Skip to main content
Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 3/2020

Open Access 20.02.2020 | Original Article

Condylar alterations and facial growth in children with juvenile idiopathic arthritis

verfasst von: Anna-Lena Cedströmer, Anna Andlin-Sobocki, Nadjwan Abbu, Britt Hedenberg-Magnusson, Lars Dahlström, Lillemor Berntson, MD, PhD

Erschienen in: Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie | Ausgabe 3/2020

Abstract

Purpose

The aim of this retrospective study was to evaluate facial growth in children with juvenile idiopathic arthritis (JIA) by means of lateral head cephalometric radiographs and relate the findings to temporomandibular joint (TMJ) condylar changes on panoramic radiographs.

Methods

Radiographic and medical records were evaluated in 65 children with JIA. Cephalometric and panoramic analyses were performed for the impact of condylar changes on facial growth. We compared children with condylar alterations, minor or major, with those without condylar alterations.

Results

Based on panoramic radiographs, no condylar alterations were seen in 27 of the 65 children and condylar alterations were seen in 38 children (i.e., 23 had minor and 15 major condylar alterations). The cephalometric analyses of the children with condylar changes showed significant growth disturbances with a more retrognathic mandible (SNB; p = 0.03), retruded chin position (SNPog; p = 0.02), larger mandibular angulation (ML/NSL; p = 0.009) and maxillary angulation (NL/NSL; p = 0.03) compared with children without condylar alterations. Children with minor condylar alterations had a significantly more retruded chin position (SNPog) than those with no condylar changes (p = 0.04).

Conclusions

Condylar changes in the TMJ, judged on panoramic radiography, in children with JIA, have impact on craniofacial growth. Even minor alterations seem to have an impact.

Introduction

Juvenile idiopathic arthritis (JIA) is a chronic autoimmune disease in which one or more joints, including the temporomandibular joint (TMJ), can be involved. It is the most common rheumatic disease of childhood, with an onset before the age of 16. The incidence in Sweden is 11–15/100,000 [1, 4], with higher susceptibility in girls than in boys, at a ratio of 2:1 [1].
In 1995, the International League Against Rheumatism (ILAR) classification, based on the number of active joints, clinical and laboratory features, as well as heredity, was proposed and it is currently used worldwide [22].
The TMJ may be the only joint involved and TMJ arthritis can be active with or without any symptoms [2]. In a review by Billau et al. [5], the reported prevalence of TMJ involvement ranged from 17 to 87%. The radiological methods used and the populations studied have varied between previous studies.
Methods for detection of inflammatory activity in the TMJ have been discussed. Panoramic radiography combined with clinical investigation has been used for a long time; it is simple, inexpensive, with relatively low radiation doses, but cannot detect ongoing inflammation. Magnetic resonance imaging (MRI) has become more common for detection of ongoing inflammation, but how often it can be used and availability varies. Radiological changes in the condylar articular surface have been associated with changes in the shape, function and development of the mandible. Using lateral head cephalometric analyses, several groups have showed a more retrognathic, shorter mandible and an increased open bite in children with JIA compared with healthy children [14, 15, 19, 24, 26, 27, 31]. The aim of the present study was to further evaluate the influence of TMJ condylar alterations on facial growth in a cohort of children with JIA, using panoramic radiography.

Materials and methods

The present study included 65 children diagnosed with JIA by pediatric rheumatologists and referred to three dental specialist clinics in Sweden during an 8‑year period. The participating clinics were the Department of Surgical Sciences, Oral and Maxillofacial Surgery in Uppsala, the Orofacial Pain Specialist Clinic in Gothenburg, and the Department of Orofacial Pain and Jaw Function at Eastman Institute in Stockholm. Radiographic and medical records were scrutinized retrospectively [7]. Inclusion criteria for this study were patients who fulfilled the ILAR criteria for JIA [22] with no history of maxillofacial surgery and had at least one cephalometric and one panoramic radiographic registration. Radiographs had been performed due to clinical indication. The children were thus selected based on the two radiologic examinations. No MRI examinations were available for these children. The Orthopantomograph/Orthoceph® OP100 (MedWOW, Nicosia, Cyprus), was used in the Uppsala clinic, the Proline Dimax2/3 PCl Interface (Planmeca Oy, Helsinki, Finland) in the clinic in Stockholm, and the Orthopantomograph/Orthoceph® OP100 in 1999–2006 and Orthopantomograph/Orthoceph® OP200 (MedWOW, Nicosia, Cyprus) from 2006 in Gothenburg.
Time from onset of JIA to the time of cephalometric registration constituted the observation period. Time between panoramic radiograph and lateral cephalogram were recorded, since those were seldom performed at the same time point. Clinical variables, malocclusion, previous or ongoing orthodontic treatment, treatment with methotrexate or a biological agent at any time during observation period, and the number of medication periods, were recorded. Treatment with methotrexate or a biological agent during at least half of the first 6 months after onset of disease was regarded as one treatment period, as well as treatment during at least half of each coming year, counted separately.

Cephalometric measurements

Lateral cephalometric radiographs were recorded at a mean age of 12.0 years (standard deviation [SD] 3.1). The anteroposterior and vertical skeletal jaw relationships and mandibular incisor position were analyzed. The radiographs were taken under standardized conditions with a natural head position and the teeth with maximum intercuspation. The radiographs were analyzed with the commercially available software program FACAD (Ilexis AB, Linköping, Sweden), using standard cephalometric methods. The anatomical landmarks, lines and angles are presented in Fig. 1. The landmarks were defined in accordance with Steiner [28]. An initial calibration of the reference points was made by two of the authors (AA‑S and NA). All tracings were made by one orthodontist (NA).

Reproducibility of the recordings

The intraexaminer reproducibility of the cephalometric measurements was determined from duplicate recordings two months apart in 16 randomly selected radiographs. The differences between the two measurements were computed. The intraclass correlation coefficients (ICC) were between 0.84 and 0.99 for the cephalometric variables, which is considered good for repeated measurements [25].

Condylar measurements

The evaluation of the TMJs on the panoramic radiographs was performed blind to all medical and cephalometric data. Judgments were made by one dentist (A-LC) and one experienced specialist in oral radiology and if necessary reviewed until consensus was reached [8]. Condylar structural and shape alterations were analyzed. Structural changes included erosion (area with diminished cortical density), sclerosis (increased cortical density) and subchondral cysts. Changes in the shape of the condyles included flattening (loss of smooth convexity) and osteophytes (bony process on the anterior condyle). In each individual, a dichotomous judgment was made of whether or not there was an alteration in one or both condyles. To be regarded as a substantial, i.e., major alteration, both structural and shape alterations had to be seen on at least one of the TMJs on the panoramic radiograph. Shape alterations alone were regarded as minor.

Statistical analyses

For descriptive purposes, the means and standard deviations (SD) were given for age at onset, age at cephalometric registration, cephalometric data and disease duration. To analyze differences between groups regarding condylar alterations, the Mann–Whitney U test and the χ2 test were used. In further analyses of risk for facial deformity based on condylar alterations, we made receiver operator characteristic (ROC) curves. The area under the curve (AUC) was calculated with 95% confidence interval (CI), and with the following interpretations: an area of 0.5 or lower was considered as no increased risk, and area ≥0.7 meant a higher risk than coincidence. For two-tailed statistical analyses, a significance level of 5% (p < 0.05) was used. All analyses were performed using SPSS version 23 (SPSS Inc., Chicago, IL, USA).
This multicenter study was approved by the Regional Ethical Review Board at the University of Gothenburg, Gothenburg, Sweden (Dnr 342-07).

Results

The study cohort consisted of 50 girls (77%) and 15 boys (23%). In Table 1, the numbers of children with and without condylar alterations and data on age at onset, age at cephalometric registration, disease duration, data on malocclusion, orthodontic treatment as well as medical treatment are given. The condylar alterations were minor in 23 and major in 15 of the 38 patients (not presented in the table). We found no statistical difference between participants with or without condylar alterations regarding disease duration but children with major condylar alterations (n = 15) did have longer disease duration (p = 0.03) compared with children with no condylar alterations (n = 27)(data not shown). We found no statistical difference in number of participants ever receiving treatment with methotrexate or a biological agent between those with or without condylar alterations, presented in Table 1 (p = 0.05). The three most frequently represented ILAR categories were persistent oligoarthritis (n = 20; 31%), rheumatoid factor (RF)-negative polyarthritis, (n = 19; 29%) and extended oligoarthritis, (n = 13; 20%), while the remaining categories (juvenile psoriatic arthritis 9%, RF-positive polyarthritis 5%, enthesitis related arthritis 3%, undifferentiated 1.5%, systemic 1.5%) were less common. Children with major condylar alterations (n = 15) belonged to the persistent oligoarticular category in 53% of cases. The mean disease duration at the time of cephalometric radiography was 5.5 years (SD 4.2 years). Mean age at the time of cephalometric registration was 12 years (SD 3.0 years) and mean time from panoramic to cephalometric registration was 1.3 years (SD 2.1 years).
Table 1
Condylar alterations according to panoramic radiography and clinical variables in 65 children with juvenile idiopathic arthritis, classified in accordance with the International League Against Rheumatism (ILAR) criteria [21]
Tab. 1
Kondylenveränderungen nach Panoramaröntgenaufnahmen und klinischen Variablen bei 65 Kindern mit juveniler idiopathischer Arthritis, Klassifizierung nach der ILAR(International League Against Rheumatism)-Kriterien [21]
 
Total group
No condylar alterations
Condylar alterations
Number (% girls)
65 (77)
27 (77.8)
38 (76.3)
Age at onset, years, mean (SD)
6.4 (4.4)
6.9 (4.2)
5.9 (4.5)
Age at cephalometry, years, mean (SD)
12.0 (3.0)
12.0 (3.0)
11.0 (3.0)
Disease duration, years, mean (SD)
5.5 (4.2)
5.0 (4.5)
6.7 (3.5)*
Malocclusion (any type), mean (SD)
0.6 (0.5)
0.6 (0.5)
0.5 (0.5)
Orthodontic treatment (previous or ongoing), mean (SD)
0.2 (0.4)
0.3 (0.4)
0.2 (0.4)
Number of medication periods, mean (SD)*
2.0 (3.0)
2.0 (3.0)
2.0 (3.0)
Treatment with methotrexate or a biological agent ever, number (%)
36 (55.4)
17 (63.0)
19 (50.0)**
Medication period treatment with methotrexate or a biological agent at least half of the first 6 months after onset of disease and at least half of each coming year, counted separately.
*Comparison of disease duration using Mann–Whitney U, p = 0.15
**Comparison of the number of participants that had been treated with methotrexate or a biological agent ever, χ2 test p = 0.05
The results of the analyses of the cephalometric measurements in children with and without condylar alterations are given in Table 2 and Fig. 1. Children with condylar alterations (n = 38) showed significant growth disturbances with more retrognathic mandible (SNB; p = 0.03), retruded chin position (SNPog; p = 0.02), larger mandibular angulation (ML/NSL; p = 0.009) and maxillary angulation (NL/NSL; p = 0.03) compared with the children without condylar changes (n = 27). The cephalometric measurements between minor and major condylar alterations were not statistically significant (data not shown), but already with minor condylar alterations the chin position (SNPog) was significantly more retruded (p = 0.04) compared with in children without condylar changes. To illustrate the difference between children with JIA with condylar deformities and impaired growth of the mandible with healthy children, we have included Figs. 234, and 5.
Table 2
Cephalometric measurements in 65 children with juvenile idiopathic arthritis, divided into groups: those with no condylar alterations judged on panoramic radiographies and those with condylar alterations. Only statistically significant differences between children with condylar alterations compared with those without condylar alterations are presented
Tab. 2
Kephalometrische Messungen bei 65 Kindern mit juveniler idiopathischer Arthritis, unterteilt in 2 Gruppen: Kinder ohne Kondylenveränderungen (beurteilt anhand von Panoramaröntgenaufnahmen) und Kinder mit Kondylenveränderungen. Dargestellt werden nur statistisch signifikante Unterschiede zwischen Kindern mit Kondylenveränderungen und Kindern ohne Kondylenveränderungen
 
No condylar alterations
Condylar alterations
Variable
n=27
Mean (SD)
n=38
Mean (SD)
p value
AUC 95% CI
SNA
83.8 (3.1)
82.5 (3.8)
SNB
77.9 (4.4)
75.0 (4.8)
0.03
0.7 (0.5–0.8)
ANB
6.2 (2.9)
7.5 (3.6)
SNPog
78.6 (4.6)
75.5 (5.3)
0.02
0.7 (0.5–0.8)
NSBa
128.8 (5.0)
129.3 (5.9)
ML/NSL
33.1 (7.2)
37.9 (8.3)
0.009
0.7 (0.6–0.8)
NL/NSL
4.6 (3.3)
6.6 (4.3)
0.03
0.7 (0.5–0.8)
ML/NL
28.5 (6.9)
31.4 (8.1)
ILsNSL
104.9 (7.8)
102.9 (7.7)
Ili/ML
96.4 (7.7)
95.2 (7.1)
U/L FH (%)
71.5 (7.0)
72.7 (7.0)
Angle between three reference points showing maxillary protrusion (SNA), mandibular protrusion (SNB), sagittal jaw relationship (ANB), mandibular protrusion (SNPog) and cranial-base angle (NSBa). Angle between two reference lines showing vertical jaw relationship (ML/NSL), maxillary angulation (NL/NSL), mandibular angulation (ML/NL), maxillary proclination of the incisors (ILsNSL) and mandibular proclination of the incisors (Ili/ML). U/L FH (%) shows the relationship between two distances representing upper and lower facial height
SD standard deviation, AUC area under the curve, 95% CI 95% confidence interval

Discussion

The present retrospective, cross-sectional study evaluated the association between facial growth and radiographic condylar alterations of the TMJs in 65 children with JIA, mainly representing three of the ILAR categories: persistent and extended oligo arthritis, and RF-negative polyarthritis. The findings in this cohort of patients support earlier findings that condylar alterations have significant influence on facial growth, and that even minor condylar changes have an influence to some extent.
Limitations of our study were the small study cohort and the retrospective approach. Another limitation was that children were not categorized based on bilateral or unilateral condylar changes. As unilateral underdevelopment of the mandible causes chin deviations toward the affected side, a two-dimensional projection as in cephalometric radiographs may lead to underestimation. Another weakness was that time between panoramic radiography and cephalometric registration differed, and the degree of inflammatory activity during that time period was unknown.
A strength of our study is the very close retrospective work-up, and having both clinical data and radiological data. The occurrence of condylar alterations in the different categories of JIA has varied in previous studies [6, 10]. Our study did not aim to explore this question and our study cohort was small, but we found a group of children with persistent oligoarticular JIA and severe destruction in the TMJ, illustrating the spread of severe TMJ arthritis in JIA categories. The persistent oligoarticular JIA has been a category with a preferable outcome in follow-up studies [20], but it is striking that this category has not been spared in terms of condylar alterations in the TM joints. Another possible explanation could be that this group of patients most likely has had fewer periods of DMARDs (disease-modifying anti-rheumatic drugs), which may protect from TMJ arthritis. On the other hand, earlier data also raise questions about the effectiveness of systemic medical treatment on TMJ arthritis. In our study the two groups, patients with or without condylar changes did not differ regarding systemic medication and patients with condylar changes did not have a significantly longer disease duration. Intra-articular glucocorticoid injections were given very seldom in this retrospective cohort, which otherwise possibly could have explained growth impairment according to recent studies [29].
Studies of children with JIA have shown that changes in the condylar articular surface may result in changes in shape, function, and development of the mandible [14, 15, 19, 24, 31]. Erosion or resorption of the condylar head of the TMJ results in an anterior change in the position of the condyle and posterior rotation in the position of the mandible [16, 17, 27]. In the present study, characteristics of posterior rotated and retrognathic mandible analyzed on lateral cephalometric radiographs could to some extent already be seen in children with minor condylar alterations, but, most of all, condylar alterations seemed to be important risk factors for impaired facial growth. These observations are in line with a 2016 report by Hsieh et al., who also using a grading system for severity of radiological changes [12], as well as a recent report using three-dimensional assessment of dentofacial growth [30]. In the latter study, seven three-dimensional measurements were found to be the most significant for detecting impairment of facial growth; one of them was assessed in our two-dimensional study as well (ML/NSL) and found to be significant.
Previous studies have shown that the facial pattern in patients with JIA is related to the disease course and activity [11, 33]. Serial records have also shown that the facial deformity may worsen with age, and the earlier the onset of the disease, the more abnormal the subsequent mandibular development [3, 31, 32, 34, 35]. However, it is important to remember that unfavorable facial development may not be explained solely by condylar changes, as it may be prevalent among healthy children without a diagnosis of JIA [23]. Children with JIA may also have normal facial growth, despite detectable condylar lesions on panoramic radiographs [21].
Our proposed grading system for minor and major condylar alterations is very similar to a grading system previously proposed by Koos et al. [16]. In 2018, a TMJ atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging was presented [13]. It is important to develop and implement this further as condylar changes seem to be such an important risk factor for impaired facial growth. We are aware that panoramic radiology is an imprecise method for detecting condylar alterations in the TMJ, compared with computed tomography and MRI, but it is often the only method available.
Different methods for visualizing the TMJs in children with JIA have been used and studied through the years. As an aid to early diagnosis, MRI is considered the best method, as it can detect alterations even in early phases [18, 36]. MRI was not available in our patients. There is no one single method that fully covers ongoing inflammation and damage in the TMJ, as well as facial growth, but our study reminds us that panoramic radiology can be a useful method to screen for damage of the TMJs even though it is not very sensitive. It also tells us that even a minor condylar alteration on panoramic radiographs might indicate impaired facial growth.

Conclusions

In this study of children with different categories of JIA, we found that even minor TMJ condylar changes, visualized by panoramic radiography, had an impact on craniofacial growth.

Acknowledgements

This work was supported by grants from the County Council of Uppsala, Public Dental Uppsala, Public Dental Stockholm AB, the Local Research and Development Board for Gothenburg and South Bohuslän, the Jerring Foundation and AME Dental consulting.

Compliance with ethical guidelines

Conflict of interest

A.-L. Cedströmer, A. Andlin-Sobocki, N. Abbu, B. Hedenberg-Magnusson, L. Dahlström and L. Berntson declare that they have no competing interests.

Ethical standards

This multicenter study was approved by the Regional Ethical Review Board at the University of Gothenburg, Gothenburg, Sweden (Dnr 342-07).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Dent – Das Online-Abo der Zahnmedizin

Online-Abonnement

Mit e.Dent erhalten Sie Zugang zu allen zahnmedizinischen Fortbildungen und unseren zahnmedizinischen und ausgesuchten medizinischen Zeitschriften.

Journal of Orofacial Orthopedics - Fortschritte der Kieferorthopädie

Print-Titel

 

• Offizielles Organ der Deutschen Gesellschaft für Kieferorthopädie (DGKFO)

• Gelistet in: Science Citation Index Expanded (SciSearch), Journal Citation Reports/Science Edition, PubMed/Medline, SCOPUS, EMBASE, Google Scholar, EBSCO, Academic OneFile, CSA Environmental Sciences, EMCare, Gale, OCLC, SCImago, Summon by ProQuest

 

Literatur
1.
Zurück zum Zitat Andersson-Gäre B, Fasth A (1992) Epidemiology of juvenile chronic arthritis in southwestern Sweden: a 5‑year prospective population study. Pediatrics 90:950–958 Andersson-Gäre B, Fasth A (1992) Epidemiology of juvenile chronic arthritis in southwestern Sweden: a 5‑year prospective population study. Pediatrics 90:950–958
2.
Zurück zum Zitat Arabshani B, Cron RQ (2006) Temporomandibular joint arthritis in juvenile idiopathic arthritis: the forgotten joint. Curr Opin Rheumatol 18:490–495CrossRef Arabshani B, Cron RQ (2006) Temporomandibular joint arthritis in juvenile idiopathic arthritis: the forgotten joint. Curr Opin Rheumatol 18:490–495CrossRef
3.
Zurück zum Zitat Barriga G, Lewis T, Law DB (1974) An investigation of the dental occlusion in children with juvenile rheumatoid arthritis. Angle Orthod 44:329–335PubMed Barriga G, Lewis T, Law DB (1974) An investigation of the dental occlusion in children with juvenile rheumatoid arthritis. Angle Orthod 44:329–335PubMed
4.
Zurück zum Zitat Berntson L, Andersson-Gäre B, Fasth A, Herlin T, Kristinsson J, Lahdenne P, Marhaug G, Nielsen S, Pelkonen P, Rygg M (2003) Nordic study group. Incidence of juvenile idiopathic arthritis in the nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol 30:2275–2282 Berntson L, Andersson-Gäre B, Fasth A, Herlin T, Kristinsson J, Lahdenne P, Marhaug G, Nielsen S, Pelkonen P, Rygg M (2003) Nordic study group. Incidence of juvenile idiopathic arthritis in the nordic countries. A population based study with special reference to the validity of the ILAR and EULAR criteria. J Rheumatol 30:2275–2282
5.
Zurück zum Zitat Billiau AD, Hu Y, Verdonck A, Carels C, Wouters C (2007) Temporomandibular joint arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, and relation to dentofacial morphology. J Rheumatol 34:1925–1933PubMed Billiau AD, Hu Y, Verdonck A, Carels C, Wouters C (2007) Temporomandibular joint arthritis in juvenile idiopathic arthritis: prevalence, clinical and radiological signs, and relation to dentofacial morphology. J Rheumatol 34:1925–1933PubMed
6.
Zurück zum Zitat Cannizzaro E, Schroeder S, Müller LM, Kellenberger CJ, Saurenmann RK (2011) Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol 38:510–515PubMedCrossRef Cannizzaro E, Schroeder S, Müller LM, Kellenberger CJ, Saurenmann RK (2011) Temporomandibular joint involvement in children with juvenile idiopathic arthritis. J Rheumatol 38:510–515PubMedCrossRef
8.
Zurück zum Zitat Cedströmer AL, Ahlqwist M, Andlin-Sobocki A, Berntson L, Hedenberg-Magnusson B, Dahlström L (2014) Temporomandibular condylar alterations in juvenile idiopathic arthritis most common in longitudinally severe disease despite medical treatment. Pediatr Rheumatol Online J 14(12):43. https://doi.org/10.1186/1546-0096-12-43 CrossRef Cedströmer AL, Ahlqwist M, Andlin-Sobocki A, Berntson L, Hedenberg-Magnusson B, Dahlström L (2014) Temporomandibular condylar alterations in juvenile idiopathic arthritis most common in longitudinally severe disease despite medical treatment. Pediatr Rheumatol Online J 14(12):43. https://​doi.​org/​10.​1186/​1546-0096-12-43 CrossRef
9.
Zurück zum Zitat Cobourne MT, DiBiase AT et al (2010) Handbook of orthodontics. Elsevier, Edinburgh Cobourne MT, DiBiase AT et al (2010) Handbook of orthodontics. Elsevier, Edinburgh
10.
Zurück zum Zitat Dahl Kristensen K, Stoustrup P, Küseler A, Klit Pedersen T, Twilt M, Herlin T (2016) Clinical predictors of temporomandibular joint arthritis in juvenile idiopathic arthritis: a systematic literature review. Semin Arthritis Rheum 46:717–732CrossRef Dahl Kristensen K, Stoustrup P, Küseler A, Klit Pedersen T, Twilt M, Herlin T (2016) Clinical predictors of temporomandibular joint arthritis in juvenile idiopathic arthritis: a systematic literature review. Semin Arthritis Rheum 46:717–732CrossRef
11.
Zurück zum Zitat Fjeld MG, Arvidsson LZ, Smith HJ, Flatö B, Ogaard B, Larheim T (2010) Relationship between disease coarse in the temporomandibular joints and mandibular growth rotation in patients with juvenile idiopathic arthritis followed from childhood to adulthood. Pediatr Rheumatol Online J 8:1–13CrossRef Fjeld MG, Arvidsson LZ, Smith HJ, Flatö B, Ogaard B, Larheim T (2010) Relationship between disease coarse in the temporomandibular joints and mandibular growth rotation in patients with juvenile idiopathic arthritis followed from childhood to adulthood. Pediatr Rheumatol Online J 8:1–13CrossRef
12.
Zurück zum Zitat Hsieh YJ, Darvann TA, Hermann NV, Larsen P, Liao YF, Bjoern-Joergensen J, Kreiborg S (2016) Facial morphology in children and adolescents with juvenile idiopathic arthritis and moderate to severe temporomandibular joint involvement. Am J Orthod Dentofacial Orthop 149:182–191PubMedCrossRef Hsieh YJ, Darvann TA, Hermann NV, Larsen P, Liao YF, Bjoern-Joergensen J, Kreiborg S (2016) Facial morphology in children and adolescents with juvenile idiopathic arthritis and moderate to severe temporomandibular joint involvement. Am J Orthod Dentofacial Orthop 149:182–191PubMedCrossRef
13.
Zurück zum Zitat Kellenberger CJ, Junhasavasdikul T, Tolend M, Doria AS (2018) Temporomandibular joint atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging. Pediatr Radiol 48:411–426PubMedCrossRef Kellenberger CJ, Junhasavasdikul T, Tolend M, Doria AS (2018) Temporomandibular joint atlas for detection and grading of juvenile idiopathic arthritis involvement by magnetic resonance imaging. Pediatr Radiol 48:411–426PubMedCrossRef
14.
Zurück zum Zitat Kjellberg H (1998) Craniofacial growth in juvenile chronic arthritis. Acta Odontol Scand 56:360–365PubMedCrossRef Kjellberg H (1998) Craniofacial growth in juvenile chronic arthritis. Acta Odontol Scand 56:360–365PubMedCrossRef
15.
Zurück zum Zitat Kjellberg H, Fasth A, Kiliaridis S, Wenneberg B, Thilander B (1995) Craniofacial structure in children with juvenile chronic arthritis (JCA) compared with healthy children with ideal or postnormal occlusion. Am J Orthod Dentofacial Orthop 107:67–78PubMedCrossRef Kjellberg H, Fasth A, Kiliaridis S, Wenneberg B, Thilander B (1995) Craniofacial structure in children with juvenile chronic arthritis (JCA) compared with healthy children with ideal or postnormal occlusion. Am J Orthod Dentofacial Orthop 107:67–78PubMedCrossRef
16.
Zurück zum Zitat Koos B, Tzaribachev N, Bott S, Cielsielski R, Godt A (2013) Classification of temporomandibular joint erosion, arthritis and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop 74:506–519PubMedCrossRef Koos B, Tzaribachev N, Bott S, Cielsielski R, Godt A (2013) Classification of temporomandibular joint erosion, arthritis and inflammation in patients with juvenile idiopathic arthritis. J Orofac Orthop 74:506–519PubMedCrossRef
17.
Zurück zum Zitat Kreiborg S, Bakke M, Kirkeby S, Michler M, Vedtofte P, Seidler B et al (1990) Facial growth and oral function in a case of juvenile rheumatoid arthritis during a 8-year period. Eur J Orthod 12:119–134PubMedCrossRef Kreiborg S, Bakke M, Kirkeby S, Michler M, Vedtofte P, Seidler B et al (1990) Facial growth and oral function in a case of juvenile rheumatoid arthritis during a 8-year period. Eur J Orthod 12:119–134PubMedCrossRef
18.
Zurück zum Zitat Küseler A, Pedersen TK, Herlin T, Gelineck J (1998) Contrast enhanced magnetic resonance imaging as a method to diagnose early inflammatory changes in the temporomandibular joint in children with juvenile chronic arthritis. J Rheumatol 25:1406–1412PubMed Küseler A, Pedersen TK, Herlin T, Gelineck J (1998) Contrast enhanced magnetic resonance imaging as a method to diagnose early inflammatory changes in the temporomandibular joint in children with juvenile chronic arthritis. J Rheumatol 25:1406–1412PubMed
19.
Zurück zum Zitat Lahrheim TA, Haanaes HR (1981) Micrognathia, temporomandibular joint changes and dental occlusion in juvenile rheumatoid arthritis of adolescents and adults. Scand J Dent Res 89:329–338 Lahrheim TA, Haanaes HR (1981) Micrognathia, temporomandibular joint changes and dental occlusion in juvenile rheumatoid arthritis of adolescents and adults. Scand J Dent Res 89:329–338
20.
Zurück zum Zitat Nordal E, Zak M, Aalto K, Berntson L, Fasth A, Herlin T, Lahdenne P, Nielsen S, Straume B, Rygg M (2011) Ongoing disease activity and changing categories in a long-term nordic cohort study of juvenile idiopathic arthritis. Arthritis Rheum 63:2809–2818CrossRef Nordal E, Zak M, Aalto K, Berntson L, Fasth A, Herlin T, Lahdenne P, Nielsen S, Straume B, Rygg M (2011) Ongoing disease activity and changing categories in a long-term nordic cohort study of juvenile idiopathic arthritis. Arthritis Rheum 63:2809–2818CrossRef
21.
Zurück zum Zitat Pearson MH, Rönning O (1996) Lesions of the mandibular condyle in juvenile chronic arthritis. Br J Orthod 23:49–56PubMedCrossRef Pearson MH, Rönning O (1996) Lesions of the mandibular condyle in juvenile chronic arthritis. Br J Orthod 23:49–56PubMedCrossRef
22.
Zurück zum Zitat Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al (2004) International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392PubMed Petty RE, Southwood TR, Manners P, Baum J, Glass DN, Goldenberg J et al (2004) International league of associations for rheumatology classification of juvenile idiopathic arthritis: second revision, Edmonton, 2001. J Rheumatol 31:390–392PubMed
23.
Zurück zum Zitat Proffit WR, Field HV (2000) Contemporary orthodontics, 3rd edn. Elsevier, St. Louis, pp 24–50 Proffit WR, Field HV (2000) Contemporary orthodontics, 3rd edn. Elsevier, St. Louis, pp 24–50
24.
Zurück zum Zitat Rönning O, Barnes SA, Pearson MH, Pledger DM (1994) Juvenile chronic arthritis: a cephalometric analysis of the facial skeleton. Eur J Orthod 16:53–62PubMedCrossRef Rönning O, Barnes SA, Pearson MH, Pledger DM (1994) Juvenile chronic arthritis: a cephalometric analysis of the facial skeleton. Eur J Orthod 16:53–62PubMedCrossRef
25.
Zurück zum Zitat Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428PubMedCrossRef
26.
Zurück zum Zitat Sidiropoulou-Chatzigianni S, Papadopoulos MA, Kolokithas G (2001) Dentoskeletal morphology in children with juvenile idiopathic arthritis compared with healthy children. J Orthod 28:53–58PubMedCrossRef Sidiropoulou-Chatzigianni S, Papadopoulos MA, Kolokithas G (2001) Dentoskeletal morphology in children with juvenile idiopathic arthritis compared with healthy children. J Orthod 28:53–58PubMedCrossRef
27.
Zurück zum Zitat Stabrun AE (1991) Impaired mandibular growth and micrognathic development in children with juvenile rheumatoid arthritis. A longitudinal study of lateral cephalographs. Eur J Orthod 13:423–434PubMedCrossRef Stabrun AE (1991) Impaired mandibular growth and micrognathic development in children with juvenile rheumatoid arthritis. A longitudinal study of lateral cephalographs. Eur J Orthod 13:423–434PubMedCrossRef
28.
Zurück zum Zitat Steiner CC (1960) The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod 46:721–735CrossRef Steiner CC (1960) The use of cephalometrics as an aid to planning and assessing orthodontic treatment. Am J Orthod 46:721–735CrossRef
29.
Zurück zum Zitat Stoustrup P, Kristensen KD, Verna C et al (2013) Intra-articular steroidinjection for temporomandibular joint arthritis in juvenile idiopathic arthritis: a systematic review on efficacy and safety. Semin Arthritis Rheum 43:63–70PubMedCrossRef Stoustrup P, Kristensen KD, Verna C et al (2013) Intra-articular steroidinjection for temporomandibular joint arthritis in juvenile idiopathic arthritis: a systematic review on efficacy and safety. Semin Arthritis Rheum 43:63–70PubMedCrossRef
30.
31.
Zurück zum Zitat Svensson B, Adell R, Kopp S (2000) Temporomandibular disorders in juvenile chronic arthritis. A clinical study. Swed Dent J 24:83–92PubMed Svensson B, Adell R, Kopp S (2000) Temporomandibular disorders in juvenile chronic arthritis. A clinical study. Swed Dent J 24:83–92PubMed
32.
Zurück zum Zitat Turpin DL (1989) Juvenile rheumatoid arthritis: a 14-year posttreatment evaluation. Angle Orthod 59:233–238PubMed Turpin DL (1989) Juvenile rheumatoid arthritis: a 14-year posttreatment evaluation. Angle Orthod 59:233–238PubMed
33.
Zurück zum Zitat Twilt M, Schulten AJ, Prahl-Andersen B, van Suijlekom-Smit LW (2009) Long-term follow-up craniofacial alterations in juvenile idiopathic arthritis. Angle Orthod 79:1057–1062PubMedCrossRef Twilt M, Schulten AJ, Prahl-Andersen B, van Suijlekom-Smit LW (2009) Long-term follow-up craniofacial alterations in juvenile idiopathic arthritis. Angle Orthod 79:1057–1062PubMedCrossRef
34.
Zurück zum Zitat Twilt M, Arends LR, Cate RT, van Suijlekom-Smit LW (2007) Incidence of temporomandibular involvement in juvenile idiopathic arthritis. Scand J Rheumatol 36:184–188PubMedCrossRef Twilt M, Arends LR, Cate RT, van Suijlekom-Smit LW (2007) Incidence of temporomandibular involvement in juvenile idiopathic arthritis. Scand J Rheumatol 36:184–188PubMedCrossRef
35.
Zurück zum Zitat Twilt M, Schulten AJ, Verschure F, Wisse L, Prahl-Andersen B, van Suijlekom-Smit LW (2008) Long-term follow up of temporomandibular joint involvement in juvenile idiopathic arthritis. Arthritis Rheum 59:546–552PubMedCrossRef Twilt M, Schulten AJ, Verschure F, Wisse L, Prahl-Andersen B, van Suijlekom-Smit LW (2008) Long-term follow up of temporomandibular joint involvement in juvenile idiopathic arthritis. Arthritis Rheum 59:546–552PubMedCrossRef
36.
Zurück zum Zitat Weiss PF, Arabshahi B, Johnson A, Bilaniuk LT, Zarnow D, Cahill AM et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 558:1189–1119CrossRef Weiss PF, Arabshahi B, Johnson A, Bilaniuk LT, Zarnow D, Cahill AM et al (2008) High prevalence of temporomandibular joint arthritis at disease onset in children with juvenile idiopathic arthritis, as detected by magnetic resonance imaging but not by ultrasound. Arthritis Rheum 558:1189–1119CrossRef
Metadaten
Titel
Condylar alterations and facial growth in children with juvenile idiopathic arthritis
verfasst von
Anna-Lena Cedströmer
Anna Andlin-Sobocki
Nadjwan Abbu
Britt Hedenberg-Magnusson
Lars Dahlström
Lillemor Berntson, MD, PhD
Publikationsdatum
20.02.2020
Verlag
Springer Medizin
Erschienen in
Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie / Ausgabe 3/2020
Print ISSN: 1434-5293
Elektronische ISSN: 1615-6714
DOI
https://doi.org/10.1007/s00056-020-00216-8

Weitere Artikel der Ausgabe 3/2020

Journal of Orofacial Orthopedics / Fortschritte der Kieferorthopädie 3/2020 Zur Ausgabe

Mitteilungen der DGKFO

Mitteilungen der DGKFO

Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Zahnmedizin und bleiben Sie gut informiert – ganz bequem per eMail.