Skip to main content
Erschienen in: Brain Structure and Function 6/2018

03.05.2018 | Original Article

Connectivity of neuronal populations within and between areas of primate somatosensory cortex

verfasst von: E. Pálfi, L. Zalányi, M. Ashaber, C. Palmer, O. Kántor, A. W. Roe, R. M. Friedman, L. Négyessy

Erschienen in: Brain Structure and Function | Ausgabe 6/2018

Einloggen, um Zugang zu erhalten

Abstract

Functions of the cerebral cortex emerge via interactions of horizontally distributed neuronal populations within and across areas. However, the connectional underpinning of these interactions is not well understood. The present study explores the circuitry of column-size cortical domains within the hierarchically organized somatosensory cortical areas 3b and 1 using tract tracing and optical intrinsic signal imaging (OIS). The anatomical findings reveal that feedforward connections exhibit high topographic specificity, while intrinsic and feedback connections have a more widespread distribution. Both intrinsic and inter-areal connections are topographically oriented across the finger representations. Compared to area 3b, the low clustering of connections and small cortical magnification factor supports that the circuitry of area 1 scaffolds a sparse functional representation that integrates peripheral information from a large area that is fed back to area 3b. Fast information exchange between areas is ensured by thick axons forming a topographically organized, reciprocal pathway. Moreover, the highest density of projecting neurons and groups of axon arborization patches corresponds well with the size and locations of the functional population response reported by OIS. The findings establish connectional motifs at the mesoscopic level that underpin the functional organization of the cerebral cortex.
Literatur
Zurück zum Zitat Angelucci A, Bressloff PC (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res 154:93–120CrossRefPubMed Angelucci A, Bressloff PC (2006) Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog Brain Res 154:93–120CrossRefPubMed
Zurück zum Zitat Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646CrossRefPubMed Angelucci A, Levitt JB, Walton EJ, Hupe JM, Bullier J, Lund JS (2002) Circuits for local and global signal integration in primary visual cortex. J Neurosci 22:8633–8646CrossRefPubMed
Zurück zum Zitat Ashaber M, Pálfi E, Friedman RM, Palmer C, Jákli B, Chen LM, Kántor O, Roe AW, Négyessy L (2014) Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J Comp Neurol 522:1769–1785CrossRefPubMedPubMedCentral Ashaber M, Pálfi E, Friedman RM, Palmer C, Jákli B, Chen LM, Kántor O, Roe AW, Négyessy L (2014) Connectivity of somatosensory cortical area 1 forms an anatomical substrate for the emergence of multifinger receptive fields and complex feature selectivity in the squirrel monkey (Saimiri sciureus). J Comp Neurol 522:1769–1785CrossRefPubMedPubMedCentral
Zurück zum Zitat Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci 38:269–289CrossRefPubMed Barbas H (2015) General cortical and special prefrontal connections: principles from structure to function. Annu Rev Neurosci 38:269–289CrossRefPubMed
Zurück zum Zitat Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B (2009) ‘Top-down’ influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat’s striate cortex. Neuroscience 158:951–968CrossRefPubMed Bardy C, Huang JY, Wang C, Fitzgibbon T, Dreher B (2009) ‘Top-down’ influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat’s striate cortex. Neuroscience 158:951–968CrossRefPubMed
Zurück zum Zitat Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281CrossRefPubMed Barone P, Batardiere A, Knoblauch K, Kennedy H (2000) Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. J Neurosci 20:3263–3281CrossRefPubMed
Zurück zum Zitat Bullier J, Hupé JM, James A, Girard P (1996) Functional interactions between areas V1 and V2 in the monkey. J Physiol Paris 90:217–220CrossRefPubMed Bullier J, Hupé JM, James A, Girard P (1996) Functional interactions between areas V1 and V2 in the monkey. J Physiol Paris 90:217–220CrossRefPubMed
Zurück zum Zitat Burton H, Fabri M (1995) Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and 1 of macaque monkeys: projections in the vicinity of the central sulcus. J Comp Neurol 355:508–538CrossRefPubMed Burton H, Fabri M (1995) Ipsilateral intracortical connections of physiologically defined cutaneous representations in areas 3b and 1 of macaque monkeys: projections in the vicinity of the central sulcus. J Comp Neurol 355:508–538CrossRefPubMed
Zurück zum Zitat Buzás P, Kovács K, Ferecskó AS, Budd JM, Eysel UT, Kisvárday ZF (2006) Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 881:499–861 Buzás P, Kovács K, Ferecskó AS, Budd JM, Eysel UT, Kisvárday ZF (2006) Model-based analysis of excitatory lateral connections in the visual cortex. J Comp Neurol 881:499–861
Zurück zum Zitat Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW (2001) Finescale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86:3011–3029CrossRefPubMed Chen LM, Friedman RM, Ramsden BM, LaMotte RH, Roe AW (2001) Finescale organization of SI (area 3b) in the squirrel monkey revealed with intrinsic optical imaging. J Neurophysiol 86:3011–3029CrossRefPubMed
Zurück zum Zitat Chen LM, Friedman RM, Roe AW (2003) Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302:881–885CrossRefPubMed Chen LM, Friedman RM, Roe AW (2003) Optical imaging of a tactile illusion in area 3b of the primary somatosensory cortex. Science 302:881–885CrossRefPubMed
Zurück zum Zitat Chen LM, Friedman RM, Roe AW (2005) Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J Neurosci 25:7648–7659CrossRefPubMed Chen LM, Friedman RM, Roe AW (2005) Optical imaging of SI topography in anesthetized and awake squirrel monkeys. J Neurosci 25:7648–7659CrossRefPubMed
Zurück zum Zitat Costanzo RM, Gardner EP (1980) A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43:1319–1341CrossRefPubMed Costanzo RM, Gardner EP (1980) A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J Neurophysiol 43:1319–1341CrossRefPubMed
Zurück zum Zitat Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed Dombrowski SM, Hilgetag CC, Barbas H (2001) Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey. Cereb Cortex 11:975–988CrossRefPubMed
Zurück zum Zitat Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD-96 Proc 34:226–231 Ester M, Kriegel H, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. KDD-96 Proc 34:226–231
Zurück zum Zitat Fang P-C, Jain N, Kaas JH (2002) Few intrinsic connections cross the hand-face border of area 3b of new world monkeys. J Comp Neurol 454(3):310–319CrossRefPubMed Fang P-C, Jain N, Kaas JH (2002) Few intrinsic connections cross the hand-face border of area 3b of new world monkeys. J Comp Neurol 454(3):310–319CrossRefPubMed
Zurück zum Zitat Favorov O, Whitsel BL (1988) Spatial organization of the peripheral input to area 1 cell columns. I. The detection of “segregates”. Brain Res 472:25–42CrossRefPubMed Favorov O, Whitsel BL (1988) Spatial organization of the peripheral input to area 1 cell columns. I. The detection of “segregates”. Brain Res 472:25–42CrossRefPubMed
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47CrossRefPubMed
Zurück zum Zitat Friedman RM, Chen LM, Roe AW (2008) Responses of areas 3b and 1 in anesthetized squirrel monkeys to single- and dual-site stimulation of the digits. J Neurophysiol 100:3185–3196CrossRefPubMedPubMedCentral Friedman RM, Chen LM, Roe AW (2008) Responses of areas 3b and 1 in anesthetized squirrel monkeys to single- and dual-site stimulation of the digits. J Neurophysiol 100:3185–3196CrossRefPubMedPubMedCentral
Zurück zum Zitat Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442CrossRefPubMed Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442CrossRefPubMed
Zurück zum Zitat Girard P, Bullier J (1989) Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62(6):1287–1302CrossRefPubMed Girard P, Bullier J (1989) Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. J Neurophysiol 62(6):1287–1302CrossRefPubMed
Zurück zum Zitat Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE (2014) Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosc 8:72CrossRef Hackett TA, de la Mothe LA, Camalier CR, Falchier A, Lakatos P, Kajikawa Y, Schroeder CE (2014) Feedforward and feedback projections of caudal belt and parabelt areas of auditory cortex: refining the hierarchical model. Front Neurosc 8:72CrossRef
Zurück zum Zitat Harrison LM, Stephan KE, Rees G, Friston KJ (2007) Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage 34:1199–1208CrossRefPubMedPubMedCentral Harrison LM, Stephan KE, Rees G, Friston KJ (2007) Extra-classical receptive field effects measured in striate cortex with fMRI. Neuroimage 34:1199–1208CrossRefPubMedPubMedCentral
Zurück zum Zitat Harvey BM, Dumoulin SO (2011) The relationship between cortical magnification factor and pRF size in human visual cortex: constancies in cortical architecture. J Neurosci 31:13604–13612CrossRefPubMed Harvey BM, Dumoulin SO (2011) The relationship between cortical magnification factor and pRF size in human visual cortex: constancies in cortical architecture. J Neurosci 31:13604–13612CrossRefPubMed
Zurück zum Zitat Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598CrossRefPubMedPubMedCentral Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R (2008) The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci USA 105:12593–12598CrossRefPubMedPubMedCentral
Zurück zum Zitat Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51:1006–1017CrossRefPubMed Hilgetag CC, Grant S (2010) Cytoarchitectural differences are a key determinant of laminar projection origins in the visual cortex. Neuroimage 51:1006–1017CrossRefPubMed
Zurück zum Zitat Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. Neuroimage 134:685–702CrossRefPubMedPubMedCentral Hilgetag CC, Medalla M, Beul SF, Barbas H (2016) The primate connectome in context: principles of connections of the cortical visual system. Neuroimage 134:685–702CrossRefPubMedPubMedCentral
Zurück zum Zitat Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512CrossRefPubMedPubMedCentral Horvát S, Gămănuț R, Ercsey-Ravasz M, Magrou L, Gămănuț B, Van Essen DC, Burkhalter A, Knoblauch K, Toroczkai Z, Kennedy H (2016) Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates. PLoS Biol 14:e1002512CrossRefPubMedPubMedCentral
Zurück zum Zitat Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787CrossRefPubMed Hupé JM, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787CrossRefPubMed
Zurück zum Zitat Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983a) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:315–326 Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983a) Functional subdivisions representing different finger regions in area 3 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:315–326
Zurück zum Zitat Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983b) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337 Iwamura Y, Tanaka M, Sakamoto M, Hikosaka O (1983b) Converging patterns of finger representation and complex response properties of neurons in area 1 of the first somatosensory cortex of the conscious monkey. Exp Brain Res 51:327–337
Zurück zum Zitat Jeffs J, Ichida JM, Federer F, Angelucci A (2009) Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cereb Cortex 19:963–981CrossRefPubMed Jeffs J, Ichida JM, Federer F, Angelucci A (2009) Anatomical evidence for classical and extra-classical receptive field completion across the discontinuous horizontal meridian representation of primate area V2. Cereb Cortex 19:963–981CrossRefPubMed
Zurück zum Zitat Juliano SL, Friedman DP, Eslin DE (1990) Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. J Comp Neurol 298:23–39CrossRefPubMed Juliano SL, Friedman DP, Eslin DE (1990) Corticocortical connections predict patches of stimulus-evoked metabolic activity in monkey somatosensory cortex. J Comp Neurol 298:23–39CrossRefPubMed
Zurück zum Zitat Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10(3):952–974CrossRef Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10(3):952–974CrossRef
Zurück zum Zitat Lipton ML, Liszewski MC, O’Connell MN, Mills A, Smiley JF, Branch CA, Isler JR, Schroeder CE (2010) Interactions within the hand representation in primary somatosensory cortex of primates. J Neurosci 30:15895–15903CrossRefPubMedPubMedCentral Lipton ML, Liszewski MC, O’Connell MN, Mills A, Smiley JF, Branch CA, Isler JR, Schroeder CE (2010) Interactions within the hand representation in primary somatosensory cortex of primates. J Neurosci 30:15895–15903CrossRefPubMedPubMedCentral
Zurück zum Zitat Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13:15–24CrossRefPubMed Lund JS, Angelucci A, Bressloff PC (2003) Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cereb Cortex 13:15–24CrossRefPubMed
Zurück zum Zitat Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI (2012) Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci 32:17155–17162CrossRefPubMedPubMedCentral Mancini F, Haggard P, Iannetti GD, Longo MR, Sereno MI (2012) Fine-grained nociceptive maps in primary somatosensory cortex. J Neurosci 32:17155–17162CrossRefPubMedPubMedCentral
Zurück zum Zitat Manger PR, Woods TM, Muñoz A, Jones EG (1997) Hand/face border as a limiting boundary in the body representation in monkey somatosensory cortex. J Neurosci 17(16):6338–6351CrossRefPubMed Manger PR, Woods TM, Muñoz A, Jones EG (1997) Hand/face border as a limiting boundary in the body representation in monkey somatosensory cortex. J Neurosci 17(16):6338–6351CrossRefPubMed
Zurück zum Zitat Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed Markov NT, Misery P, Falchier A, Lamy C, Vezoli J, Quilodran R, Gariel MA, Giroud P, Ercsey-Ravasz M, Pilaz LJ, Huissoud C, Barone P, Dehay C, Toroczkai Z, Van Essen DC, Kennedy H, Knoblauch K (2011) Weight consistency specifies regularities of macaque cortical networks. Cereb Cortex 21:1254–1272CrossRefPubMed
Zurück zum Zitat Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406CrossRefPubMedPubMedCentral Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K, Toroczkai Z, Kennedy H (2013) Cortical high-density counterstream architectures. Science 342:1238406CrossRefPubMedPubMedCentral
Zurück zum Zitat Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259CrossRefPubMed Markov NT, Vezoli J, Chameau P, Falchier A, Quilodran R, Huissoud C, Lamy C, Misery P, Giroud P, Ullman S, Barone P, Dehay C, Knoblauch K, Kennedy H (2014) Anatomy of hierarchy: feedforward and feedback pathways in macaque visual cortex. J Comp Neurol 522:225–259CrossRefPubMed
Zurück zum Zitat Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook JM, Cynader MS, Schoppmann A (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258:281–296CrossRefPubMed Merzenich MM, Nelson RJ, Kaas JH, Stryker MP, Jenkins WM, Zook JM, Cynader MS, Schoppmann A (1987) Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. J Comp Neurol 258:281–296CrossRefPubMed
Zurück zum Zitat Negwer M, Liu YJ, Schubert D, Lyon DC (2017) V1 connections reveal a series of elongated higher visual areas in the California ground squirrel, Otospermophilus beecheyi. J Comp Neurol 525:1909–1921CrossRefPubMed Negwer M, Liu YJ, Schubert D, Lyon DC (2017) V1 connections reveal a series of elongated higher visual areas in the California ground squirrel, Otospermophilus beecheyi. J Comp Neurol 525:1909–1921CrossRefPubMed
Zurück zum Zitat Négyessy L, Pálfi E, Ashaber M, Palmer C, Jákli B, Friedman RM, Roe AW (2013) Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence. J Comp Neurol 521:2798–2817CrossRefPubMedPubMedCentral Négyessy L, Pálfi E, Ashaber M, Palmer C, Jákli B, Friedman RM, Roe AW (2013) Intrinsic horizontal connections process global tactile features in the primary somatosensory cortex: neuroanatomical evidence. J Comp Neurol 521:2798–2817CrossRefPubMedPubMedCentral
Zurück zum Zitat Négyessy L, Pálfi E, Ashaber M, Zalányi L, Palmer C, Kántor O, Friedman RM, Roe AW (2015) Complementary role of intra- and inter-areal cortical connections in somatosensory processing in primates. Society for Neuroscience, Chicago Négyessy L, Pálfi E, Ashaber M, Zalányi L, Palmer C, Kántor O, Friedman RM, Roe AW (2015) Complementary role of intra- and inter-areal cortical connections in somatosensory processing in primates. Society for Neuroscience, Chicago
Zurück zum Zitat Négyessy L, Pálfi E, Zalányi L, Ashaber M, Palmer C, Kántor O, Friedman RM, Roe AW (2016) Comparison of intrinsic and inter-areal cortical connectivity in the somatosensory cortex. IBRO Workshop. Budapest, Hungary Négyessy L, Pálfi E, Zalányi L, Ashaber M, Palmer C, Kántor O, Friedman RM, Roe AW (2016) Comparison of intrinsic and inter-areal cortical connectivity in the somatosensory cortex. IBRO Workshop. Budapest, Hungary
Zurück zum Zitat Pálfi E, Zalányi L, Ashaber M, Palmer C, Friedman RM, Roe AW, Négyessy L (2016) Intrinsic and interareal connections in the primate somatosensory cortex. 10th FENS Forum of Neuroscience, Copenhagen, Denmark Pálfi E, Zalányi L, Ashaber M, Palmer C, Friedman RM, Roe AW, Négyessy L (2016) Intrinsic and interareal connections in the primate somatosensory cortex. 10th FENS Forum of Neuroscience, Copenhagen, Denmark
Zurück zum Zitat Paul RL, Merzenich M, Goodman H (1972) Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res 36:229–249CrossRefPubMed Paul RL, Merzenich M, Goodman H (1972) Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodmann’s areas 3 and 1 of Macaca mulatta. Brain Res 36:229–249CrossRefPubMed
Zurück zum Zitat Pearson RC, Powell TP (1978) The cortico-cortical connections to area 5 of the parietal lobe from the primary somatic sensory cortex of the monkey. Proc R Soc Lond B Biol Sci 200:103–108CrossRefPubMed Pearson RC, Powell TP (1978) The cortico-cortical connections to area 5 of the parietal lobe from the primary somatic sensory cortex of the monkey. Proc R Soc Lond B Biol Sci 200:103–108CrossRefPubMed
Zurück zum Zitat Pei YC, Denchev PV, Hsiao SS, Craig JC, Bensmaia SJ (2009) Convergence of submodality-specific input onto neurons in primary somatosensory cortex. J Neurophysiol 102:1843–1853CrossRefPubMedPubMedCentral Pei YC, Denchev PV, Hsiao SS, Craig JC, Bensmaia SJ (2009) Convergence of submodality-specific input onto neurons in primary somatosensory cortex. J Neurophysiol 102:1843–1853CrossRefPubMedPubMedCentral
Zurück zum Zitat Rasch MJ, Chen M, Wu S, Lu HD, Roe AW (2013) Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. J Neurophysiol 109:1233–1249CrossRefPubMed Rasch MJ, Chen M, Wu S, Lu HD, Roe AW (2013) Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. J Neurophysiol 109:1233–1249CrossRefPubMed
Zurück zum Zitat Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH (2008) Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci USA 105:10233–10237CrossRefPubMedPubMedCentral Reed JL, Pouget P, Qi HX, Zhou Z, Bernard MR, Burish MJ, Haitas J, Bonds AB, Kaas JH (2008) Widespread spatial integration in primary somatosensory cortex. Proc Natl Acad Sci USA 105:10233–10237CrossRefPubMedPubMedCentral
Zurück zum Zitat Reed JL, Qi HX, Pouget P, Burish MJ, Bond AB, Kaas JH (2010a) Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 104:3136–3145CrossRefPubMedPubMedCentral Reed JL, Qi HX, Pouget P, Burish MJ, Bond AB, Kaas JH (2010a) Modular processing in the hand representation of primate primary somatosensory cortex coexists with widespread activation. J Neurophysiol 104:3136–3145CrossRefPubMedPubMedCentral
Zurück zum Zitat Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH (2010b) Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 103:2139–2157CrossRefPubMedPubMedCentral Reed JL, Qi HX, Zhou Z, Bernard MR, Burish MJ, Bonds AB, Kaas JH (2010b) Response properties of neurons in primary somatosensory cortex of owl monkeys reflect widespread spatiotemporal integration. J Neurophysiol 103:2139–2157CrossRefPubMedPubMedCentral
Zurück zum Zitat Sincich LC, Blasdel GG (2001) Oriented axon projections in primary visual cortex of the monkey. J Neurosci 21:4416–4426CrossRefPubMed Sincich LC, Blasdel GG (2001) Oriented axon projections in primary visual cortex of the monkey. J Neurosci 21:4416–4426CrossRefPubMed
Zurück zum Zitat Sripati AP, Yoshioka T, Denchev P, Hsiao SS, Johnson KO (2006) Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. J Neurosci 26:2101–2114CrossRefPubMedPubMedCentral Sripati AP, Yoshioka T, Denchev P, Hsiao SS, Johnson KO (2006) Spatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system. J Neurosci 26:2101–2114CrossRefPubMedPubMedCentral
Zurück zum Zitat Sur M, Merzenich MM, Kaas JH (1980) Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311CrossRefPubMed Sur M, Merzenich MM, Kaas JH (1980) Magnification, receptive-field area, and “hypercolumn” size in areas 3b and 1 of somatosensory cortex in owl monkeys. J Neurophysiol 44:295–311CrossRefPubMed
Zurück zum Zitat Sur M, Wall JT, Kaas JH (1981) Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212:1059–1061CrossRefPubMed Sur M, Wall JT, Kaas JH (1981) Modular segregation of functional cell classes within the postcentral somatosensory cortex of monkeys. Science 212:1059–1061CrossRefPubMed
Zurück zum Zitat Sur M, Nelson RJ, Kaas JH (1982) Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates. J Comp Neurol 211:177–192CrossRefPubMed Sur M, Nelson RJ, Kaas JH (1982) Representations of the body surface in cortical areas 3b and 1 of squirrel monkeys: comparisons with other primates. J Comp Neurol 211:177–192CrossRefPubMed
Zurück zum Zitat Sur M, Garraghty PE, Bruce CJ (1985) Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and 1. Brain Res 342:391–395CrossRefPubMed Sur M, Garraghty PE, Bruce CJ (1985) Somatosensory cortex in macaque monkeys: laminar differences in receptive field size in areas 3b and 1. Brain Res 342:391–395CrossRefPubMed
Zurück zum Zitat Thakur PH, Fitzgerald PJ, Hsiao SS (2012) Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey. J Neurophysiol 108:243–262CrossRefPubMedPubMedCentral Thakur PH, Fitzgerald PJ, Hsiao SS (2012) Second-order receptive fields reveal multidigit interactions in area 3b of the macaque monkey. J Neurophysiol 108:243–262CrossRefPubMedPubMedCentral
Zurück zum Zitat Vezoli J, Falchier A, Jouve B, Knoblauch K, Young M, Kennedy H (2004) Quantitative analysis of connectivity in the visual cortex: extracting function from structure. Neuroscientist 10:476–482CrossRefPubMed Vezoli J, Falchier A, Jouve B, Knoblauch K, Young M, Kennedy H (2004) Quantitative analysis of connectivity in the visual cortex: extracting function from structure. Neuroscientist 10:476–482CrossRefPubMed
Zurück zum Zitat Wang Z, Chen LM, Négyessy L, Friedman RM, Mishra A, Gore JC, Roe AW (2013) The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78:1116–1126CrossRefPubMedPubMedCentral Wang Z, Chen LM, Négyessy L, Friedman RM, Mishra A, Gore JC, Roe AW (2013) The relationship of anatomical and functional connectivity to resting-state connectivity in primate somatosensory cortex. Neuron 78:1116–1126CrossRefPubMedPubMedCentral
Zurück zum Zitat Yau JM, Kim SS, Thakur PH, Bensmaia SJ (2016) Feeling form: the neural basis of haptic shape perception. J Neurophysiol 115:631–642CrossRefPubMed Yau JM, Kim SS, Thakur PH, Bensmaia SJ (2016) Feeling form: the neural basis of haptic shape perception. J Neurophysiol 115:631–642CrossRefPubMed
Metadaten
Titel
Connectivity of neuronal populations within and between areas of primate somatosensory cortex
verfasst von
E. Pálfi
L. Zalányi
M. Ashaber
C. Palmer
O. Kántor
A. W. Roe
R. M. Friedman
L. Négyessy
Publikationsdatum
03.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 6/2018
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-018-1671-8

Weitere Artikel der Ausgabe 6/2018

Brain Structure and Function 6/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.