Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 8/2018

01.08.2017 | Nerve and Muscle (L H Weimer, Section Editor)

Congenital Myasthenic Syndromes in 2018

verfasst von: Andrew G. Engel

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 8/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Summarize features of the currently recognized congenital myasthenic syndromes (CMS) with emphasis on novel findings identified in the past 6 years.

Recent Findings

Since the last review of the CMS in this journal in 2012, several novel CMS were identified. The identified disease proteins are SNAP25B, synaptotagmin 2, Munc13-1, synaptobrevin-1, GFPT1, DPAGT1, ALG2, ALG14, Agrin, GMPPB, LRP4, myosin 9A, collagen 13A1, the mitochondrial citrate carrier, PREPL, LAMA5, the vesicular ACh transporter, and the high-affinity presynaptic choline transporter.

Summary

Exome sequencing has provided a powerful tool for identifying novel CMS. Identifying the disease genes is essential for determining optimal therapy. The landscape of the CMS is still unfolding.
Literatur
1.
Zurück zum Zitat Selcen D, Juel VC, Hobson-Webb LD, Smith EC, Stickler DE, Bite AV, et al. Myasthenic syndrome caused by plectinopathy. Neurology. 2011;76:327–36.CrossRefPubMedPubMedCentral Selcen D, Juel VC, Hobson-Webb LD, Smith EC, Stickler DE, Bite AV, et al. Myasthenic syndrome caused by plectinopathy. Neurology. 2011;76:327–36.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–82.CrossRefPubMedPubMedCentral Tsujino A, Maertens C, Ohno K, Shen XM, Fukuda T, Harper CM, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–82.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83:2247–55.CrossRefPubMedPubMedCentral Shen XM, Selcen D, Brengman J, Engel AG. Mutant SNAP25B causes myasthenia, cortical hyperexcitability, ataxia, and intellectual disability. Neurology. 2014;83:2247–55.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Herrmann DN, Horvath R, Snowden JE, Gonzales M, Sanchez-Mejias A, Guan Z, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9.CrossRefPubMedPubMedCentral Herrmann DN, Horvath R, Snowden JE, Gonzales M, Sanchez-Mejias A, Guan Z, et al. Synaptotagmin 2 mutations cause an autosomal-dominant form of Lambert-Eaton myasthenic syndrome and nonprogressive motor neuropathy. Am J Hum Genet. 2014;95:332–9.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat •• Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2:e105. Loss of Munc13-1 function consigns Syntaxin 1B to a nonfunctional closed state; this inhibits cholinergic transmission at the neuromuscular junction and glutamatergic transmission in the brain. Inactivation of syntaxin 1B causes cortical hyperexcitability and microcepaly because syntaxin 1B is required for normal brain development. CrossRefPubMedPubMedCentral •• Engel AG, Selcen D, Shen XM, Milone M, Harper CM. Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet. 2016;2:e105. Loss of Munc13-1 function consigns Syntaxin 1B to a nonfunctional closed state; this inhibits cholinergic transmission at the neuromuscular junction and glutamatergic transmission in the brain. Inactivation of syntaxin 1B causes cortical hyperexcitability and microcepaly because syntaxin 1B is required for normal brain development. CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat •• Shen XM, Scola RH, Lorenzoni PJ, Kay CS, Werneck LC, Brengman J, et al. Novel synaptobrevin-1 (VAMP1) mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4:130–8. A mutation in the C-terminal end of synatobrevin-1 elongates the intravesicular segment of the transcript which hinders vesicle exocytosis. CrossRefPubMedPubMedCentral •• Shen XM, Scola RH, Lorenzoni PJ, Kay CS, Werneck LC, Brengman J, et al. Novel synaptobrevin-1 (VAMP1) mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol. 2017;4:130–8. A mutation in the C-terminal end of synatobrevin-1 elongates the intravesicular segment of the transcript which hinders vesicle exocytosis. CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat •• Salpietro V, Lin W, Delle Vedove A, Storbeck M, Liu Y, Efthymiou S, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol. 2017;81(4):597–603. This publication identifies mutations in VAMP-1 in two kinships and analyzes the pathologic effects of the mutation in VAMP-1 null mice. CrossRefPubMedPubMedCentral •• Salpietro V, Lin W, Delle Vedove A, Storbeck M, Liu Y, Efthymiou S, et al. Homozygous mutations in VAMP1 cause a presynaptic congenital myasthenic syndrome. Ann Neurol. 2017;81(4):597–603. This publication identifies mutations in VAMP-1 in two kinships and analyzes the pathologic effects of the mutation in VAMP-1 null mice. CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Senderek J, Muller JS, Dusl M, Strom TM, Guerggueltcheva V, Diepolder I, et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011;88:162–72.CrossRefPubMedPubMedCentral Senderek J, Muller JS, Dusl M, Strom TM, Guerggueltcheva V, Diepolder I, et al. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am J Hum Genet. 2011;88:162–72.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Selcen D, Shen XM, Milone M, Brengman J, Ohno K, Deymeer F, et al. GFPT1-myasthenia: clinical, structural, and electrophysiologic heterogeneity. Neurology. 2013;23:370–8.CrossRef Selcen D, Shen XM, Milone M, Brengman J, Ohno K, Deymeer F, et al. GFPT1-myasthenia: clinical, structural, and electrophysiologic heterogeneity. Neurology. 2013;23:370–8.CrossRef
10.
Zurück zum Zitat Belaya K, Finlayson S, Slater C, Cossins J, Liu WW, Maxwell S, et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet. 2012;91:1–9.CrossRef Belaya K, Finlayson S, Slater C, Cossins J, Liu WW, Maxwell S, et al. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet. 2012;91:1–9.CrossRef
11.
Zurück zum Zitat Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.CrossRefPubMedPubMedCentral Huze C, Bauche S, Richard P, Chevessier F, Goillot E, Gaudon K, et al. Identification of an agrin mutation that causes congenital myasthenia and affects synapse function. Am J Hum Genet. 2009;85:155–67.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Maselli RA, Fernandez JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural agrin (z-) agrin. Hum Genet (Berlin). 2012;131:1123–35.CrossRef Maselli RA, Fernandez JM, Arredondo J, Navarro C, Ngo M, Beeson D, et al. LG2 agrin mutation causing severe congenital myasthenic syndrome mimics functional characteristics of non-neural agrin (z-) agrin. Hum Genet (Berlin). 2012;131:1123–35.CrossRef
13.
Zurück zum Zitat Nicole S, Chaouch A, Torbergsen T, Bauche S, de Bruyckere E, Fontenille MJ, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137(Pt 9):2429–43.CrossRefPubMed Nicole S, Chaouch A, Torbergsen T, Bauche S, de Bruyckere E, Fontenille MJ, et al. Agrin mutations lead to a congenital myasthenic syndrome with distal muscle weakness and atrophy. Brain. 2014;137(Pt 9):2429–43.CrossRefPubMed
14.
Zurück zum Zitat Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni M, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain. 2013;136:944–56.CrossRefPubMedPubMedCentral Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S, Carboni M, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain. 2013;136:944–56.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Belaya K, Rodriguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(Pt 9):2493–504.CrossRefPubMedPubMedCentral Belaya K, Rodriguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, et al. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain. 2015;138(Pt 9):2493–504.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat •• Selcen D, Ohkawara B, Shen XM, McEvoy K, Ohno K, Engel AG. Impaired synaptic development, maintenance, and neuromuscular transmission in LRP4-related myasthenia. JAMA Neurol. 2015;72:889–96. Report of a CMS caused by impaired interaction of LRP4 with MusK and agrin which hinders endplate evelopment. CrossRefPubMedPubMedCentral •• Selcen D, Ohkawara B, Shen XM, McEvoy K, Ohno K, Engel AG. Impaired synaptic development, maintenance, and neuromuscular transmission in LRP4-related myasthenia. JAMA Neurol. 2015;72:889–96. Report of a CMS caused by impaired interaction of LRP4 with MusK and agrin which hinders endplate evelopment. CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat • O'Connor E, Topf A, Muller JS, Cox D, Evangelista T, Colomer J, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain. 2016;139:2143–53. The pathogenic effects of the identified mutation were not fully understood at first. A recent article (PMID:29462312) Shows that MYO9A deficiency in motor neurons reduces agrin secretion. CrossRefPubMedPubMedCentral • O'Connor E, Topf A, Muller JS, Cox D, Evangelista T, Colomer J, et al. Identification of mutations in the MYO9A gene in patients with congenital myasthenic syndrome. Brain. 2016;139:2143–53. The pathogenic effects of the identified mutation were not fully understood at first. A recent article (PMID:29462312) Shows that MYO9A deficiency in motor neurons reduces agrin secretion. CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat •• Logan CV, Cossins J, Rodriguez Cruz PM, Parry DA, Maxwell S, Martinez-Martinez P, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the the atypical non-fibrillar collagen type XIII aplha1 chain. Am J Hum Genet. 2015;97:1–8. This article highlights the crucial role of collagen XIII in the formation and maintenance of the neuromuscular junction. CrossRef •• Logan CV, Cossins J, Rodriguez Cruz PM, Parry DA, Maxwell S, Martinez-Martinez P, et al. Congenital myasthenic syndrome type 19 is caused by mutations in COL13A1, encoding the the atypical non-fibrillar collagen type XIII aplha1 chain. Am J Hum Genet. 2015;97:1–8. This article highlights the crucial role of collagen XIII in the formation and maintenance of the neuromuscular junction. CrossRef
19.
Zurück zum Zitat Chaouch A, Porcelli V, Cox DM, Edvardson S, Scarcia P, de Grassi A, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1:75–90.PubMedPubMedCentral Chaouch A, Porcelli V, Cox DM, Edvardson S, Scarcia P, de Grassi A, et al. Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1:75–90.PubMedPubMedCentral
20.
Zurück zum Zitat Regal L, Shen XM, Selcen D, Verhille C, Meulemans S, Creemers JW, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology. 2014;82:1254–60.CrossRefPubMedPubMedCentral Regal L, Shen XM, Selcen D, Verhille C, Meulemans S, Creemers JW, et al. PREPL deficiency with or without cystinuria causes a novel myasthenic syndrome. Neurology. 2014;82:1254–60.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Maselli RA, Arredondo J, Vázquez J, Chong JX. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173:2240–5.CrossRefPubMedPubMedCentral Maselli RA, Arredondo J, Vázquez J, Chong JX. Presynaptic congenital myasthenic syndrome with a homozygous sequence variant in LAMA5 combines myopia, facial tics, and failure of neuromuscular transmission. Am J Med Genet A. 2017;173:2240–5.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat •• O'Grady GL. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurolgy. 2016;87:1442–8. This syndrome, like endplate choline acetyltransferase deficiency results in episodes of apnea. CrossRef •• O'Grady GL. Variants in SLC18A3, vesicular acetylcholine transporter, cause congenital myasthenic syndrome. Neurolgy. 2016;87:1442–8. This syndrome, like endplate choline acetyltransferase deficiency results in episodes of apnea. CrossRef
23.
Zurück zum Zitat •• Aran A, Segel R, Kaneshige K, Gulsuner S, Renbaum P, Oliphant S, et al. Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology. 2017;88:1021–8. In References 22 and 23 two independent groups identify a CMS causing episodes of apnea resembling defects in choline acetyltransferase deficiency. CrossRefPubMedPubMedCentral •• Aran A, Segel R, Kaneshige K, Gulsuner S, Renbaum P, Oliphant S, et al. Vesicular acetylcholine transporter defect underlies devastating congenital myasthenia syndrome. Neurology. 2017;88:1021–8. In References 22 and 23 two independent groups identify a CMS causing episodes of apnea resembling defects in choline acetyltransferase deficiency. CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Walls TJ, Engel AG, Nagel AS, Harper CM, Trastek VF. Congenital myasthenic syndrome associated with paucity of synaptic vesicles and reduced quantal release. Ann N Y Acad Sci. 1993;681:461–8.CrossRefPubMed Walls TJ, Engel AG, Nagel AS, Harper CM, Trastek VF. Congenital myasthenic syndrome associated with paucity of synaptic vesicles and reduced quantal release. Ann N Y Acad Sci. 1993;681:461–8.CrossRefPubMed
25.
Zurück zum Zitat Ohno K, Tsujino A, Shen XM, Brengman J, Harper CM, Bajzer Z, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–22.CrossRefPubMedPubMedCentral Ohno K, Tsujino A, Shen XM, Brengman J, Harper CM, Bajzer Z, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–22.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Shen XM, Crawford TO, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations in human choline acetyltransferase. Hum Mutat. 2011;32:1259–67.CrossRefPubMedPubMedCentral Shen XM, Crawford TO, Brengman J, Acsadi G, Iannaconne S, Karaca E, et al. Functional consequences and structural interpretation of mutations in human choline acetyltransferase. Hum Mutat. 2011;32:1259–67.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Whittaker RG, Herrmann DN, Bansagi B, Hasan BA, Lofra RM, Logigian EL, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology. 2015;85:1964–71.CrossRefPubMedPubMedCentral Whittaker RG, Herrmann DN, Bansagi B, Hasan BA, Lofra RM, Logigian EL, et al. Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology. 2015;85:1964–71.CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Ohno K, Brengman JM, Milone M, Shen XM, Tsujino A, Anlar B, et al. Congenital endplate acetylcholinesterase deficiency: novel missense and null mutations in the collagen-like tail subunit of the asymmetric enzyme. Am J Hum Genet. 1998;63:A377. Ohno K, Brengman JM, Milone M, Shen XM, Tsujino A, Anlar B, et al. Congenital endplate acetylcholinesterase deficiency: novel missense and null mutations in the collagen-like tail subunit of the asymmetric enzyme. Am J Hum Genet. 1998;63:A377.
29.
Zurück zum Zitat Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem. 2004;279:10997–1005.CrossRefPubMed Kimbell LM, Ohno K, Engel AG, Rotundo RL. C-terminal and heparin-binding domains of collagenic tail subunit are both essential for anchoring acetylcholinesterase at the synapse. J Biol Chem. 2004;279:10997–1005.CrossRefPubMed
30.
Zurück zum Zitat Engel AG, Lambert EH, Gomez MR. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol. 1977;1:315–30.CrossRefPubMed Engel AG, Lambert EH, Gomez MR. A new myasthenic syndrome with end-plate acetylcholinesterase deficiency, small nerve terminals, and reduced acetylcholine release. Ann Neurol. 1977;1:315–30.CrossRefPubMed
31.
Zurück zum Zitat Bestue-Cardiel M, de-Cabazon-Alvarez AS, Capablo-Liesa JL, Lopez-Pison J, Pena-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–6.CrossRefPubMed Bestue-Cardiel M, de-Cabazon-Alvarez AS, Capablo-Liesa JL, Lopez-Pison J, Pena-Segura JL, Martin-Martinez J, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–6.CrossRefPubMed
32.
Zurück zum Zitat Mihaylova V, Muller JS, Vilchez JJ, Salih MA, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–59.CrossRefPubMed Mihaylova V, Muller JS, Vilchez JJ, Salih MA, et al. Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain. 2008;131:747–59.CrossRefPubMed
33.
Zurück zum Zitat Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve. 2011;44:789–94.CrossRefPubMedPubMedCentral Liewluck T, Selcen D, Engel AG. Beneficial effects of albuterol in congenital endplate acetylcholinesterase deficiency and DOK-7 myasthenia. Muscle Nerve. 2011;44:789–94.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Maselli RA, Ng JJ, Andreson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46:203–8.CrossRefPubMedPubMedCentral Maselli RA, Ng JJ, Andreson JA, Cagney O, Arredondo J, Williams C, et al. Mutations in LAMB2 causing a severe form of synaptic congenital myasthenic syndrome. J Med Genet. 2009;46:203–8.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Latvanlehto A, Fox MA, Sormunen R, Tu H, Oikarainen T, Koski A, et al. Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci. 2010;30:12230–41.CrossRefPubMedPubMedCentral Latvanlehto A, Fox MA, Sormunen R, Tu H, Oikarainen T, Koski A, et al. Muscle-derived collagen XIII regulates maturation of the skeletal neuromuscular junction. J Neurosci. 2010;30:12230–41.CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Engel AG, Ohno K, Bouzat C, Sine SM, Griggs RG. End-plate acetylcholine receptor deficiency due to nonsense mutations in the ε subunit. Ann Neurol. 1996;40:810–7.CrossRefPubMed Engel AG, Ohno K, Bouzat C, Sine SM, Griggs RG. End-plate acetylcholine receptor deficiency due to nonsense mutations in the ε subunit. Ann Neurol. 1996;40:810–7.CrossRefPubMed
37.
Zurück zum Zitat Ohno K, Quiram P, Milone M, Wang HL, Harper CM, Pruitt JN, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor ε subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet. 1997;6:753–66.CrossRefPubMed Ohno K, Quiram P, Milone M, Wang HL, Harper CM, Pruitt JN, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor ε subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet. 1997;6:753–66.CrossRefPubMed
38.
Zurück zum Zitat Harper CM, Engel AG. Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine. Neurology. 2000;54(Suppl 3):A395. Harper CM, Engel AG. Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine. Neurology. 2000;54(Suppl 3):A395.
39.
Zurück zum Zitat Sadeh M, Shen XM, Engel AG. Beneficial effect of albuterol in congenital myasthenic syndrome with ε subunit mutations. Muscle Nerve. 2011;44:289–91.CrossRefPubMedPubMedCentral Sadeh M, Shen XM, Engel AG. Beneficial effect of albuterol in congenital myasthenic syndrome with ε subunit mutations. Muscle Nerve. 2011;44:289–91.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4:339–52.CrossRefPubMed Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4:339–52.CrossRefPubMed
41.
Zurück zum Zitat Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature. 2006;440:448–55.CrossRefPubMed Sine SM, Engel AG. Recent advances in Cys-loop receptor structure and function. Nature. 2006;440:448–55.CrossRefPubMed
42.
Zurück zum Zitat Engel AG, Lambert EH, Mulder DM, Torres CF, Sahashi K, Bertorini TE, et al. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol. 1982;11:553–69.CrossRefPubMed Engel AG, Lambert EH, Mulder DM, Torres CF, Sahashi K, Bertorini TE, et al. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol. 1982;11:553–69.CrossRefPubMed
43.
Zurück zum Zitat Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neuro. 1998;43:480–4.CrossRef Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neuro. 1998;43:480–4.CrossRef
44.
Zurück zum Zitat Harper CM, Fukudome T, Engel AG. Treatment of slow channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–3.CrossRefPubMed Harper CM, Fukudome T, Engel AG. Treatment of slow channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:1710–3.CrossRefPubMed
45.
Zurück zum Zitat Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, Batocchi AP, et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999;2:226–33.CrossRefPubMed Wang HL, Milone M, Ohno K, Shen XM, Tsujino A, Batocchi AP, et al. Acetylcholine receptor M3 domain: stereochemical and volume contributions to channel gating. Nat Neurosci. 1999;2:226–33.CrossRefPubMed
46.
Zurück zum Zitat Ohno K, Wang HL, Milone M, Bren N, Brengman JM, Nakano S, et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor î subunit. Neuron. 1996;17:157–70.CrossRefPubMed Ohno K, Wang HL, Milone M, Bren N, Brengman JM, Nakano S, et al. Congenital myasthenic syndrome caused by decreased agonist binding affinity due to a mutation in the acetylcholine receptor î subunit. Neuron. 1996;17:157–70.CrossRefPubMed
47.
Zurück zum Zitat Milone M, Wang HL, Ohno K, Prince RJ, Shen XM, Brengman JM, et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit. Neuron. 1998;20:575–88.CrossRefPubMed Milone M, Wang HL, Ohno K, Prince RJ, Shen XM, Brengman JM, et al. Mode switching kinetics produced by a naturally occurring mutation in the cytoplasmic loop of the human acetylcholine receptor epsilon subunit. Neuron. 1998;20:575–88.CrossRefPubMed
48.
Zurück zum Zitat Shen XM, Ohno K, Brengman JM, Fukuda T, Illa I, Engel AG. Congenital myasthenic syndrome associated with three missense mutations in the extracellular domain of the AChR delta subunit. Neurology. 2003;60(Suppl 1):A420. Shen XM, Ohno K, Brengman JM, Fukuda T, Illa I, Engel AG. Congenital myasthenic syndrome associated with three missense mutations in the extracellular domain of the AChR delta subunit. Neurology. 2003;60(Suppl 1):A420.
49.
Zurück zum Zitat •• Burden SJ, Huijbers MG, Remedio L. Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. Int J Mol Sci. 2018;19:E490. A clear summary of the role of proteins involved in endplate maintenance and development. CrossRefPubMed •• Burden SJ, Huijbers MG, Remedio L. Fundamental molecules and mechanisms for forming and maintaining neuromuscular synapses. Int J Mol Sci. 2018;19:E490. A clear summary of the role of proteins involved in endplate maintenance and development. CrossRefPubMed
50.
Zurück zum Zitat Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. LRP4 is a receptor for agrin and forms a complex with MuSK. Cell. 2008;135:334–42.CrossRefPubMedPubMedCentral Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. LRP4 is a receptor for agrin and forms a complex with MuSK. Cell. 2008;135:334–42.CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–40.CrossRefPubMed Chevessier F, Faraut B, Ravel-Chapuis A, Richard P, Gaudon K, Bauche S, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–40.CrossRefPubMed
52.
Zurück zum Zitat Mihaylova V, Salih MA, Mukhtar MM, Abuzeid HA, El-Sadig SM, von der Hagen M, et al. Refinement of the clinical phenotype in MUSK-related congenital myasthenic syndromes. Neurology. 2009;73:1926–8.CrossRefPubMed Mihaylova V, Salih MA, Mukhtar MM, Abuzeid HA, El-Sadig SM, von der Hagen M, et al. Refinement of the clinical phenotype in MUSK-related congenital myasthenic syndromes. Neurology. 2009;73:1926–8.CrossRefPubMed
53.
Zurück zum Zitat Maselli R, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet. 2010;19:2370–9.CrossRefPubMedPubMedCentral Maselli R, Arredondo J, Cagney O, Ng JJ, Anderson JA, Williams C, et al. Mutations in MUSK causing congenital myasthenic syndrome impair MuSK-Dok-7 interaction. Hum Mol Genet. 2010;19:2370–9.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Ohkawara B, Cabrera-Serrano M, Nakat T, Milone M, Asai N, Ito K, et al. LRP4 third β-propeller domain mutations cause novel congenital myasthenic syndrome by compromising agrin-mediated MuSK signalling in a position-specific manner. Hum Mol Genet. 2014;23:1856–68.CrossRefPubMed Ohkawara B, Cabrera-Serrano M, Nakat T, Milone M, Asai N, Ito K, et al. LRP4 third β-propeller domain mutations cause novel congenital myasthenic syndrome by compromising agrin-mediated MuSK signalling in a position-specific manner. Hum Mol Genet. 2014;23:1856–68.CrossRefPubMed
55.
Zurück zum Zitat Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–8.CrossRefPubMed Beeson D, Higuchi O, Palace J, Cossins J, Spearman H, Maxwell S, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–8.CrossRefPubMed
56.
Zurück zum Zitat Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol. 2008;64:71–87.CrossRefPubMedPubMedCentral Selcen D, Milone M, Shen XM, Harper CM, Stans AA, Wieben ED, et al. Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol. 2008;64:71–87.CrossRefPubMedPubMedCentral
57.
Zurück zum Zitat Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology. 2010;74:1517–23.CrossRefPubMedPubMedCentral Lashley D, Palace J, Jayawant S, Robb S, Beeson D. Ephedrine treatment in congenital myasthenic syndrome due to mutations in DOK7. Neurology. 2010;74:1517–23.CrossRefPubMedPubMedCentral
58.
Zurück zum Zitat Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaconne ST, et al. Myasthenic syndrome due to defects in rapsyn: clinical and molecular findings in 39 patients. Neurology. 2009;73:228–35.CrossRefPubMedPubMedCentral Milone M, Shen XM, Selcen D, Ohno K, Brengman J, Iannaconne ST, et al. Myasthenic syndrome due to defects in rapsyn: clinical and molecular findings in 39 patients. Neurology. 2009;73:228–35.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Slater CR, Fawcett PRW, Walls TJ, Lyons PR, Bailey SJ, Beeson D, et al. Pre- and postsynaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia'. Brain. 2006;127:2061–76.CrossRef Slater CR, Fawcett PRW, Walls TJ, Lyons PR, Bailey SJ, Beeson D, et al. Pre- and postsynaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with 'limb-girdle myasthenia'. Brain. 2006;127:2061–76.CrossRef
60.
Zurück zum Zitat Ohno K, Engel AG, Shen XM, Selcen D, Brengman JM, Harper CM, et al. Rapsyn mutations in humans cause endplate acetylcholine receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–85.CrossRefPubMedPubMedCentral Ohno K, Engel AG, Shen XM, Selcen D, Brengman JM, Harper CM, et al. Rapsyn mutations in humans cause endplate acetylcholine receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–85.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Ohno K, Sadeh M, Blatt I, Brengman JM, Engel AG. E-box mutations in RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum Mol Genet. 2003;12:739–48.CrossRefPubMed Ohno K, Sadeh M, Blatt I, Brengman JM, Engel AG. E-box mutations in RAPSN promoter region in eight cases with congenital myasthenic syndrome. Hum Mol Genet. 2003;12:739–48.CrossRefPubMed
62.
Zurück zum Zitat Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, et al. Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain. 2006;129:2773–83.CrossRefPubMed Cossins J, Burke G, Maxwell S, Spearman H, Man S, Kuks J, et al. Diverse molecular mechanisms involved in AChR deficiency due to rapsyn mutations. Brain. 2006;129:2773–83.CrossRefPubMed
63.
Zurück zum Zitat Maselli RA, Dris H, Schnier J, Cockrell JL, Wollmann RL. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet. 2007;72:63–5.CrossRefPubMed Maselli RA, Dris H, Schnier J, Cockrell JL, Wollmann RL. Congenital myasthenic syndrome caused by two non-N88K rapsyn mutations. Clin Genet. 2007;72:63–5.CrossRefPubMed
65.
Zurück zum Zitat Selcen D, Shen XM, Li Y, Stans AA, Wieben E, Engel AG. DPAGT1 myasthenia and myopathy. Genetic, phenotypic, and expression studies. Neurology. 2014;82:1822–30.CrossRefPubMedPubMedCentral Selcen D, Shen XM, Li Y, Stans AA, Wieben E, Engel AG. DPAGT1 myasthenia and myopathy. Genetic, phenotypic, and expression studies. Neurology. 2014;82:1822–30.CrossRefPubMedPubMedCentral
66.
67.
Zurück zum Zitat Arnold WD, Feldman DH, Ramirez S, He L, Kassar D, Quick A, et al. Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol. 2015;77(5):840–50.CrossRefPubMedPubMedCentral Arnold WD, Feldman DH, Ramirez S, He L, Kassar D, Quick A, et al. Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol. 2015;77(5):840–50.CrossRefPubMedPubMedCentral
69.
Zurück zum Zitat Banwell BL, Russel J, Fukudome T, Shen XM, Stilling G, Engel AG. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropath. Exp Neurol. 1999;58:832–46. Banwell BL, Russel J, Fukudome T, Shen XM, Stilling G, Engel AG. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropath. Exp Neurol. 1999;58:832–46.
70.
Zurück zum Zitat Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, et al. Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology. 2010;74:519–21.CrossRefPubMed Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, et al. Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology. 2010;74:519–21.CrossRefPubMed
71.
Zurück zum Zitat Robb SA, Sewry CA, Dowling JJ, Feng L, Cullup S, Lillis S, et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathy. Neuromuscul Disord. 2011;21:379–86.CrossRefPubMed Robb SA, Sewry CA, Dowling JJ, Feng L, Cullup S, Lillis S, et al. Impaired neuromuscular transmission and response to acetylcholinesterase inhibitors in centronuclear myopathy. Neuromuscul Disord. 2011;21:379–86.CrossRefPubMed
72.
Zurück zum Zitat Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl). 2013;91:727–37.CrossRef Gibbs EM, Clarke NF, Rose K, Oates EC, Webster R, Feldman EL, et al. Neuromuscular junction abnormalities in DNM2-related centronuclear myopathy. J Mol Med (Berl). 2013;91:727–37.CrossRef
73.
Zurück zum Zitat Munot P, Lashley D, Jungbluth H, Pitt M, Robb SA, Palace J, et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord. 2010;20:796–800.CrossRefPubMed Munot P, Lashley D, Jungbluth H, Pitt M, Robb SA, Palace J, et al. Congenital fibre type disproportion associated with mutations in the tropomyosin 3 (TPM3) gene mimicking congenital myasthenia. Neuromuscul Disord. 2010;20:796–800.CrossRefPubMed
74.
Zurück zum Zitat Illingsworth MA, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigmine. Neuromuscul Disord. 2014;24:707–12.CrossRef Illingsworth MA, Main M, Pitt M, et al. RYR1-related congenital myopathy with fatigable weakness, responding to pyridostigmine. Neuromuscul Disord. 2014;24:707–12.CrossRef
75.
Zurück zum Zitat Liewluck T, Shen XM, Milone M, Engel AG. Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscul Disord. 2011;21:387–95.CrossRefPubMedPubMedCentral Liewluck T, Shen XM, Milone M, Engel AG. Endplate structure and parameters of neuromuscular transmission in sporadic centronuclear myopathy associated with myasthenia. Neuromuscul Disord. 2011;21:387–95.CrossRefPubMedPubMedCentral
76.
Zurück zum Zitat Durmus H, Ayhan O, Cirak S, Deymeer F, Parman Y, Franke A, et al. Neuromuscular endplate pathology in recessive desminopathies: lessons from man and mice. Neurology. 2016;87:799–805.CrossRefPubMed Durmus H, Ayhan O, Cirak S, Deymeer F, Parman Y, Franke A, et al. Neuromuscular endplate pathology in recessive desminopathies: lessons from man and mice. Neurology. 2016;87:799–805.CrossRefPubMed
77.
Zurück zum Zitat Hesselmans LFGM, Jennekens FGI, Vand Den Oord CJM, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.CrossRefPubMed Hesselmans LFGM, Jennekens FGI, Vand Den Oord CJM, Veldman H, Vincent A. Development of innervation of skeletal muscle fibers in man: relation to acetylcholine receptors. Anat Rec. 1993;236:553–62.CrossRefPubMed
78.
Zurück zum Zitat Hoffmann K, Muller JS, Stricker S, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79:303–12. Hoffmann K, Muller JS, Stricker S, et al. Escobar syndrome is a prenatal myasthenia caused by disruption of the acetylcholine receptor fetal gamma subunit. Am J Hum Genet. 2006;79:303–12.
79.
Zurück zum Zitat Morgan NV, Brueton LA, Cox P, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5. Morgan NV, Brueton LA, Cox P, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.
80.
Zurück zum Zitat Oskoui M, Jacobson L, Chung WK, Haddad J, Vincent A, Kaufmann P, et al. Fetal acetylcholine receptor inactivation syndrome and maternal myasthenia gravis. Neurology. 2008;71:2010–2.CrossRefPubMedPubMedCentral Oskoui M, Jacobson L, Chung WK, Haddad J, Vincent A, Kaufmann P, et al. Fetal acetylcholine receptor inactivation syndrome and maternal myasthenia gravis. Neurology. 2008;71:2010–2.CrossRefPubMedPubMedCentral
81.
Zurück zum Zitat Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.CrossRefPubMedPubMedCentral Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J, Pasha S, et al. Mutations in the embryonal subunit of the acetylcholine receptor (CHNRG) cause lethal and Escobar variants of the multiple pterygium syndrome. Am J Hum Genet. 2006;79:390–5.CrossRefPubMedPubMedCentral
82.
Zurück zum Zitat Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.CrossRefPubMedPubMedCentral Michalk A, Stricker S, Becker J, Rupps R, Pantzar T, Miertus J, et al. Acetylcholine receptor pathway mutations explain various fetal akinesia deformation sequence disorders. Am J Hum Genet. 2008;82:464–76.CrossRefPubMedPubMedCentral
83.
Zurück zum Zitat Vogt J, Harrison BJ, Spearman H, ten Cate LN, Morgan NV, Beeson D, et al. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet. 2008;82:222–7.CrossRefPubMedPubMedCentral Vogt J, Harrison BJ, Spearman H, ten Cate LN, Morgan NV, Beeson D, et al. Mutation analysis of CHRNA1, CHRNB1, CHRND, and RAPSN genes in multiple pterygium syndrome/fetal akinesia patients. Am J Hum Genet. 2008;82:222–7.CrossRefPubMedPubMedCentral
84.
Zurück zum Zitat Vogt J, Morgan NV, Marton T, Maxwell S, Harrison BJ, Beeson D, et al. Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J Med Genet. 2009;46:338–40.CrossRefPubMed Vogt J, Morgan NV, Marton T, Maxwell S, Harrison BJ, Beeson D, et al. Germline mutation in DOK7 associated with fetal akinesia deformation sequence. J Med Genet. 2009;46:338–40.CrossRefPubMed
Metadaten
Titel
Congenital Myasthenic Syndromes in 2018
verfasst von
Andrew G. Engel
Publikationsdatum
01.08.2017
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 8/2018
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-018-0852-4

Weitere Artikel der Ausgabe 8/2018

Current Neurology and Neuroscience Reports 8/2018 Zur Ausgabe

Demyelinating Disorders (J Bernard and M Cameron, Section Editors)

Cannabinoids for Treatment of MS Symptoms: State of the Evidence

Demyelinating Disorders (J Bernard and M Cameron, Section Editors)

The Management of Lower Urinary Tract Dysfunction in Multiple Sclerosis

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.