Skip to main content
Erschienen in: Journal of Medical Systems 11/2018

01.11.2018 | Image & Signal Processing

Compression of CT Images using Contextual Vector Quantization with Simulated Annealing for Telemedicine Application

verfasst von: S. N. Kumar, A. Lenin Fred, P. Sebastin Varghese

Erschienen in: Journal of Medical Systems | Ausgabe 11/2018

Einloggen, um Zugang zu erhalten

Abstract

The role of compression is vital in telemedicine for the storage and transmission of medical images. This work is based on Contextual Vector Quantization (CVQ) compression algorithm with codebook optimization by Simulated Annealing (SA) for the compression of CT images. The region of interest (foreground) and background are separated initially by region growing algorithm. The region of interest is encoded with low compression ratio and high bit rate; the background region is encoded with high compression ratio and low bit rate. The codebook generated from foreground and background is merged, optimized by simulated annealing algorithm. The performance of CVQ-SA algorithm was validated in terms of metrics like Peak to Signal Noise Ratio (PSNR), Mean Square Error (MSE) and Compression Ratio (CR), the result was superior when compared with classical VQ, CVQ, JPEG lossless and JPEG lossy algorithms. The algorithms are developed in Matlab 2010a and tested on real-time abdomen CT datasets. The quality of reconstructed image was also validated by metrics like Structural Content (SC), Normalized Absolute Error (NAE), Normalized Cross Correlation (NCC) and statistical analysis was performed by Mann Whitney U Test. The outcome of this work will be an aid in the field of telemedicine for the transfer of medical images.
Literatur
1.
Zurück zum Zitat Linde, Y., Buzo, A., and Gray, R., An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1):84–95, 1980.CrossRef Linde, Y., Buzo, A., and Gray, R., An algorithm for vector quantizer design. IEEE Trans. Commun. 28(1):84–95, 1980.CrossRef
2.
Zurück zum Zitat Cosman, P. C., Oehler, K. L., Riskin, E. A., and Gray, R. M., Using vector quantization for image processing. Proc. IEEE 81(9):1326–1341, 1993.CrossRef Cosman, P. C., Oehler, K. L., Riskin, E. A., and Gray, R. M., Using vector quantization for image processing. Proc. IEEE 81(9):1326–1341, 1993.CrossRef
3.
Zurück zum Zitat Cosman, P. C., Tseng, C., Gray, R. M., Olshen, R. A., Moses, L. E., Davidson, H. C. et al., Tree-structured vector quantization of CT chest scans: image quality and diagnostic accuracy. IEEE Trans. Med. Imaging 12(4):727–739, 1993.CrossRef Cosman, P. C., Tseng, C., Gray, R. M., Olshen, R. A., Moses, L. E., Davidson, H. C. et al., Tree-structured vector quantization of CT chest scans: image quality and diagnostic accuracy. IEEE Trans. Med. Imaging 12(4):727–739, 1993.CrossRef
4.
Zurück zum Zitat Nakagaki, R., and Katsaggelos, A. K., A VQ-based blind image restoration algorithm. IEEE Trans. Image Process. 12(9):1044–1053, 2003.CrossRef Nakagaki, R., and Katsaggelos, A. K., A VQ-based blind image restoration algorithm. IEEE Trans. Image Process. 12(9):1044–1053, 2003.CrossRef
5.
Zurück zum Zitat Kekre, H. B., and Shrinath, P., Tumour delineation using statistical properties of the breast us images and vector quantization based clustering algorithms. International Journal of Image, Graphics and Signal Processing 5(11):1, 2013.CrossRef Kekre, H. B., and Shrinath, P., Tumour delineation using statistical properties of the breast us images and vector quantization based clustering algorithms. International Journal of Image, Graphics and Signal Processing 5(11):1, 2013.CrossRef
6.
Zurück zum Zitat Chang, C. C., and Hu, Y. C., A fast LBG codebook training algorithm for vector quantization. IEEE Trans. Consum. Electron. 44(4):1201–1208, 1998.CrossRef Chang, C. C., and Hu, Y. C., A fast LBG codebook training algorithm for vector quantization. IEEE Trans. Consum. Electron. 44(4):1201–1208, 1998.CrossRef
7.
Zurück zum Zitat Said, A., and Pearlman, W. A., A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 6(3):243–250, 1996.CrossRef Said, A., and Pearlman, W. A., A new, fast, and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 6(3):243–250, 1996.CrossRef
8.
Zurück zum Zitat Christopoulos, C., Askelof, J., and Larsson, M., Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE Signal Processing Letters 7(9):247–249, 2000.CrossRef Christopoulos, C., Askelof, J., and Larsson, M., Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard. IEEE Signal Processing Letters 7(9):247–249, 2000.CrossRef
9.
Zurück zum Zitat Park, K. H., and Park, H. W., Region-of-interest coding based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 12(2):106–113, 2002.CrossRef Park, K. H., and Park, H. W., Region-of-interest coding based on set partitioning in hierarchical trees. IEEE Transactions on Circuits and Systems for Video Technology 12(2):106–113, 2002.CrossRef
10.
Zurück zum Zitat Chiu, E., Vaisey, J., and Atkins, M. S., Wavelet-based space-frequency compression of ultrasound images. IEEE Trans. Inf. Technol. Biomed. 5(4):300–310, 2001.CrossRef Chiu, E., Vaisey, J., and Atkins, M. S., Wavelet-based space-frequency compression of ultrasound images. IEEE Trans. Inf. Technol. Biomed. 5(4):300–310, 2001.CrossRef
11.
Zurück zum Zitat Askelöf, J., Carlander, M. L., and Christopoulos, C., Region of interest coding in JPEG 2000. Signal Process. Image Commun. 17(1):105–111, 2002.CrossRef Askelöf, J., Carlander, M. L., and Christopoulos, C., Region of interest coding in JPEG 2000. Signal Process. Image Commun. 17(1):105–111, 2002.CrossRef
12.
Zurück zum Zitat Liu, L., and Fan, G., A new JPEG2000 region-of-interest image coding method: Partial significant bitplanes shift. IEEE Signal Processing Letters 10(2):35–38, 2003.CrossRef Liu, L., and Fan, G., A new JPEG2000 region-of-interest image coding method: Partial significant bitplanes shift. IEEE Signal Processing Letters 10(2):35–38, 2003.CrossRef
13.
Zurück zum Zitat Hosseini, S. M., and Naghsh-Nilchi, A. R., Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42(7):743–750, 2012.CrossRef Hosseini, S. M., and Naghsh-Nilchi, A. R., Medical ultrasound image compression using contextual vector quantization. Comput. Biol. Med. 42(7):743–750, 2012.CrossRef
14.
Zurück zum Zitat Ansari, M. A., and Anand, R. S., Context-based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm. Adv. Eng. Softw. 40(7):487–496, 2009.CrossRef Ansari, M. A., and Anand, R. S., Context-based medical image compression for ultrasound images with contextual set partitioning in hierarchical trees algorithm. Adv. Eng. Softw. 40(7):487–496, 2009.CrossRef
15.
Zurück zum Zitat Huang, H. C., Pan, J. S., Lu, Z. M., Sun, S. H., and Hang, H. M., Vector quantization based on genetic simulated annealing. Signal Process. 81(7):1513–1523, 2001.CrossRef Huang, H. C., Pan, J. S., Lu, Z. M., Sun, S. H., and Hang, H. M., Vector quantization based on genetic simulated annealing. Signal Process. 81(7):1513–1523, 2001.CrossRef
16.
Zurück zum Zitat Kamal, A. N. B., Iteration free fractal image compression for color images using vector quantization, genetic algorithm, and simulated annealing. Turkish Online Journal of Science & Technology 5(1):39–48, 2015. Kamal, A. N. B., Iteration free fractal image compression for color images using vector quantization, genetic algorithm, and simulated annealing. Turkish Online Journal of Science & Technology 5(1):39–48, 2015.
17.
Zurück zum Zitat Vallabhaneni, R. B., & Rajesh, V., On the Performance Characteristics of Embedded Techniques for Medical Image Compression. 76:662-665, 2017. Vallabhaneni, R. B., & Rajesh, V., On the Performance Characteristics of Embedded Techniques for Medical Image Compression. 76:662-665, 2017.
18.
Zurück zum Zitat Jiang, H., et al., Medical image compression based on vector quantization with variable block sizes in the wavelet domain. Computational Intelligence and Neuroscience, 5, 2012. Jiang, H., et al., Medical image compression based on vector quantization with variable block sizes in the wavelet domain. Computational Intelligence and Neuroscience, 5, 2012.
19.
Zurück zum Zitat Gaudeau, Y., and Moureaux, J. M., Lossy compression of volumetric medical images with 3D dead-zone lattice vector quantization. Annals of Telecommunications-annales des télécommunications 64(5-6):359–367, 2009.CrossRef Gaudeau, Y., and Moureaux, J. M., Lossy compression of volumetric medical images with 3D dead-zone lattice vector quantization. Annals of Telecommunications-annales des télécommunications 64(5-6):359–367, 2009.CrossRef
20.
Zurück zum Zitat Ayoobkhan, M. U. A., Chikkannan, E., and Ramakrishnan, K., Lossy image compression based on prediction error and vector quantization. EURASIP Journal on Image and Video Processing 2017(1):35, 2017.CrossRef Ayoobkhan, M. U. A., Chikkannan, E., and Ramakrishnan, K., Lossy image compression based on prediction error and vector quantization. EURASIP Journal on Image and Video Processing 2017(1):35, 2017.CrossRef
21.
Zurück zum Zitat Huang, Z., Zhang, X., Chen, L., Zhu, Y., An, F., Wang, H., and Feng, S., A Hardware-Efficient Vector Quantizer Based on Self-Organizing Map for High-Speed Image Compression. Appl. Sci. 7(11):1106, 2017.CrossRef Huang, Z., Zhang, X., Chen, L., Zhu, Y., An, F., Wang, H., and Feng, S., A Hardware-Efficient Vector Quantizer Based on Self-Organizing Map for High-Speed Image Compression. Appl. Sci. 7(11):1106, 2017.CrossRef
22.
Zurück zum Zitat Nowaková, J., Prílepok, M., and Snášel, V., Medical image retrieval using vector quantization and fuzzy S-tree. J. Med. Syst. 41(2):18, 2017.CrossRef Nowaková, J., Prílepok, M., and Snášel, V., Medical image retrieval using vector quantization and fuzzy S-tree. J. Med. Syst. 41(2):18, 2017.CrossRef
23.
Zurück zum Zitat Eben Sophia, P., and Anitha, J., Contextual Medical Image Compression using Normalized Wavelet-Transform Coefficients and Prediction. IETE J. Res. 63(5):671–683, 2017.CrossRef Eben Sophia, P., and Anitha, J., Contextual Medical Image Compression using Normalized Wavelet-Transform Coefficients and Prediction. IETE J. Res. 63(5):671–683, 2017.CrossRef
24.
Zurück zum Zitat Moreno-Bernal, P., Cruz-Chávez, M.A., Rodríguez-León, A., López, O., Malumbres, M.P., Martínez-Rangel, M.G., Martínez-Oropeza, A., Martínez-Bahena, B. and Juárez-Chávez, J.Y., Simulated annealing algorithm for 2D image compression. In Electronics, Robotics and Automotive Mechanics Conference (CERMA), IEEE Ninth, 129-134. 2012. Moreno-Bernal, P., Cruz-Chávez, M.A., Rodríguez-León, A., López, O., Malumbres, M.P., Martínez-Rangel, M.G., Martínez-Oropeza, A., Martínez-Bahena, B. and Juárez-Chávez, J.Y., Simulated annealing algorithm for 2D image compression. In Electronics, Robotics and Automotive Mechanics Conference (CERMA), IEEE Ninth, 129-134. 2012.
25.
Zurück zum Zitat Hopkins, M., Mitzenmacher, M., & Wagner-Carena, S., Simulated Annealing for JPEG Quantization. arXiv preprint arXiv:1709.00649. 2017. Hopkins, M., Mitzenmacher, M., & Wagner-Carena, S., Simulated Annealing for JPEG Quantization. arXiv preprint arXiv:1709.00649. 2017.
26.
Zurück zum Zitat Chakrapani, Y., and Rajan, K. S., Hybrid genetic-simulated annealing approach for fractal image compression. Int. J. Comput. Intell. 4:308–313, 2008. Chakrapani, Y., and Rajan, K. S., Hybrid genetic-simulated annealing approach for fractal image compression. Int. J. Comput. Intell. 4:308–313, 2008.
27.
Zurück zum Zitat Demsar, J., Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7:1–30, 2006. Demsar, J., Statistical comparisons of classifiers over multiple datasets. J. Mach. Learn. Res. 7:1–30, 2006.
Metadaten
Titel
Compression of CT Images using Contextual Vector Quantization with Simulated Annealing for Telemedicine Application
verfasst von
S. N. Kumar
A. Lenin Fred
P. Sebastin Varghese
Publikationsdatum
01.11.2018
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 11/2018
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-018-1090-7

Weitere Artikel der Ausgabe 11/2018

Journal of Medical Systems 11/2018 Zur Ausgabe