck CJ, Cheng H, Larson TJ, Mueller EG. Evidence that thil, an enzyme shared between thiamine and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J Biol Chem. 2000;275:8283–6.CrossRefPubMed Palenchar PM, Buck CJ, Cheng H, Larson TJ, Mueller EG. Evidence that thil, an enzyme shared between thiamine and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J Biol Chem. 2000;275:8283–6.CrossRefPubMed
34.
Zurück zum Zitat Pauwels PJ, Opperdoes FR, Trouet A. Effect of oxygen and glucose availability on the glycolytic rate in neuroblastoma cells under different conditions of culture. Neurochem Int. 1984;64:467–73.CrossRef Pauwels PJ, Opperdoes FR, Trouet A. Effect of oxygen and glucose availability on the glycolytic rate in neuroblastoma cells under different conditions of culture. Neurochem Int. 1984;64:467–73.CrossRef
35.
Zurück zum Zitat Abdrakhmanova A, Dobrynin K, Zwicker K, Kerscher S, Brandt U. Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron–sulfur clusters. FEBS Lett. 2005;579:6781–5.CrossRefPubMed Abdrakhmanova A, Dobrynin K, Zwicker K, Kerscher S, Brandt U. Functional sulfurtransferase is associated with mitochondrial complex I from Yarrowia lipolytica, but is not required for assembly of its iron–sulfur clusters. FEBS Lett. 2005;579:6781–5.CrossRefPubMed
37.
Zurück zum Zitat Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. 2014;19:35–48.CrossRefPubMed Isfort M, Stevens SC, Schaffer S, Jong CJ, Wold LE. Metabolic dysfunction in diabetic cardiomyopathy. Heart Fail Rev. 2014;19:35–48.CrossRefPubMed
Metadaten
Titel
Comparison of sulfur transferases in various tissue and mitochondria of rats with type 1 diabetes mellitus induced by streptozotocin
verfasst von
Hüseyin Aydın
Veysel Kenan Çelik
İsmail Sarı
Yusuf Kenan Tekin
Özlem Demirpençe
Sevtap Bakır
Publikationsdatum
01.03.2016
Verlag
Springer India
Erschienen in
International Journal of Diabetes in Developing Countries / Ausgabe 1/2016
Print ISSN: 0973-3930
Elektronische ISSN: 1998-3832
DOI
https://doi.org/10.1007/s13410-015-0377-1

Weitere Artikel der Ausgabe 1/2016

International Journal of Diabetes in Developing Countries 1/2016 Zur Ausgabe