Skip to main content
Erschienen in:

30.09.2021 | Scientific Article

Computer-aided automatic measurement of leg length on full leg radiographs

verfasst von: Chan Su Lee, Mu Sook Lee, Shi Sub Byon, Sung Hyun Kim, Byoung Il Lee, Byoung-Dai Lee

Erschienen in: Skeletal Radiology | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Objectives

To develop and evaluate a deep learning (DL)–based system for measuring leg length on full leg radiographs of diverse patients, including those with orthopedic hardware implanted for surgical treatment.

Methods

This study retrospectively assessed 2767 X-ray scanograms of 2767 patients who did or did not have orthopedic hardware implanted between January 2016 and December 2019. A cascaded DL model was developed to localize the relevant landmarks on the pelvis, knees, and ankles required for measuring leg length. Statistical analysis was performed using the correlation coefficient analysis and Bland–Altman plots to assess the agreement between the reference standard and DL-calculated lengths.

Results

Testing data comprised 400 radiographs from 400 patients. Of these radiographs, 100 were from patients with orthopedic hardware implanted in their pelvis, knees, or ankles. For all testing data, leg lengths derived from the DL-based measurement system, with or without internal fixation devices, showed excellent agreement with the reference standard (femoral length, r = 0.99 (P < .001); root mean square error (RMSE) = 0.17 cm; mean difference, − 0.01 ± 0.17 cm; 95% limit of agreement (LoA), − 0.35 to 0.34; tibial length, r = 0.99 (P < .001); RMSE = 0.17 cm; mean difference, − 0.02 ± 0.17 cm, 95% LoA, − 0.34 to 0.31; and full leg length, r = 1.0 (P < .001); RMSE = 0.19 cm; mean difference, 0.05 ± 0.18 cm; 95% LoA, − 0.31 to 0.40). The mean time for leg length measurement for each patient using the DL-based system was 8.68 ± 0.18 s.

Conclusion

The DL-based leg length measurement system could provide similar performance to radiologists in terms of accuracy and reliability for a diverse group of patients.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Yong M, Park S. Leg length discrepancy to influence on kinematic changes of the pelvis and the hip during gait. J Kor Phys Ther. 2019;31:368–71.CrossRef Yong M, Park S. Leg length discrepancy to influence on kinematic changes of the pelvis and the hip during gait. J Kor Phys Ther. 2019;31:368–71.CrossRef
3.
Zurück zum Zitat Khamis S, Carmeli E. A new concept for measuring leg length discrepancy. J Orthop. 2017;14:276.CrossRef Khamis S, Carmeli E. A new concept for measuring leg length discrepancy. J Orthop. 2017;14:276.CrossRef
4.
Zurück zum Zitat Meermans G, Malik A, Witt J, Haddad F. Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty. Clin Orthop Relat Res. 2011;469:1677–82.CrossRef Meermans G, Malik A, Witt J, Haddad F. Preoperative radiographic assessment of limb-length discrepancy in total hip arthroplasty. Clin Orthop Relat Res. 2011;469:1677–82.CrossRef
5.
Zurück zum Zitat Blake RL, Ferguson H. Limb length discrepancies. J Am Podiatr Med Assoc. 1992;82:33–8.CrossRef Blake RL, Ferguson H. Limb length discrepancies. J Am Podiatr Med Assoc. 1992;82:33–8.CrossRef
6.
Zurück zum Zitat Rannisto S, Okuloff A, Uitti J, et al. Leg-length discrepancy is associated with low back pain among those who must stand while working. BMC Musculoskelet Disord. 2015;16:110.CrossRef Rannisto S, Okuloff A, Uitti J, et al. Leg-length discrepancy is associated with low back pain among those who must stand while working. BMC Musculoskelet Disord. 2015;16:110.CrossRef
7.
Zurück zum Zitat Ahmed K. Leg length discrepancy: assessment and secondary effects. Ortho & Rheum Open Access. 2017;5:555678. Ahmed K. Leg length discrepancy: assessment and secondary effects. Ortho & Rheum Open Access. 2017;5:555678.
8.
Zurück zum Zitat Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466:2910–22.CrossRef Sabharwal S, Kumar A. Methods for assessing leg length discrepancy. Clin Orthop Relat Res. 2008;466:2910–22.CrossRef
9.
Zurück zum Zitat Murray KJ, Azari MF. Leg length discrepancy and osteoarthritis in the knee and lumbar spine. J Can Chiropr Assoc. 2015;59:226–37.PubMedPubMedCentral Murray KJ, Azari MF. Leg length discrepancy and osteoarthritis in the knee and lumbar spine. J Can Chiropr Assoc. 2015;59:226–37.PubMedPubMedCentral
10.
Zurück zum Zitat Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW. Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology. 2020;296:152–8.CrossRef Zheng Q, Shellikeri S, Huang H, Hwang M, Sze RW. Deep learning measurement of leg length discrepancy in children based on radiographs. Radiology. 2020;296:152–8.CrossRef
11.
Zurück zum Zitat Rungprai C, Goetz JE, Arunakul M, et al. Validation and reproducibility with a biplanar imaging system versus conventional radiography. Foot Ankle Int. 2014;35:1166–75.CrossRef Rungprai C, Goetz JE, Arunakul M, et al. Validation and reproducibility with a biplanar imaging system versus conventional radiography. Foot Ankle Int. 2014;35:1166–75.CrossRef
12.
Zurück zum Zitat Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multibox dector. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, Springer, Cham. 9905:21–37. Liu W, Anguelov D, Erhan D et al (2016) SSD: Single shot multibox dector. In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, Springer, Cham. 9905:21–37.
13.
Zurück zum Zitat Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, Springer, Cham. 9351:234–241 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: Navab N., Hornegger J., Wells W., Frangi A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science, Springer, Cham. 9351:234–241
14.
Zurück zum Zitat Zhang P, Su W (2012) Statistical inference on recall, precision and average precision under random selection. Proceedings of 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Chongqing, China. 1348–1352 Zhang P, Su W (2012) Statistical inference on recall, precision and average precision under random selection. Proceedings of 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), Chongqing, China. 1348–1352
Metadaten
Titel
Computer-aided automatic measurement of leg length on full leg radiographs
verfasst von
Chan Su Lee
Mu Sook Lee
Shi Sub Byon
Sung Hyun Kim
Byoung Il Lee
Byoung-Dai Lee
Publikationsdatum
30.09.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Skeletal Radiology / Ausgabe 5/2022
Print ISSN: 0364-2348
Elektronische ISSN: 1432-2161
DOI
https://doi.org/10.1007/s00256-021-03928-z

Neu im Fachgebiet Radiologie

Hölzerner Fremdkörper in der Orbita? Zuerst eine CT!

Besteht der Verdacht, dass ein Fremdkörper aus Holz in den Orbitalraum eingedrungen ist, spielt die Bildgebung eine entscheidende diagnostische Rolle. Was von CT und MRT zu erwarten ist, hat ein chinesisches Radiologenteam untersucht.

Diagnostik von Rippenfrakturen: KI schlägt Radiologen

Mensch gegen Maschine: Beim Erkennen von Rippenfrakturen in Röntgen- und CT-Aufnahmen entschied sich dieses Duell zugunsten der künstlichen Intelligenz (KI). Die Algorithmen zeigten eine höhere Sensitivität als ihre menschlichen Kollegen.

Ärztinnen überholen Ärzte bei Praxisgründungen

Bei Praxisgründungen haben inzwischen die Frauen deutlich die Nase vorn: Seit zehn Jahren wagen laut apoBank mehr Ärztinnen als Ärzte den Schritt in die Selbstständigkeit. In puncto Finanzierung sind sie aber vorsichtiger als die männlichen Kollegen.

Ambulante Behandlung darf länger dauern als stationäre

Ambulante Behandlungen haben Vorrang vor stationären - auch wenn diese läner dauern. Das hat das Bundessozialgericht klargestellt. Konkret ging es um Liposuktionen der Ober- und Unterschenkel.

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.