Skip to main content
Erschienen in: Current Cardiovascular Imaging Reports 2/2018

01.02.2018 | Cardiac Nuclear Imaging (A Cuocolo and M Petretta, Section Editors)

Contemporary Advances in Myocardial Metabolic Imaging and Their Impact on Clinical Care: a Focus on Positron Emission Tomography (PET)

verfasst von: John P. Bois, Robert J. Gropler, Linda R. Peterson

Erschienen in: Current Cardiovascular Imaging Reports | Ausgabe 2/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

The purpose of this review is to give a brief historical context and overview of cardiac substrate metabolism, including recent discoveries, and then delve into newer advances in positron emission tomography (PET) myocardial metabolic imaging.

Recent Findings

Some of the recent discoveries of cardiac metabolism involve the pleiotropic effects of metabolism of minor substrates, such as ketones and branch chain amino acids. Contemporary advancements in cardiac imaging include the following: novel radiotracers, new technologies, and evidence showing how patient-specific attributes, such as sex and age, affect myocardial metabolism.

Summary

Myocardial metabolism is a dynamic field with several new advances. PET imaging has allowed us to better quantify and understand the complexities of the heart’s metabolism and the effects of different conditions and therapies on the heart, as well as detect potentially life-threatening infections in heart failure patients with left ventricular assist devices (LVADs).
Literatur
1.
Zurück zum Zitat Martins e Silva J. From the discovery of the circulation of the blood to the first steps in hemorheology: part 1. Rev Port Cardiol. 2009;28(11):1245–68.PubMed Martins e Silva J. From the discovery of the circulation of the blood to the first steps in hemorheology: part 1. Rev Port Cardiol. 2009;28(11):1245–68.PubMed
2.
Zurück zum Zitat Aird WC. Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost. 2011;9(Suppl 1):118–29.CrossRefPubMed Aird WC. Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost. 2011;9(Suppl 1):118–29.CrossRefPubMed
3.
Zurück zum Zitat Bing RJ. The course of science and cardiac metabolism. Circ Res. 1976;38(5 Suppl 1):I151–5.PubMed Bing RJ. The course of science and cardiac metabolism. Circ Res. 1976;38(5 Suppl 1):I151–5.PubMed
5.
Zurück zum Zitat Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954;16(4):504–15.CrossRefPubMed Bing RJ, Siegel A, Ungar I, Gilbert M. Metabolism of the human heart. II. Studies on fat, ketone and amino acid metabolism. Am J Med. 1954;16(4):504–15.CrossRefPubMed
8.
Zurück zum Zitat Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961;236:253–61.PubMed Morgan HE, Henderson MJ, Regen DM, Park CR. Regulation of glucose uptake in muscle. I. The effects of insulin and anoxia on glucose transport and phosphorylation in the isolated, perfused heart of normal rats. J Biol Chem. 1961;236:253–61.PubMed
10.
Zurück zum Zitat • Taegtmeyer H, Lam T, Davogustto G. Cardiac metabolism in perspective. Compr Physiol. 2016;6:1675–99. An excellent review of the principles of myocardial metabolism.CrossRefPubMed • Taegtmeyer H, Lam T, Davogustto G. Cardiac metabolism in perspective. Compr Physiol. 2016;6:1675–99. An excellent review of the principles of myocardial metabolism.CrossRefPubMed
11.
Zurück zum Zitat LH O. The heart: physiology, from cell to circulation. Philadelphia. 1998. LH O. The heart: physiology, from cell to circulation. Philadelphia. 1998.
12.
Zurück zum Zitat Yuan CL, Sharma N, Gilge DA, et al. Preserved protein synthesis in the heart in response to acute fasting and chronic food restriction despite reductions in liver and skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E216–22.CrossRefPubMedPubMedCentral Yuan CL, Sharma N, Gilge DA, et al. Preserved protein synthesis in the heart in response to acute fasting and chronic food restriction despite reductions in liver and skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E216–22.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994;19:59–113.CrossRefPubMed Taegtmeyer H. Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol. 1994;19:59–113.CrossRefPubMed
21.
Zurück zum Zitat Bing RJ. The metabolism of the heart. Harvey Lect. 1954;50:27–70.PubMed Bing RJ. The metabolism of the heart. Harvey Lect. 1954;50:27–70.PubMed
29.
Zurück zum Zitat •• Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res. 2016;119:1173–6. This article reviews the use of myocardial substrates as signaling molecules, competition between different substrates for utilization, and substrate choice and cardiac efficiency.CrossRefPubMed •• Lopaschuk GD, Ussher JR. Evolving concepts of myocardial energy metabolism: more than just fats and carbohydrates. Circ Res. 2016;119:1173–6. This article reviews the use of myocardial substrates as signaling molecules, competition between different substrates for utilization, and substrate choice and cardiac efficiency.CrossRefPubMed
34.
Zurück zum Zitat • Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6:2493–508. This article demonstrates a proof-of-principle that ketone metabolism may be useful for enhancing overall performance in humans.CrossRefPubMedPubMedCentral • Zajac A, Poprzecki S, Maszczyk A, Czuba M, Michalczyk M, Zydek G. The effects of a ketogenic diet on exercise metabolism and physical performance in off-road cyclists. Nutrients. 2014;6:2493–508. This article demonstrates a proof-of-principle that ketone metabolism may be useful for enhancing overall performance in humans.CrossRefPubMedPubMedCentral
44.
Zurück zum Zitat Bucci M, Borra R, Nagren K, et al. Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans. Cardiovasc Ther. 2012;30:333–41.CrossRefPubMed Bucci M, Borra R, Nagren K, et al. Trimetazidine reduces endogenous free fatty acid oxidation and improves myocardial efficiency in obese humans. Cardiovasc Ther. 2012;30:333–41.CrossRefPubMed
46.
Zurück zum Zitat Labbe SM, Grenier-Larouche T, Noll C, et al. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes. 2012;61:2701–10.CrossRefPubMedPubMedCentral Labbe SM, Grenier-Larouche T, Noll C, et al. Increased myocardial uptake of dietary fatty acids linked to cardiac dysfunction in glucose-intolerant humans. Diabetes. 2012;61:2701–10.CrossRefPubMedPubMedCentral
48.
49.
53.
Zurück zum Zitat Zhou D, Lee H, Rothfuss JM, et al. Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET tracer for inducible nitric oxide synthase. J Med Chem. 2009;52:2443–53.CrossRefPubMedPubMedCentral Zhou D, Lee H, Rothfuss JM, et al. Design and synthesis of 2-amino-4-methylpyridine analogues as inhibitors for inducible nitric oxide synthase and in vivo evaluation of [18F]6-(2-fluoropropyl)-4-methyl-pyridin-2-amine as a potential PET tracer for inducible nitric oxide synthase. J Med Chem. 2009;52:2443–53.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Herrero P, Laforest R, Shoghi K, et al. Feasibility and dosimetry studies for 18F-NOS as a potential PET radiopharmaceutical for inducible nitric oxide synthase in humans. J Nucl Med. 2012;53:994–1001.CrossRefPubMed Herrero P, Laforest R, Shoghi K, et al. Feasibility and dosimetry studies for 18F-NOS as a potential PET radiopharmaceutical for inducible nitric oxide synthase in humans. J Nucl Med. 2012;53:994–1001.CrossRefPubMed
58.
Zurück zum Zitat Herrero P, Kim J, Sharp TL, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med. 2006;47:477–85.PubMed Herrero P, Kim J, Sharp TL, et al. Assessment of myocardial blood flow using 15O-water and 1-11C-acetate in rats with small-animal PET. J Nucl Med. 2006;47:477–85.PubMed
66.
Zurück zum Zitat Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Phys. 1977;232:E258–62. Abu-Erreish GM, Neely JR, Whitmer JT, Whitman V, Sanadi DR. Fatty acid oxidation by isolated perfused working hearts of aged rats. Am J Phys. 1977;232:E258–62.
70.
Zurück zum Zitat Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109:2191–6.CrossRefPubMed Peterson LR, Herrero P, Schechtman KB, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation. 2004;109:2191–6.CrossRefPubMed
73.
Zurück zum Zitat Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9.CrossRefPubMedPubMedCentral Zhou YT, Grayburn P, Karim A, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–9.CrossRefPubMedPubMedCentral
75.
Zurück zum Zitat Mikhalkova, D HS, Jiang H, Saghir M, Novak E, Coggan AR, O’Connor R, Bashir A, Jamal A, Ory DS, Schaffer JE, Eagon JC, Peterson LR. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity 2017 (in press). Mikhalkova, D HS, Jiang H, Saghir M, Novak E, Coggan AR, O’Connor R, Bashir A, Jamal A, Ory DS, Schaffer JE, Eagon JC, Peterson LR. Bariatric surgery-induced cardiac and lipidomic changes in obesity-related heart failure with preserved ejection fraction. Obesity 2017 (in press).
80.
Zurück zum Zitat Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail. 2006;12:644–52.CrossRefPubMed Tuunanen H, Engblom E, Naum A, et al. Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: evidence of relationship with insulin resistance and left ventricular dysfunction. J Card Fail. 2006;12:644–52.CrossRefPubMed
82.
Zurück zum Zitat Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:271–7.CrossRefPubMed Davila-Roman VG, Vedala G, Herrero P, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2002;40:271–7.CrossRefPubMed
85.
Zurück zum Zitat Yamato E, Ikegami H, Takekawa K, et al. Tissue-specific and glucose-dependent expression of receptor genes for glucagon and glucagon-like peptide-1 (GLP-1). Horm Metab Res. 1997;29:56–9.CrossRefPubMed Yamato E, Ikegami H, Takekawa K, et al. Tissue-specific and glucose-dependent expression of receptor genes for glucagon and glucagon-like peptide-1 (GLP-1). Horm Metab Res. 1997;29:56–9.CrossRefPubMed
86.
Zurück zum Zitat Zhao T, Parikh P, Bhashyam S, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317:1106–13.CrossRefPubMed Zhao T, Parikh P, Bhashyam S, et al. Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther. 2006;317:1106–13.CrossRefPubMed
88.
Zurück zum Zitat Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.CrossRefPubMed Nikolaidis LA, Elahi D, Hentosz T, et al. Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation. 2004;110:955–61.CrossRefPubMed
91.
Zurück zum Zitat Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19:69–77.CrossRefPubMed Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail. 2017;19:69–77.CrossRefPubMed
93.
Zurück zum Zitat Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130–7.CrossRefPubMed Tuunanen H, Engblom E, Naum A, et al. Free fatty acid depletion acutely decreases cardiac work and efficiency in cardiomyopathic heart failure. Circulation. 2006;114:2130–7.CrossRefPubMed
94.
Zurück zum Zitat •• Kadkhodayan A, Lin CH, Coggan AR, et al. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol 2016. This article demonstrated that there is a sex-related difference in myocardial metabolism in patients with heart failure with reduced ejection fraction. Women with heart failure had less of a “shift” in metabolism away from fatty acids and towards glucose. •• Kadkhodayan A, Lin CH, Coggan AR, et al. Sex affects myocardial blood flow and fatty acid substrate metabolism in humans with nonischemic heart failure. J Nucl Cardiol 2016. This article demonstrated that there is a sex-related difference in myocardial metabolism in patients with heart failure with reduced ejection fraction. Women with heart failure had less of a “shift” in metabolism away from fatty acids and towards glucose.
95.
Zurück zum Zitat •• Kim J, Feller ED, Chen W, Dilsizian V. FDG PET/CT imaging for LVAD associated infections. JACC Cardiovasc Imaging. 2014;7:839–42. This article depicts how PET/CT imaging is clinically useful for identifying and localizing highly morbid LVAD infections.CrossRefPubMed •• Kim J, Feller ED, Chen W, Dilsizian V. FDG PET/CT imaging for LVAD associated infections. JACC Cardiovasc Imaging. 2014;7:839–42. This article depicts how PET/CT imaging is clinically useful for identifying and localizing highly morbid LVAD infections.CrossRefPubMed
96.
Zurück zum Zitat •• Taegtmeyer H, Karlstaedt A, Rees ML, Davogustto G. Oncometabolic tracks in the heart. Circ Res. 2017;120:267–9. This article discusses the consequences of metabolic dysregulation in cancer on the heart’s metabolism and function.CrossRefPubMed •• Taegtmeyer H, Karlstaedt A, Rees ML, Davogustto G. Oncometabolic tracks in the heart. Circ Res. 2017;120:267–9. This article discusses the consequences of metabolic dysregulation in cancer on the heart’s metabolism and function.CrossRefPubMed
97.
Zurück zum Zitat Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.CrossRefPubMedPubMedCentral Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225–34.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Karlstaedt A, Zhang X, Vitrac H, et al. Oncometabolite d-2-hydroxyglutarate impairs alpha-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A. 2016;113:10436–41.CrossRefPubMedPubMedCentral Karlstaedt A, Zhang X, Vitrac H, et al. Oncometabolite d-2-hydroxyglutarate impairs alpha-ketoglutarate dehydrogenase and contractile function in rodent heart. Proc Natl Acad Sci U S A. 2016;113:10436–41.CrossRefPubMedPubMedCentral
Metadaten
Titel
Contemporary Advances in Myocardial Metabolic Imaging and Their Impact on Clinical Care: a Focus on Positron Emission Tomography (PET)
verfasst von
John P. Bois
Robert J. Gropler
Linda R. Peterson
Publikationsdatum
01.02.2018
Verlag
Springer US
Erschienen in
Current Cardiovascular Imaging Reports / Ausgabe 2/2018
Print ISSN: 1941-9066
Elektronische ISSN: 1941-9074
DOI
https://doi.org/10.1007/s12410-018-9444-6

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.