Skip to main content
Erschienen in: Tumor Biology 1/2016

14.08.2015 | Original Article

Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation

verfasst von: Xueqing Hu, Fangzhen Jiang, Qi Bao, Huan Qian, Quan Fang, Zheren Shao

Erschienen in: Tumor Biology | Ausgabe 1/2016

Einloggen, um Zugang zu erhalten

Abstract

It is vital to develop new therapeutic agents for the treatment of melanoma. In the current study, we studied the potential effect of Compound 13 (C13), a novel α1-selective AMP-activated protein kinase (AMPK) activator, in melanoma cells. We showed that C13 exerted mainly cytostatic, but not cytotoxic activities in melanoma cells. C13 potently inhibited proliferation in melanoma cell lines (A375, OCM-1 and B16), but not in B10BR melanocytes. Meanwhile, the AMPK activator inhibited melanoma cell cycle progression by inducing G1-S arrest. Significantly, we failed to detect significant melanoma cell death or apoptosis after the C13 treatment. For the mechanism study, we showed that C13 activated AMPK and inhibited mammalian target of rapamycin complex 1 (mTORC1) signaling in melanoma cells through interaction with the α1 subunit. Short hairpin RNA (shRNA)-mediated knockdown of AMPKα1 not only blocked C13-mediated AMPK activation but also abolished its antiproliferative activity against melanoma cells. Together, these results show that C13 inhibits melanoma cell proliferation through activating AMPK signaling. Our data suggest that C13 along with other small molecular AMPK activators may be beneficial for patients with melanoma.
Literatur
1.
2.
Zurück zum Zitat Webster RM, Mentzer SE. The malignant melanoma landscape. Nat Rev Drug Discov. 2014;13:491–2.CrossRefPubMed Webster RM, Mentzer SE. The malignant melanoma landscape. Nat Rev Drug Discov. 2014;13:491–2.CrossRefPubMed
3.
Zurück zum Zitat Kingwell K. Anticancer drugs: a new weapon against metastatic melanoma. Nat Rev Drug Discov. 2014;13. Kingwell K. Anticancer drugs: a new weapon against metastatic melanoma. Nat Rev Drug Discov. 2014;13.
4.
Zurück zum Zitat Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, et al. Why is melanoma so metastatic? Pigment Cell Melanoma Res. 2014;27:19–36.CrossRefPubMed Braeuer RR, Watson IR, Wu CJ, Mobley AK, Kamiya T, Shoshan E, et al. Why is melanoma so metastatic? Pigment Cell Melanoma Res. 2014;27:19–36.CrossRefPubMed
5.
Zurück zum Zitat Eggermont AM, Robert C. Melanoma: smart therapeutic strategies in immuno-oncology. Nat Rev Clin Oncol. 2014;11:181–2.CrossRefPubMed Eggermont AM, Robert C. Melanoma: smart therapeutic strategies in immuno-oncology. Nat Rev Clin Oncol. 2014;11:181–2.CrossRefPubMed
7.
Zurück zum Zitat Faubert B, Vincent EE, Poffenberger MC, Jones RG. The amp-activated protein kinase (ampk) and cancer: many faces of a metabolic regulator. Cancer Lett. 2015;356:165–70.CrossRefPubMed Faubert B, Vincent EE, Poffenberger MC, Jones RG. The amp-activated protein kinase (ampk) and cancer: many faces of a metabolic regulator. Cancer Lett. 2015;356:165–70.CrossRefPubMed
8.
Zurück zum Zitat Hardie DG, Ross FA, Hawley SA. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.CrossRefPubMed Hardie DG, Ross FA, Hawley SA. Ampk: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 2012;13:251–62.CrossRefPubMed
9.
Zurück zum Zitat Carling D, Thornton C, Woods A, Sanders MJ. Amp-activated protein kinase: new regulation, new roles? Biochem J. 2012;445:11–27.CrossRefPubMed Carling D, Thornton C, Woods A, Sanders MJ. Amp-activated protein kinase: new regulation, new roles? Biochem J. 2012;445:11–27.CrossRefPubMed
10.
Zurück zum Zitat Hardie DG, Ross FA, Hawley SA. Amp-activated protein kinase: a target for drugs both ancient and modern. Chem Biol. 2012;19:1222–36.CrossRefPubMed Hardie DG, Ross FA, Hawley SA. Amp-activated protein kinase: a target for drugs both ancient and modern. Chem Biol. 2012;19:1222–36.CrossRefPubMed
11.
Zurück zum Zitat Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, et al. Metformin blocks melanoma invasion and metastasis development in ampk/p53-dependent manner. Mol Cancer Ther. 2013;12:1605–15.CrossRefPubMed Cerezo M, Tichet M, Abbe P, Ohanna M, Lehraiki A, Rouaud F, et al. Metformin blocks melanoma invasion and metastasis development in ampk/p53-dependent manner. Mol Cancer Ther. 2013;12:1605–15.CrossRefPubMed
12.
Zurück zum Zitat Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2:e199.CrossRefPubMedPubMedCentral Tomic T, Botton T, Cerezo M, Robert G, Luciano F, Puissant A, et al. Metformin inhibits melanoma development through autophagy and apoptosis mechanisms. Cell Death Dis. 2011;2:e199.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, et al. Mechanism of action of compound-13: an alpha1-selective small molecule activator of ampk. Chem Biol. 2014;21:866–79.CrossRefPubMedPubMedCentral Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, et al. Mechanism of action of compound-13: an alpha1-selective small molecule activator of ampk. Chem Biol. 2014;21:866–79.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Gomez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, et al. A potent and selective ampk activator that inhibits de novo lipogenesis. ACS Med Chem Lett. 2010;1:478–82.CrossRefPubMedPubMedCentral Gomez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, et al. A potent and selective ampk activator that inhibits de novo lipogenesis. ACS Med Chem Lett. 2010;1:478–82.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the egfr signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:15–31.CrossRefPubMedPubMedCentral Seshacharyulu P, Ponnusamy MP, Haridas D, Jain M, Ganti AK, Batra SK. Targeting the egfr signaling pathway in cancer therapy. Expert Opin Ther Targets. 2012;16:15–31.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Zhang YM, Zhang ZQ, Liu YY, Zhou X, Shi XH, Jiang Q, et al. Requirement of galphai1/3-gab1 signaling complex for keratinocyte growth factor-induced pi3k-akt-mtorc1 activation. J Investig Dermatol. 2015;135:181–91.CrossRefPubMed Zhang YM, Zhang ZQ, Liu YY, Zhou X, Shi XH, Jiang Q, et al. Requirement of galphai1/3-gab1 signaling complex for keratinocyte growth factor-induced pi3k-akt-mtorc1 activation. J Investig Dermatol. 2015;135:181–91.CrossRefPubMed
18.
Zurück zum Zitat Lv G, Zhu H, Zhou F, Lin Z, Lin G, Li C. Amp-activated protein kinase activation protects gastric epithelial cells from helicobacter pylori-induced apoptosis. Biochem Biophys Res Commun. 2014;453:13–8.CrossRefPubMed Lv G, Zhu H, Zhou F, Lin Z, Lin G, Li C. Amp-activated protein kinase activation protects gastric epithelial cells from helicobacter pylori-induced apoptosis. Biochem Biophys Res Commun. 2014;453:13–8.CrossRefPubMed
19.
Zurück zum Zitat Serini S, Fasano E, Piccioni E, Monego G, Cittadini AR, Celleno L, et al. Dha induces apoptosis and differentiation in human melanoma cells in vitro: involvement of hur-mediated cox-2 mrna stabilization and beta-catenin nuclear translocation. Carcinogenesis. 2012;33:164–73.CrossRefPubMed Serini S, Fasano E, Piccioni E, Monego G, Cittadini AR, Celleno L, et al. Dha induces apoptosis and differentiation in human melanoma cells in vitro: involvement of hur-mediated cox-2 mrna stabilization and beta-catenin nuclear translocation. Carcinogenesis. 2012;33:164–73.CrossRefPubMed
20.
Zurück zum Zitat Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell. 2006;126:955–68.CrossRefPubMed Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X, et al. Tsc2 integrates wnt and energy signals via a coordinated phosphorylation by ampk and gsk3 to regulate cell growth. Cell. 2006;126:955–68.CrossRefPubMed
21.
Zurück zum Zitat Inoki K, Zhu T, Guan KL. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.CrossRefPubMed Inoki K, Zhu T, Guan KL. Tsc2 mediates cellular energy response to control cell growth and survival. Cell. 2003;115:577–90.CrossRefPubMed
22.
Zurück zum Zitat Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to braf and mek inhibitors by co-targeting the akt/mtor pathway. PLoS One. 2011;6, e28973.CrossRefPubMedPubMedCentral Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, et al. Reversing melanoma cross-resistance to braf and mek inhibitors by co-targeting the akt/mtor pathway. PLoS One. 2011;6, e28973.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Russo AE, Torrisi E, Bevelacqua Y, Perrotta R, Libra M, McCubrey JA, et al. Melanoma: molecular pathogenesis and emerging target therapies (review). Int J Oncol. 2009;34:1481–9.PubMed Russo AE, Torrisi E, Bevelacqua Y, Perrotta R, Libra M, McCubrey JA, et al. Melanoma: molecular pathogenesis and emerging target therapies (review). Int J Oncol. 2009;34:1481–9.PubMed
24.
Zurück zum Zitat Populo H, Soares P, Faustino A, Rocha AS, Silva P, Azevedo F, et al. Mtor pathway activation in cutaneous melanoma is associated with poorer prognosis characteristics. Pigment Cell Melanoma Res. 2011;24:254–7.CrossRefPubMed Populo H, Soares P, Faustino A, Rocha AS, Silva P, Azevedo F, et al. Mtor pathway activation in cutaneous melanoma is associated with poorer prognosis characteristics. Pigment Cell Melanoma Res. 2011;24:254–7.CrossRefPubMed
25.
Zurück zum Zitat Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.CrossRefPubMed Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, et al. Identification and characterization of a small molecule ampk activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab. 2006;3:403–16.CrossRefPubMed
26.
Zurück zum Zitat Ducommun S, Ford RJ, Bultot L, Deak M, Bertrand L, Kemp BE, et al. Enhanced activation of cellular ampk by dual-small molecule treatment: Aicar and a769662. Am J Physiol Endocrinol Metab. 2014;306:E688–96.CrossRefPubMedPubMedCentral Ducommun S, Ford RJ, Bultot L, Deak M, Bertrand L, Kemp BE, et al. Enhanced activation of cellular ampk by dual-small molecule treatment: Aicar and a769662. Am J Physiol Endocrinol Metab. 2014;306:E688–96.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rattan R, Giri S, Hartmann LC, Shridhar V. Metformin attenuates ovarian cancer cell growth in an amp-kinase dispensable manner. J Cell Mol Med. 2011;15:166–78.CrossRefPubMed Rattan R, Giri S, Hartmann LC, Shridhar V. Metformin attenuates ovarian cancer cell growth in an amp-kinase dispensable manner. J Cell Mol Med. 2011;15:166–78.CrossRefPubMed
29.
30.
Zurück zum Zitat Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ulk1 (hatg1) by amp-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.CrossRefPubMed Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, et al. Phosphorylation of ulk1 (hatg1) by amp-activated protein kinase connects energy sensing to mitophagy. Science. 2011;331:456–61.CrossRefPubMed
Metadaten
Titel
Compound 13, an α1-selective small molecule activator of AMPK, potently inhibits melanoma cell proliferation
verfasst von
Xueqing Hu
Fangzhen Jiang
Qi Bao
Huan Qian
Quan Fang
Zheren Shao
Publikationsdatum
14.08.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3854-8

Weitere Artikel der Ausgabe 1/2016

Tumor Biology 1/2016 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.