Skip to main content
Erschienen in: Diabetologia 9/2017

03.06.2017 | Article

Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications

verfasst von: Ming Zhu, Xiao He, Xiao-Hui Wang, Wei Qiu, Wei Xing, Wei Guo, Tian-Chen An, Luo-Quan Ao, Xue-Ting Hu, Zhan Li, Xiao-Ping Liu, Nan Xiao, Jian Yu, Hong Huang, Xiang Xu

Erschienen in: Diabetologia | Ausgabe 9/2017

Einloggen, um Zugang zu erhalten

Abstract

Aims/hypothesis

Regeneration and repair mediated by mesenchymal stem cells (MSCs) are key self-protection mechanisms against diabetic complications, a reflection of diabetes-related cell/tissue damage and dysfunction. MSC abnormalities have been reported during the progression of diabetic complications, but little is known about whether a deficiency in these cells plays a role in the pathogenesis of this disease. In addition to MSC resident sites, peripheral circulation is a major source of MSCs that participate in the regeneration and repair of damaged tissue. Therefore, we investigated whether there is a deficiency of circulating MSC-like cells in people with diabetes and explored the underlying mechanisms.

Methods

The abundance of MSC-like cells in peripheral blood was evaluated by FACS. Selected diabetic and non-diabetic serum (DS and NDS, respectively) samples were used to mimic diabetic and non-diabetic microenvironments, respectively. The proliferation and survival of MSCs under different serum conditions were analysed using several detection methods. The survival of MSCs in diabetic microenvironments was also investigated in vivo using leptin receptor mutant (Lepr db/db ) mice.

Results

Our data showed a significant decrease in the abundance of circulating MSC-like cells, which was correlated with complications in individuals with type 2 diabetes. DS strongly impaired the proliferation and survival of culture-expanded MSCs through the complement system but not through exposure to high glucose levels. DS-induced MSC apoptosis was mediated, at least in part, by the complement C5a-dependent upregulation of Fas-associated protein with death domain (FADD) and the Bcl-2-associated X protein (BAX)/B cell lymphoma 2 (Bcl-2) ratio, which was significantly inhibited by neutralising C5a or by the pharmacological or genetic inhibition of the C5a receptor (C5aR) on MSCs. Moreover, blockade of the C5a/C5aR pathway significantly inhibited the apoptosis of transplanted MSCs in Lepr db/db recipient mice.

Conclusions/interpretation

C5a-dependent apoptotic death is probably involved in MSC deficiency and in the progression of complications in individuals with type 2 diabetes. Therefore, anticomplement therapy may be a novel intervention for diabetic complications.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva
2.
Zurück zum Zitat NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530CrossRef NCD Risk Factor Collaboration (2016) Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4·4 million participants. Lancet 387:1513–1530CrossRef
3.
Zurück zum Zitat Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321CrossRefPubMed Whiting DR, Guariguata L, Weil C, Shaw J (2011) IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract 94:311–321CrossRefPubMed
4.
Zurück zum Zitat International Diabetes Federation (2015) IDF diabetes atlas, 7th edn. International Diabetes Federation, Brussels International Diabetes Federation (2015) IDF diabetes atlas, 7th edn. International Diabetes Federation, Brussels
6.
Zurück zum Zitat Dixon J (2015) The global burden of obesity and diabetes. In: Brethauer A, Schauer R, Schirmer D (eds) Minimally invasive bariatric surgery. Springer, New York, pp 1–6 Dixon J (2015) The global burden of obesity and diabetes. In: Brethauer A, Schauer R, Schirmer D (eds) Minimally invasive bariatric surgery. Springer, New York, pp 1–6
7.
Zurück zum Zitat Marcovecchio ML, Lucantoni M, Chiarelli F (2011) Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabetes Technol Ther 13:389–394CrossRefPubMed Marcovecchio ML, Lucantoni M, Chiarelli F (2011) Role of chronic and acute hyperglycemia in the development of diabetes complications. Diabetes Technol Ther 13:389–394CrossRefPubMed
8.
Zurück zum Zitat Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625CrossRefPubMed
9.
Zurück zum Zitat Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMed Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820CrossRefPubMed
10.
Zurück zum Zitat Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29:5–10CrossRefPubMed Volarevic V, Arsenijevic N, Lukic ML, Stojkovic M (2011) Concise review: mesenchymal stem cell treatment of the complications of diabetes mellitus. Stem Cells 29:5–10CrossRefPubMed
11.
Zurück zum Zitat Wise AF, Ricardo SD (2012) Mesenchymal stem cells in kidney inflammation and repair. Nephrology 17:1–10CrossRefPubMed Wise AF, Ricardo SD (2012) Mesenchymal stem cells in kidney inflammation and repair. Nephrology 17:1–10CrossRefPubMed
12.
Zurück zum Zitat Trzaska K, Castillo M, Rameshwar P (2008) Adult mesenchymal stem cells in neural regeneration and repair: current advances and future prospects (review). Mol Med Rep 1:307–316PubMed Trzaska K, Castillo M, Rameshwar P (2008) Adult mesenchymal stem cells in neural regeneration and repair: current advances and future prospects (review). Mol Med Rep 1:307–316PubMed
13.
Zurück zum Zitat Zhang Y, Liang X, Lian Q, Tse H-F (2013) Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration. Expert Rev Cardiovasc Ther 11:505–517CrossRefPubMed Zhang Y, Liang X, Lian Q, Tse H-F (2013) Perspective and challenges of mesenchymal stem cells for cardiovascular regeneration. Expert Rev Cardiovasc Ther 11:505–517CrossRefPubMed
14.
Zurück zum Zitat Kim Y, Kwon J, Hong M et al (2013) Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin. BMC Cell Biol 14:38CrossRefPubMedPubMedCentral Kim Y, Kwon J, Hong M et al (2013) Restoration of angiogenic capacity of diabetes-insulted mesenchymal stem cells by oxytocin. BMC Cell Biol 14:38CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC (2015) Progenitor cell dysfunctions underlie some diabetic complications. Am J Pathol 185:2607–2618CrossRefPubMedPubMedCentral Rodrigues M, Wong VW, Rennert RC, Davis CR, Longaker MT, Gurtner GC (2015) Progenitor cell dysfunctions underlie some diabetic complications. Am J Pathol 185:2607–2618CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Yang G, Jia Y, Li C, Cheng Q, Yue W, Pei X (2015) Hyperglycemic stress impairs the stemness capacity of kidney stem cells in rats. PLoS One 10:e0139607CrossRefPubMedPubMedCentral Yang G, Jia Y, Li C, Cheng Q, Yue W, Pei X (2015) Hyperglycemic stress impairs the stemness capacity of kidney stem cells in rats. PLoS One 10:e0139607CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat El-Ftesi S, Chang EI, Longaker MT, Gurtner GC (2009) Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg 123:475–485CrossRefPubMedPubMedCentral El-Ftesi S, Chang EI, Longaker MT, Gurtner GC (2009) Aging and diabetes impair the neovascular potential of adipose-derived stromal cells. Plast Reconstr Surg 123:475–485CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Kim SM, Kim YH, Jun YJ, Yoo G, Rhie JW (2016) The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells. Int Wound J 13:33–41CrossRefPubMed Kim SM, Kim YH, Jun YJ, Yoo G, Rhie JW (2016) The effect of diabetes on the wound healing potential of adipose-tissue derived stem cells. Int Wound J 13:33–41CrossRefPubMed
19.
Zurück zum Zitat Kondo M, Kamiya H, Himeno T et al (2015) Therapeutic efficacy of bone marrow-derived mononuclear cells in diabetic polyneuropathy is impaired with aging or diabetes. J Diabetes Invest 6:140–149CrossRef Kondo M, Kamiya H, Himeno T et al (2015) Therapeutic efficacy of bone marrow-derived mononuclear cells in diabetic polyneuropathy is impaired with aging or diabetes. J Diabetes Invest 6:140–149CrossRef
20.
Zurück zum Zitat Nowak WN, Borys S, Kusińska K et al (2014) Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome. J Diabetes Invest 5:99–107CrossRef Nowak WN, Borys S, Kusińska K et al (2014) Number of circulating pro-angiogenic cells, growth factor and anti-oxidative gene profiles might be altered in type 2 diabetes with and without diabetic foot syndrome. J Diabetes Invest 5:99–107CrossRef
21.
Zurück zum Zitat Qin X, Goldfine A, Krumrei N et al (2004) Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53:2653–2661CrossRefPubMed Qin X, Goldfine A, Krumrei N et al (2004) Glycation inactivation of the complement regulatory protein CD59: a possible role in the pathogenesis of the vascular complications of human diabetes. Diabetes 53:2653–2661CrossRefPubMed
22.
Zurück zum Zitat Østergaard J, Hansen TK, Thiel S, Flyvbjerg A (2005) Complement activation and diabetic vascular complications. Clin Chim Acta 361:10–19CrossRefPubMed Østergaard J, Hansen TK, Thiel S, Flyvbjerg A (2005) Complement activation and diabetic vascular complications. Clin Chim Acta 361:10–19CrossRefPubMed
23.
Zurück zum Zitat Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA (2015) Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev 36:272–288CrossRefPubMedPubMedCentral Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA (2015) Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev 36:272–288CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Flyvbjerg A (2010) Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 6:94–101CrossRefPubMed Flyvbjerg A (2010) Diabetic angiopathy, the complement system and the tumor necrosis factor superfamily. Nat Rev Endocrinol 6:94–101CrossRefPubMed
25.
Zurück zum Zitat Lachmann P-J (2010) Preparing serum for functional complement assays. J Immunol Methods 352:195–197CrossRefPubMed Lachmann P-J (2010) Preparing serum for functional complement assays. J Immunol Methods 352:195–197CrossRefPubMed
26.
Zurück zum Zitat Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528CrossRefPubMed Muller-Eberhard HJ (1986) The membrane attack complex of complement. Annu Rev Immunol 4:503–528CrossRefPubMed
27.
Zurück zum Zitat Ember J, Jagels M, Hugli T (1998) Characterization of complement anaphylatoxins and their biological responses. In: Volanakis JE, Frank MM (eds) Human complement system in health and disease. CRC Press, New York, pp 241–284CrossRef Ember J, Jagels M, Hugli T (1998) Characterization of complement anaphylatoxins and their biological responses. In: Volanakis JE, Frank MM (eds) Human complement system in health and disease. CRC Press, New York, pp 241–284CrossRef
28.
Zurück zum Zitat Köhl J (2001) Anaphylatoxins and infectious and non-infectious inflammatory diseases. Mol Immunol 38:175–187CrossRefPubMed Köhl J (2001) Anaphylatoxins and infectious and non-infectious inflammatory diseases. Mol Immunol 38:175–187CrossRefPubMed
29.
30.
Zurück zum Zitat Flierl MA, Rittirsch D, Chen AJ et al (2008) The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis. PLoS One 3:e2560CrossRefPubMedPubMedCentral Flierl MA, Rittirsch D, Chen AJ et al (2008) The complement anaphylatoxin C5a induces apoptosis in adrenomedullary cells during experimental sepsis. PLoS One 3:e2560CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Pavlovski D, Thundyil J, Monk PN, Wetsel RA, Taylor SM, Woodruff TM (2012) Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. FASEB J 26:3680–3690CrossRefPubMed Pavlovski D, Thundyil J, Monk PN, Wetsel RA, Taylor SM, Woodruff TM (2012) Generation of complement component C5a by ischemic neurons promotes neuronal apoptosis. FASEB J 26:3680–3690CrossRefPubMed
32.
Zurück zum Zitat Hu R, Chen ZF, Yan J et al (2014) Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death Dis 5:e1330CrossRefPubMedPubMedCentral Hu R, Chen ZF, Yan J et al (2014) Complement C5a exacerbates acute lung injury induced through autophagy-mediated alveolar macrophage apoptosis. Cell Death Dis 5:e1330CrossRefPubMedPubMedCentral
33.
Zurück zum Zitat Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM (2013) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J 27:855–864CrossRefPubMed Li R, Coulthard LG, Wu MC, Taylor SM, Woodruff TM (2013) C5L2: a controversial receptor of complement anaphylatoxin, C5a. FASEB J 27:855–864CrossRefPubMed
34.
Zurück zum Zitat Porada C, Zanjani E, Almeida-Porada G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. CSCR 1:365–369CrossRef Porada C, Zanjani E, Almeida-Porada G (2006) Adult mesenchymal stem cells: a pluripotent population with multiple applications. CSCR 1:365–369CrossRef
36.
Zurück zum Zitat Mundra V, Gerling IC, Mahato RI (2013) Mesenchymal stem cell-based therapy. Mol Pharm 10:77–89CrossRefPubMed Mundra V, Gerling IC, Mahato RI (2013) Mesenchymal stem cell-based therapy. Mol Pharm 10:77–89CrossRefPubMed
37.
Zurück zum Zitat Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317CrossRefPubMed
38.
Zurück zum Zitat West MD, Nasonkin I, Larocca D et al (2016) Adult versus pluripotent stem cell-derived mesenchymal stem cells: the need for more precise nomenclature. Curr Stem Cell Rep 2:299–303CrossRefPubMedPubMedCentral West MD, Nasonkin I, Larocca D et al (2016) Adult versus pluripotent stem cell-derived mesenchymal stem cells: the need for more precise nomenclature. Curr Stem Cell Rep 2:299–303CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Stolzing A, Coleman N, Scutt A (2006) Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res 9:31–35CrossRefPubMed Stolzing A, Coleman N, Scutt A (2006) Glucose-induced replicative senescence in mesenchymal stem cells. Rejuvenation Res 9:31–35CrossRefPubMed
40.
Zurück zum Zitat Li W-T, Hu W-K, Ho F-M (2013) High glucose induced bone loss via attenuating the proliferation and osteoblastogenesis and enhancing adipogenesis of bone marrow mesenchymal stem cells. Biomed Eng Appl Basis Commun 25:1340010CrossRef Li W-T, Hu W-K, Ho F-M (2013) High glucose induced bone loss via attenuating the proliferation and osteoblastogenesis and enhancing adipogenesis of bone marrow mesenchymal stem cells. Biomed Eng Appl Basis Commun 25:1340010CrossRef
41.
Zurück zum Zitat Li Y-M, Schilling T, Benisch P et al (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363:209–215CrossRefPubMed Li Y-M, Schilling T, Benisch P et al (2007) Effects of high glucose on mesenchymal stem cell proliferation and differentiation. Biochem Biophys Res Commun 363:209–215CrossRefPubMed
42.
Zurück zum Zitat Weil BR, Abarbanell AM, Herrmann JL, Wang Y, Meldrum DR (2009) High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Phys Regul Integr Comp Phys 296:R1735–R1743 Weil BR, Abarbanell AM, Herrmann JL, Wang Y, Meldrum DR (2009) High glucose concentration in cell culture medium does not acutely affect human mesenchymal stem cell growth factor production or proliferation. Am J Phys Regul Integr Comp Phys 296:R1735–R1743
43.
Zurück zum Zitat Ryu JM, Lee MY, Yun SP, Han HJ (2010) High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-β1expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. J Cell Physiol 224:59–70PubMed Ryu JM, Lee MY, Yun SP, Han HJ (2010) High glucose regulates cyclin D1/E of human mesenchymal stem cells through TGF-β1expression via Ca2+/PKC/MAPKs and PI3K/Akt/mTOR signal pathways. J Cell Physiol 224:59–70PubMed
44.
Zurück zum Zitat Hill A, Ridley S, Esser D et al (2006) Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 107:2131–2137CrossRefPubMed Hill A, Ridley S, Esser D et al (2006) Protection of erythrocytes from human complement-mediated lysis by membrane-targeted recombinant soluble CD59: a new approach to PNH therapy. Blood 107:2131–2137CrossRefPubMed
45.
Zurück zum Zitat Hughes J, Nangaku M, Alpers C, Shankland S, Couser W, Johnson R (2000) C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis. Am J Physiol Ren Physiol 278:F747–F757 Hughes J, Nangaku M, Alpers C, Shankland S, Couser W, Johnson R (2000) C5b-9 membrane attack complex mediates endothelial cell apoptosis in experimental glomerulonephritis. Am J Physiol Ren Physiol 278:F747–F757
46.
Zurück zum Zitat Nauta AJ, Daha MR, Tijsma O, van de Water B, Tedeco F, Roos A (2002) The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol 32:783CrossRefPubMed Nauta AJ, Daha MR, Tijsma O, van de Water B, Tedeco F, Roos A (2002) The membrane attack complex of complement induces caspase activation and apoptosis. Eur J Immunol 32:783CrossRefPubMed
47.
Zurück zum Zitat Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ (2003) DNA damage is a novel response to sublytic complement C5b-9–induced injury in podocytes. J Clin Invest 111:877–885CrossRefPubMedPubMedCentral Pippin JW, Durvasula R, Petermann A, Hiromura K, Couser WG, Shankland SJ (2003) DNA damage is a novel response to sublytic complement C5b-9–induced injury in podocytes. J Clin Invest 111:877–885CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Vlaicu SI, Tatomir A, Boodhoo D et al (2016) The role of complement system in adipose tissue-related inflammation. Immunol Res 64:653–664CrossRefPubMed Vlaicu SI, Tatomir A, Boodhoo D et al (2016) The role of complement system in adipose tissue-related inflammation. Immunol Res 64:653–664CrossRefPubMed
Metadaten
Titel
Complement C5a induces mesenchymal stem cell apoptosis during the progression of chronic diabetic complications
verfasst von
Ming Zhu
Xiao He
Xiao-Hui Wang
Wei Qiu
Wei Xing
Wei Guo
Tian-Chen An
Luo-Quan Ao
Xue-Ting Hu
Zhan Li
Xiao-Ping Liu
Nan Xiao
Jian Yu
Hong Huang
Xiang Xu
Publikationsdatum
03.06.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Diabetologia / Ausgabe 9/2017
Print ISSN: 0012-186X
Elektronische ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-017-4316-1

Weitere Artikel der Ausgabe 9/2017

Diabetologia 9/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.