Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 12/2018

11.07.2018 | Original Article

Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo)

verfasst von: Onofrio A. Catalano, Lale Umutlu, Niccolo Fuin, Matthew Louis Hibert, Michele Scipioni, Stefano Pedemonte, Mark Vangel, Andreea Maria Catana, Ken Herrmann, Felix Nensa, David Groshar, Umar Mahmood, Bruce R. Rosen, Ciprian Catana

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 12/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

To compare the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo).

Methods

MoCo PET/DCE-MRI of the upper abdomen was acquired in 44 consecutive oncologic patients and compared with non-MoCo PET/MRI. SUVmax and MTV of FDG-avid upper abdominal malignant lesions were assessed on MoCo and non-MoCo PET images. Image quality was compared between MoCo DCE-MRI and non-MoCo CE-MRI, and between fused MoCo PET/MRI and fused non-MoCo PET/MRI images.

Results

MoCo PET resulted in higher SUVmax (10.8 ± 5.45) than non-MoCo PET (9.62 ± 5.42) and lower MTV (35.55 ± 141.95 cm3) than non-MoCo PET (38.11 ± 198.14 cm3; p < 0.005 for both). The quality of MoCo DCE-MRI images (4.73 ± 0.5) was higher than that of non-MoCo CE-MRI images (4.53±0.71; p = 0.037). The quality of fused MoCo-PET/MRI images (4.96 ± 0.16) was higher than that of fused non-MoCo PET/MRI images (4.39 ± 0.66; p < 0.005).

Conclusion

MoCo PET/MRI provided qualitatively better images than non-MoCo PET/MRI, and upper abdominal malignant lesions demonstrated higher SUVmax and lower MTV on MoCo PET/MRI.
Literatur
1.
Zurück zum Zitat Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713.CrossRefPubMed Polycarpou I, Tsoumpas C, King AP, Marsden PK. Impact of respiratory motion correction and spatial resolution on lesion detection in PET: a simulation study based on real MR dynamic data. Phys Med Biol. 2014;59:697–713.CrossRefPubMed
2.
Zurück zum Zitat Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys. 2014;41:091905.CrossRefPubMedCentralPubMed Li G, Schmidtlein CR, Burger IA, Ridge CA, Solomon SB, Humm JL. Assessing and accounting for the impact of respiratory motion on FDG uptake and viable volume for liver lesions in free-breathing PET using respiration-suspended PET images as reference. Med Phys. 2014;41:091905.CrossRefPubMedCentralPubMed
3.
Zurück zum Zitat Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62.CrossRefPubMedCentralPubMed Liu C, Pierce LA, Alessio AM, Kinahan PE. The impact of respiratory motion on tumor quantification and delineation in static PET/CT imaging. Phys Med Biol. 2009;54:7345–62.CrossRefPubMedCentralPubMed
4.
Zurück zum Zitat Callahan J, Kron T, Siva S, Simoens N, Edgar A, Everitt S, et al. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat Oncol. 2014;9:291.CrossRefPubMedCentralPubMed Callahan J, Kron T, Siva S, Simoens N, Edgar A, Everitt S, et al. Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes. Radiat Oncol. 2014;9:291.CrossRefPubMedCentralPubMed
5.
Zurück zum Zitat Kalantari F, Li T, Jin M, Wang J. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR). Phys Med Biol. 2016;61:5639–61.CrossRefPubMedCentralPubMed Kalantari F, Li T, Jin M, Wang J. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR). Phys Med Biol. 2016;61:5639–61.CrossRefPubMedCentralPubMed
6.
Zurück zum Zitat Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMed Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50(Suppl 1):122S–50S.CrossRefPubMed
7.
Zurück zum Zitat Pietryga JA, Burke LMB, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 2014;271:426–34.CrossRefPubMed Pietryga JA, Burke LMB, Marin D, Jaffe TA, Bashir MR. Respiratory motion artifact affecting hepatic arterial phase imaging with gadoxetate disodium: examination recovery with a multiple arterial phase acquisition. Radiology. 2014;271:426–34.CrossRefPubMed
8.
Zurück zum Zitat Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology. 2014;272:123–31.CrossRefPubMed Davenport MS, Caoili EM, Kaza RK, Hussain HK. Matched within-patient cohort study of transient arterial phase respiratory motion-related artifact in MR imaging of the liver: gadoxetate disodium versus gadobenate dimeglumine. Radiology. 2014;272:123–31.CrossRefPubMed
9.
Zurück zum Zitat Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50.CrossRefPubMed Schleyer PJ, O’Doherty MJ, Barrington SF, Marsden PK. Retrospective data-driven respiratory gating for PET/CT. Phys Med Biol. 2009;54:1935–50.CrossRefPubMed
10.
Zurück zum Zitat Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.CrossRefPubMed Fürst S, Grimm R, Hong I, Souvatzoglou M, Casey ME, Schwaiger M, et al. Motion correction strategies for integrated PET/MR. J Nucl Med. 2015;56:261–9.CrossRefPubMed
11.
Zurück zum Zitat Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2:21.CrossRefPubMedCentralPubMed Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2:21.CrossRefPubMedCentralPubMed
12.
Zurück zum Zitat Petibon Y, Huang C, Ouyang J, Reese TG, Li Q, Syrkina A, et al. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys. 2014;41:042503.CrossRefPubMedCentralPubMed Petibon Y, Huang C, Ouyang J, Reese TG, Li Q, Syrkina A, et al. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging. Med Phys. 2014;41:042503.CrossRefPubMedCentralPubMed
13.
Zurück zum Zitat Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, et al. Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med. 2015;56:890–6.CrossRefPubMed Manber R, Thielemans K, Hutton BF, Barnes A, Ourselin S, Arridge S, et al. Practical PET respiratory motion correction in clinical PET/MR. J Nucl Med. 2015;56:890–6.CrossRefPubMed
14.
Zurück zum Zitat Balfour DR, Marsden PK, Polycarpou I, Kolbitsch C, King AP. Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed Eng Online. 2015;14:85.CrossRefPubMedCentralPubMed Balfour DR, Marsden PK, Polycarpou I, Kolbitsch C, King AP. Respiratory motion correction of PET using MR-constrained PET-PET registration. Biomed Eng Online. 2015;14:85.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, et al. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys. 2016;43:6234.CrossRefPubMed Rank CM, Heußer T, Wetscherek A, Freitag MT, Sedlaczek O, Schlemmer HP, et al. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med Phys. 2016;43:6234.CrossRefPubMed
19.
Zurück zum Zitat Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52:154–61.CrossRefPubMed Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, et al. MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med. 2011;52:154–61.CrossRefPubMed
20.
Zurück zum Zitat Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54:815–24.CrossRefPubMed Catana C, Guimaraes AR, Rosen BR. PET and MR imaging: the odd couple or a match made in heaven? J Nucl Med. 2013;54:815–24.CrossRefPubMed
21.
Zurück zum Zitat Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.CrossRefPubMed Bamrungchart S, Tantaway EM, Midia EC, Hernandes MA, Srirattanapong S, Dale BM, et al. Free breathing three-dimensional gradient echo-sequence with radial data sampling (radial 3D-GRE) examination of the pancreas: comparison with standard 3D-GRE volumetric interpolated breathhold examination (VIBE). J Magn Reson Imaging. 2013;38:1572–7.CrossRefPubMed
22.
Zurück zum Zitat Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.CrossRefPubMed Azevedo RM, de Campos RO, Ramalho M, Herédia V, Dale BM, Semelka RC. Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol. 2011;197:650–7.CrossRefPubMed
23.
Zurück zum Zitat Kaltenbach B, Roman A, Polkowski C, Gruber-Rouh T, Bauer RW, Hammerstingl R, et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. Eur J Radiol. 2017;86:26–32.CrossRefPubMed Kaltenbach B, Roman A, Polkowski C, Gruber-Rouh T, Bauer RW, Hammerstingl R, et al. Free-breathing dynamic liver examination using a radial 3D T1-weighted gradient echo sequence with moderate undersampling for patients with limited breath-holding capacity. Eur J Radiol. 2017;86:26–32.CrossRefPubMed
24.
Zurück zum Zitat Reiner CS, Neville AM, Nazeer HK, Breault S, Dale BM, Merkle EM, et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. Eur Radiol. 2013;23:3087–93.CrossRefPubMed Reiner CS, Neville AM, Nazeer HK, Breault S, Dale BM, Merkle EM, et al. Contrast-enhanced free-breathing 3D T1-weighted gradient-echo sequence for hepatobiliary MRI in patients with breath-holding difficulties. Eur Radiol. 2013;23:3087–93.CrossRefPubMed
25.
Zurück zum Zitat Lee CK, Seo N, Kim B, Huh J, Kim JK, Lee SS, et al. The effects of breathing motion on DCE-MRI images: phantom studies simulating respiratory motion to compare CAIPIRINHA-VIBE, radial-VIBE, and conventional VIBE. Korean J Radiol. 2017;18:289–98.CrossRefPubMedCentralPubMed Lee CK, Seo N, Kim B, Huh J, Kim JK, Lee SS, et al. The effects of breathing motion on DCE-MRI images: phantom studies simulating respiratory motion to compare CAIPIRINHA-VIBE, radial-VIBE, and conventional VIBE. Korean J Radiol. 2017;18:289–98.CrossRefPubMedCentralPubMed
26.
Zurück zum Zitat Ogawa M, Kawai T, Kan H, Kobayashi S, Akagawa Y, Suzuki K, et al. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique. Abdom Imaging. 2015;40:3091–8.CrossRefPubMed Ogawa M, Kawai T, Kan H, Kobayashi S, Akagawa Y, Suzuki K, et al. Shortened breath-hold contrast-enhanced MRI of the liver using a new parallel imaging technique, CAIPIRINHA (controlled aliasing in parallel imaging results in higher acceleration): a comparison with conventional GRAPPA technique. Abdom Imaging. 2015;40:3091–8.CrossRefPubMed
27.
Zurück zum Zitat Nyflot MJ, Lee TC, Alessio AM, Wollenweber SD, Stearns CW, Bowen SR, et al. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging. Med Phys. 2015;42:110–20.CrossRefPubMed Nyflot MJ, Lee TC, Alessio AM, Wollenweber SD, Stearns CW, Bowen SR, et al. Impact of CT attenuation correction method on quantitative respiratory-correlated (4D) PET/CT imaging. Med Phys. 2015;42:110–20.CrossRefPubMed
28.
Zurück zum Zitat Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ. A statistical model of respiratory motion and deformation of the liver. In: Niessen WJ, Viergever MA, editors. Medical image computing and computer-assisted intervention – MICCAI 2001, vol. 2208. Berlin Heidelberg: Springer; 2001. p. 1338–40.CrossRef Blackall JM, King AP, Penney GP, Adam A, Hawkes DJ. A statistical model of respiratory motion and deformation of the liver. In: Niessen WJ, Viergever MA, editors. Medical image computing and computer-assisted intervention – MICCAI 2001, vol. 2208. Berlin Heidelberg: Springer; 2001. p. 1338–40.CrossRef
29.
Zurück zum Zitat Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.PubMed Goerres GW, Kamel E, Seifert B, Burger C, Buck A, Hany TF, et al. Accuracy of image coregistration of pulmonary lesions in patients with non-small cell lung cancer using an integrated PET/CT system. J Nucl Med. 2002;43:1469–75.PubMed
30.
Zurück zum Zitat Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.PubMed Erdi YE, Nehmeh SA, Pan T, Pevsner A, Rosenzweig KE, Mageras G, et al. The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. J Nucl Med. 2004;45:1287–92.PubMed
Metadaten
Titel
Comparison of the clinical performance of upper abdominal PET/DCE-MRI with and without concurrent respiratory motion correction (MoCo)
verfasst von
Onofrio A. Catalano
Lale Umutlu
Niccolo Fuin
Matthew Louis Hibert
Michele Scipioni
Stefano Pedemonte
Mark Vangel
Andreea Maria Catana
Ken Herrmann
Felix Nensa
David Groshar
Umar Mahmood
Bruce R. Rosen
Ciprian Catana
Publikationsdatum
11.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 12/2018
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-018-4084-2

Weitere Artikel der Ausgabe 12/2018

European Journal of Nuclear Medicine and Molecular Imaging 12/2018 Zur Ausgabe