Skip to main content
main-content

19.05.2017 | Ausgabe 6/2017

Journal of Digital Imaging 6/2017

Computer-Aided Diagnosis of Lung Nodules in Computed Tomography by Using Phylogenetic Diversity, Genetic Algorithm, and SVM

Zeitschrift:
Journal of Digital Imaging > Ausgabe 6/2017
Autoren:
Antonio Oseas de Carvalho Filho, Aristófanes Corrêa Silva, Anselmo Cardoso de Paiva, Rodolfo Acatauassú Nunes, Marcelo Gattass

Abstract

Lung cancer is pointed as the major cause of death among patients with cancer throughout the world. This work is intended to develop a methodology for diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques. In order to differentiate between the patterns of malignant and benign nodules, we used phylogenetic diversity by means of particular indexes, that are: intensive quadratic entropy, extensive quadratic entropy, average taxonomic distinctness, total taxonomic distinctness, and pure diversity indexes. After that, we applied the genetic algorithm for selection of the best model. In the tests’ stage, we applied the proposed methodology to 1405 (394 malignant and 1011 benign) nodules. The proposed work presents promising results at the classification into malignant and benign, achieving accuracy of 92.52%, sensitivity of 93.1% and specificity of 92.26%. The results demonstrated a good rate of correct detections using texture features. Since a precocious detection allows a faster therapeutic intervention, thus a more favorable prognostic to the patient, we propose herein a methodology that contributes to the area in this aspect.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2017

Journal of Digital Imaging 6/2017 Zur Ausgabe
  1. Das kostenlose Testabonnement läuft nach 14 Tagen automatisch und formlos aus. Dieses Abonnement kann nur einmal getestet werden.

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise