Skip to main content
Erschienen in: Inflammation 2/2016

08.01.2016 | ORIGINAL ARTICLE

Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line

verfasst von: Ersin Günay, Sefa Celik, Sevinc Sarinc-Ulasli, Arzu Özyürek, Ömer Hazman, Sibel Günay, Mehmet Özdemir, Mehmet Ünlü

Erschienen in: Inflammation | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Phytochemical compounds are emerging as a new group of anti-inflammatory, antioxidant, and anti-cancer agents that help minimize toxicity in patients with pulmonary diseases. The goal of this study was to investigate the potential curative effects of Quercetin (QC), Damnacanthal (DAM), and Proanthocyanidine (PA) on inflammatory mediators and oxidative stress parameters and to examine the viability of the A549 cell line treated with benzo(a)pyrene (BaP) in vitro. The A549 cell line was treated with BaP, a BaP/QC combination, a BaP/DAM combination, and BaP/PA combination. Inflammatory markers, oxidative stress parameters, mRNA expression levels of apoptotic and antiapoptotic proteins, and cell viability were assessed, and the results were compared. There were higher levels of lactate dehydrogenase after BaP treatment of A549 cell lines. Interferon-γ level significantly decreased in the QC, DAM, and PA-treated group (P < 0.001). IL-1β and TNF-α levels significantly decreased after PA and QC treatments (P < 0.001). Some of the oxidative stress markers (NO, MDA, TOS) and OSI decreased, while antioxidant (GSH) levels increased after treatment with QC, DAM, and PA. The QC and DAM treatments profoundly upregulated apoptotic gene expression and downregulated antiapoptotic gene expression. Viability of QC, DAM, and PA-treated cells was found to be significantly higher in comparison to the control and BaP-treated groups (p < 0.001). Our results revealed that A549 cell lines treated with BaP-stimulated necrosis produced higher level of inflammatory cytokines and oxidative stress parameters. Treatments with PA, QC, and DAM reduced inflammatory response induced by BaP exposure.
Literatur
1.
Zurück zum Zitat Jiang, Y., K. Rao, G. Yang, X. Chen, Q. Wang, A. Liu, et al. 2012. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. Environmental Toxicology 27: 202–10.CrossRefPubMed Jiang, Y., K. Rao, G. Yang, X. Chen, Q. Wang, A. Liu, et al. 2012. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells. Environmental Toxicology 27: 202–10.CrossRefPubMed
2.
Zurück zum Zitat Min, L., S. He, Q. Chen, F. Peng, H. Peng, and M. Xie. 2011. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicology Mechanisms and Methods 21: 374–82.CrossRefPubMed Min, L., S. He, Q. Chen, F. Peng, H. Peng, and M. Xie. 2011. Comparative proteomic analysis of cellular response of human airway epithelial cells (A549) to benzo(a)pyrene. Toxicology Mechanisms and Methods 21: 374–82.CrossRefPubMed
3.
Zurück zum Zitat Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, S. Asokkumar, C. Naveenkumar, et al. 2012. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflammation Research 61: 1169–75.CrossRefPubMed Anandakumar, P., S. Kamaraj, S. Jagan, G. Ramakrishnan, S. Asokkumar, C. Naveenkumar, et al. 2012. Capsaicin inhibits benzo(a)pyrene-induced lung carcinogenesis in an in vivo mouse model. Inflammation Research 61: 1169–75.CrossRefPubMed
4.
Zurück zum Zitat Borm, P.J., A.M. Knaapen, R.P. Schins, R.W. Godschalk, and F.J. Schooten. 1997. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environmental Health Perspectives 105: 1089–93.CrossRefPubMedPubMedCentral Borm, P.J., A.M. Knaapen, R.P. Schins, R.W. Godschalk, and F.J. Schooten. 1997. Neutrophils amplify the formation of DNA adducts by benzo[a]pyrene in lung target cells. Environmental Health Perspectives 105: 1089–93.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Rubin, H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903–30.CrossRefPubMed Rubin, H. 2001. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke: a bio-historical perspective with updates. Carcinogenesis 22: 1903–30.CrossRefPubMed
6.
Zurück zum Zitat Wang, Z., Y. Qi, Q. Chen, D. Yang, S. Tang, X. Jin, et al. 2009. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 256: 1–6.CrossRefPubMed Wang, Z., Y. Qi, Q. Chen, D. Yang, S. Tang, X. Jin, et al. 2009. Cyclin A is essential for the p53-modulated inhibition from benzo(a)pyrene toxicity in A549 cells. Toxicology 256: 1–6.CrossRefPubMed
7.
Zurück zum Zitat Kamaraj, S., R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, and T. Devaki. 2007. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin 30: 2268–73.CrossRefPubMed Kamaraj, S., R. Vinodhkumar, P. Anandakumar, S. Jagan, G. Ramakrishnan, and T. Devaki. 2007. The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo(a)pyrene. Biological and Pharmaceutical Bulletin 30: 2268–73.CrossRefPubMed
8.
Zurück zum Zitat Kim, H., J.Y. Kim, H.S. Song, K.U. Park, K.C. Mun, and E. Ha. 2011. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 383: 555–62.CrossRefPubMed Kim, H., J.Y. Kim, H.S. Song, K.U. Park, K.C. Mun, and E. Ha. 2011. Grape seed proanthocyanidin extract inhibits interleukin-17-induced interleukin-6 production via MAPK pathway in human pulmonary epithelial cells. Naunyn-Schmiedeberg’s Archives of Pharmacology 383: 555–62.CrossRefPubMed
9.
Zurück zum Zitat Lin, F.L., J.L. Hsu, C.H. Chou, W.J. Wu, C.I. Chang, and H.J. Liu. 2011. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFR1/TNF-α and p53 pathways. European Journal of Pharmacology 650: 120–9.CrossRefPubMed Lin, F.L., J.L. Hsu, C.H. Chou, W.J. Wu, C.I. Chang, and H.J. Liu. 2011. Activation of p38 MAPK by damnacanthal mediates apoptosis in SKHep 1 cells through the DR5/TRAIL and TNFR1/TNF-α and p53 pathways. European Journal of Pharmacology 650: 120–9.CrossRefPubMed
10.
Zurück zum Zitat Ulasli, S.S., S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, et al. 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention 14: 6159–64.CrossRefPubMed Ulasli, S.S., S. Celik, E. Gunay, M. Ozdemir, O. Hazman, A. Ozyurek, et al. 2013. Anticancer effects of thymoquinone, caffeic acid phenethyl ester and resveratrol on A549 non-small cell lung cancer cells exposed to benzo(a)pyrene. Asian Pacific Journal of Cancer Prevention 14: 6159–64.CrossRefPubMed
11.
Zurück zum Zitat Woo, H.D., B.M. Kim, Y.J. Kim, Y.J. Lee, S.J. Kang, Y.H. Cho, et al. 2008. Quercetin prevents necrotic cell death induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicology In Vitro 22: 1840–5.CrossRefPubMed Woo, H.D., B.M. Kim, Y.J. Kim, Y.J. Lee, S.J. Kang, Y.H. Cho, et al. 2008. Quercetin prevents necrotic cell death induced by co-exposure to benzo(a)pyrene and UVA radiation. Toxicology In Vitro 22: 1840–5.CrossRefPubMed
12.
Zurück zum Zitat Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, S.H. Lee, D. Lawson, and S.J. Baek. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutrition and Biochemistry 23: 915–23.CrossRef Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, S.H. Lee, D. Lawson, and S.J. Baek. 2012. Damnacanthal, a noni component, exhibits antitumorigenic activity in human colorectal cancer cells. Journal of Nutrition and Biochemistry 23: 915–23.CrossRef
13.
Zurück zum Zitat Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–54.CrossRefPubMed Bradford, M.M. 1976. A rapid and sensitive for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–54.CrossRefPubMed
14.
Zurück zum Zitat Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.CrossRefPubMed Miranda, K.M., M.G. Espey, and D.A. Wink. 2001. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide 5: 62–71.CrossRefPubMed
15.
Zurück zum Zitat Buetler, E., O. Dubon, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–8. Buetler, E., O. Dubon, and B.M. Kelly. 1963. Improved method for the determination of blood glutathione. Journal of Laboratory and Clinical Medicine 61: 882–8.
16.
Zurück zum Zitat Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–5.PubMed Yoshioka, T., K. Kawada, T. Shimada, and M. Mori. 1979. Lipid peroxidation in maternal and cord blood and protective mechanisms against activated-oxygen toxicity in the blood. American Journal of Obstetrics and Gynecology 135: 372–5.PubMed
17.
Zurück zum Zitat Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–11.CrossRefPubMed Erel, O. 2005. A new automated colorimetric method for measuring total oxidant status. Clinical Biochemistry 38: 1103–11.CrossRefPubMed
18.
Zurück zum Zitat Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–85.CrossRefPubMed Erel, O. 2004. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry 37: 277–85.CrossRefPubMed
19.
Zurück zum Zitat Esen, C., B.A. Alkan, M. Kırnap, O. Akgül, S. Işıkoğlu, and O. Erel. 2012. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. Journal of Periodontology 83: 773–9.CrossRefPubMed Esen, C., B.A. Alkan, M. Kırnap, O. Akgül, S. Işıkoğlu, and O. Erel. 2012. The effects of chronic periodontitis and rheumatoid arthritis on serum and gingival crevicular fluid total antioxidant/oxidant status and oxidative stress index. Journal of Periodontology 83: 773–9.CrossRefPubMed
20.
21.
Zurück zum Zitat Qamar, W., R. Khan, A.Q. Khan, M.U. Rehman, A. Lateef, M. Tahir, et al. 2012. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291: 25–31.CrossRefPubMed Qamar, W., R. Khan, A.Q. Khan, M.U. Rehman, A. Lateef, M. Tahir, et al. 2012. Alleviation of lung injury by glycyrrhizic acid in benzo(a)pyrene exposed rats: probable role of soluble epoxide hydrolase and thioredoxin reductase. Toxicology 291: 25–31.CrossRefPubMed
22.
Zurück zum Zitat Podechard, N., V. Lecureur, E. Le Ferrec, I. Guenon, L. Sparfel, D. Gilot, et al. 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters 177: 130–7.CrossRefPubMed Podechard, N., V. Lecureur, E. Le Ferrec, I. Guenon, L. Sparfel, D. Gilot, et al. 2008. Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation. Toxicology Letters 177: 130–7.CrossRefPubMed
23.
Zurück zum Zitat Xie, J.G., Y.J. Xu, Z.X. Zhang, W. Ni, and S.X. Chen. 2004. Smoking, the level of DNA adducts and chronic obstructive pulmonary diseases. Zhonghua Jie He He Hu Xi Za Zhi 27: 469–73.PubMed Xie, J.G., Y.J. Xu, Z.X. Zhang, W. Ni, and S.X. Chen. 2004. Smoking, the level of DNA adducts and chronic obstructive pulmonary diseases. Zhonghua Jie He He Hu Xi Za Zhi 27: 469–73.PubMed
24.
Zurück zum Zitat Lin, T., and M.S. Yang. 2007. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235: 1–10.CrossRefPubMed Lin, T., and M.S. Yang. 2007. Benzo[a]pyrene-induced elevation of GSH level protects against oxidative stress and enhances xenobiotic detoxification in human HepG2 cells. Toxicology 235: 1–10.CrossRefPubMed
25.
Zurück zum Zitat Hung, H. 2007. Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition 60: 146–57.CrossRefPubMed Hung, H. 2007. Dietary quercetin inhibits proliferation of lung carcinoma cells. Forum of Nutrition 60: 146–57.CrossRefPubMed
26.
Zurück zum Zitat Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology 33: 1061–80.CrossRefPubMed Formica, J.V., and W. Regelson. 1995. Review of the biology of quercetin and related bioflavonoids. Food and Chemical Toxicology 33: 1061–80.CrossRefPubMed
27.
Zurück zum Zitat Hayashi, Y., M. Matsushima, T. Nakamura, M. Shibasaki, N. Hashimoto, K. Imaizumi, et al. 2012. Quercetin protects against pulmonary oxidant stress via heme oxygenase-1 induction in lung epithelial cells. Biochemical and Biophysical Research Communications 417: 169–74.CrossRefPubMed Hayashi, Y., M. Matsushima, T. Nakamura, M. Shibasaki, N. Hashimoto, K. Imaizumi, et al. 2012. Quercetin protects against pulmonary oxidant stress via heme oxygenase-1 induction in lung epithelial cells. Biochemical and Biophysical Research Communications 417: 169–74.CrossRefPubMed
28.
Zurück zum Zitat Park, H.K., S.J. Kim, Y. Kwon do, J.H. Park, and Y.C. Kim. 2010. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sciences 87: 181–6.CrossRefPubMed Park, H.K., S.J. Kim, Y. Kwon do, J.H. Park, and Y.C. Kim. 2010. Protective effect of quercetin against paraquat-induced lung injury in rats. Life Sciences 87: 181–6.CrossRefPubMed
29.
Zurück zum Zitat Taslidere, E., M. Esrefoglu, H. Elbe, A. Cetin, and B. Ates. 2014. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research 40: 59–65.CrossRefPubMed Taslidere, E., M. Esrefoglu, H. Elbe, A. Cetin, and B. Ates. 2014. Protective effects of melatonin and quercetin on experimental lung injury induced by carbon tetrachloride in rats. Experimental Lung Research 40: 59–65.CrossRefPubMed
30.
Zurück zum Zitat Terao, J., and M.K. Piskula. 1999. Flavonoids and membrane lipid peroxidation inhibition. Nutrition 15: 790–1.CrossRefPubMed Terao, J., and M.K. Piskula. 1999. Flavonoids and membrane lipid peroxidation inhibition. Nutrition 15: 790–1.CrossRefPubMed
31.
Zurück zum Zitat Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.CrossRefPubMedPubMedCentral Verma, R., L. Kushwah, D. Gohel, M. Patel, T. Marvania, and S. Balakrishnan. 2013. Evaluating the ameliorative potential of quercetin against the bleomycin-induced pulmonary fibrosis in Wistar rats. Pulmonary Medicine 2013: 921724.CrossRefPubMedPubMedCentral
32.
Zurück zum Zitat Yamagishi, M., M. Natsume, N. Osakabe, K. Okazaki, F. Furukawa, T. Imazawa, et al. 2003. Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters 191: 49–57.CrossRefPubMed Yamagishi, M., M. Natsume, N. Osakabe, K. Okazaki, F. Furukawa, T. Imazawa, et al. 2003. Chemoprevention of lung carcinogenesis by cacao liquor proanthocyanidins in a male rat multi-organ carcinogenesis model. Cancer Letters 191: 49–57.CrossRefPubMed
33.
Zurück zum Zitat Song, X., N. Siriwardhana, K. Rathore, D. Lin, and H.C. Wang. 2010. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Molecular Carcinogenesis 49: 450–63.PubMedPubMedCentral Song, X., N. Siriwardhana, K. Rathore, D. Lin, and H.C. Wang. 2010. Grape seed proanthocyanidin suppression of breast cell carcinogenesis induced by chronic exposure to combined 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone and benzo[a]pyrene. Molecular Carcinogenesis 49: 450–63.PubMedPubMedCentral
34.
Zurück zum Zitat Agackiran, Y., H. Gul, E. Gunay, N. Akyurek, L. Memis, S. Gunay, et al. 2012. The efficiency of proanthocyanidin in an experimental pulmonary fibrosis model: comparison with taurine. Inflammation 35: 1402–10.CrossRefPubMed Agackiran, Y., H. Gul, E. Gunay, N. Akyurek, L. Memis, S. Gunay, et al. 2012. The efficiency of proanthocyanidin in an experimental pulmonary fibrosis model: comparison with taurine. Inflammation 35: 1402–10.CrossRefPubMed
35.
Zurück zum Zitat Anekpankul, T., M. Goto, M. Sasaki, P. Pavasanta, and A. Shotipruk. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55: 343–9.CrossRef Anekpankul, T., M. Goto, M. Sasaki, P. Pavasanta, and A. Shotipruk. 2007. Extraction of anti-cancer damnacanthal from roots of Morinda citrifolia by subcritical water. Separation and Purification Technology 55: 343–9.CrossRef
36.
Zurück zum Zitat Taşkin, E.I., K. Akgün-Dar, A. Kapucu, E. Osanç, H. Doğruman, H. Eraltan, et al. 2009. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochemistry and Function 27: 542–6.CrossRefPubMed Taşkin, E.I., K. Akgün-Dar, A. Kapucu, E. Osanç, H. Doğruman, H. Eraltan, et al. 2009. Apoptosis-inducing effects of Morinda citrifolia L. and doxorubicin on the Ehrlich ascites tumor in Balb-c mice. Cell Biochemistry and Function 27: 542–6.CrossRefPubMed
37.
Zurück zum Zitat Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, T. Kwankitpraniti, K.W. Min, and S.J. Baek. 2011. Damnacanthal-induced anti-inflammation is associated with inhibition of NF-κB activity. Inflammation & Allergy Drug Targets 10: 455–63.CrossRefPubMed Nualsanit, T., P. Rojanapanthu, W. Gritsanapan, T. Kwankitpraniti, K.W. Min, and S.J. Baek. 2011. Damnacanthal-induced anti-inflammation is associated with inhibition of NF-κB activity. Inflammation & Allergy Drug Targets 10: 455–63.CrossRefPubMed
Metadaten
Titel
Comparison of the Anti-inflammatory Effects of Proanthocyanidin, Quercetin, and Damnacanthal on Benzo(a)pyrene Exposed A549 Alveolar Cell Line
verfasst von
Ersin Günay
Sefa Celik
Sevinc Sarinc-Ulasli
Arzu Özyürek
Ömer Hazman
Sibel Günay
Mehmet Özdemir
Mehmet Ünlü
Publikationsdatum
08.01.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2016
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-015-0301-3

Weitere Artikel der Ausgabe 2/2016

Inflammation 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.