Skip to main content
Erschienen in:

01.06.2019 | Research Article

Contribution of corticospinal drive to ankle plantar flexor muscle activation during gait in adults with cerebral palsy

verfasst von: Rasmus Feld Frisk, Jakob Lorentzen, Jens Bo Nielsen

Erschienen in: Experimental Brain Research | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Impaired plantar flexor muscle activation during push-off in late stance contributes importantly to reduced gait ability in adults with cerebral palsy (CP). Here we used low-intensity transcranial magnetic stimulation (TMS) to suppress soleus EMG activity during push-off as an estimate of corticospinal drive in CP adults and neurologically intact (NI) adults. Ten CP adults (age 34 years, SD 14.6, GMFCS I–II) and ten NI adults (age 33 years, SD 9.8) walked on a treadmill at their preferred walking speed. TMS of the leg motor cortex was elicited just prior to push-off during gait at intensities below threshold for motor-evoked potentials. Soleus EMG from steps with and without TMS were averaged and compared. Control experiments were performed while standing and in NI adults during gait at slow speed. TMS induced a suppression at a latency of about 40 ms. This suppression was similar in the two populations when differences in control EMG and gait speed were taken into account (CP 18%, NI 16%). The threshold of the suppression was higher in CP adults. The findings suggest that corticospinal drive to ankle plantar flexors at push-off is comparable in CP and NI adults. The higher threshold of the suppression in CP adults may reflect downregulation of cortical inhibition to facilitate corticospinal drive. Interventions aiming to facilitate excitability in cortical networks may contribute to maintain or even improve efficient gait in CP adults.
Literatur
Zurück zum Zitat Achache V, Roche N, Lamy JC, Boakye M, Lackmy A, Gastal A, Quentin V, Katz R (2010) Transmission within several spinal pathways in adults with cerebral palsy. Brain 133:1470–1483CrossRefPubMed Achache V, Roche N, Lamy JC, Boakye M, Lackmy A, Gastal A, Quentin V, Katz R (2010) Transmission within several spinal pathways in adults with cerebral palsy. Brain 133:1470–1483CrossRefPubMed
Zurück zum Zitat Andersson C, Mattsson E (2001) Adults with cerebral palsy: a survey describing problems, needs, and resources, with special emphasis on locomotion. Dev Med Child Neurol 43:76–82CrossRefPubMed Andersson C, Mattsson E (2001) Adults with cerebral palsy: a survey describing problems, needs, and resources, with special emphasis on locomotion. Dev Med Child Neurol 43:76–82CrossRefPubMed
Zurück zum Zitat Barber L, Carty C, Modenese L, Walsh J, Boyd R, Lichtwark G (2017) Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy. Dev Med Child Neurol 59:843–851CrossRefPubMed Barber L, Carty C, Modenese L, Walsh J, Boyd R, Lichtwark G (2017) Medial gastrocnemius and soleus muscle-tendon unit, fascicle, and tendon interaction during walking in children with cerebral palsy. Dev Med Child Neurol 59:843–851CrossRefPubMed
Zurück zum Zitat Barthelemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sorensen F, Nielsen JB (2010) Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. J Neurophysiol 104:1167–1176CrossRefPubMed Barthelemy D, Willerslev-Olsen M, Lundell H, Conway BA, Knudsen H, Biering-Sorensen F, Nielsen JB (2010) Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons. J Neurophysiol 104:1167–1176CrossRefPubMed
Zurück zum Zitat Barthelemy D, Knudsen H, Willerslev-Olsen M, Lundell H, Nielsen JB, Biering-Sorensen F (2013) Functional implications of corticospinal tract impairment on gait after spinal cord injury. Spinal Cord 51:852–856CrossRefPubMed Barthelemy D, Knudsen H, Willerslev-Olsen M, Lundell H, Nielsen JB, Biering-Sorensen F (2013) Functional implications of corticospinal tract impairment on gait after spinal cord injury. Spinal Cord 51:852–856CrossRefPubMed
Zurück zum Zitat Belmonti V, Cioni G, Berthoz A (2016) Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy. Dev Med Child Neurol 58(Suppl 4):22–27CrossRefPubMed Belmonti V, Cioni G, Berthoz A (2016) Anticipatory control and spatial cognition in locomotion and navigation through typical development and in cerebral palsy. Dev Med Child Neurol 58(Suppl 4):22–27CrossRefPubMed
Zurück zum Zitat Benner JL, Hilberink SR, Veenis T, Stam HJ, van der Slot WM, Roebroeck ME (2017) Long-term deterioration of perceived health and functioning in adults with cerebral palsy. Arch Phys Med Rehabil 98:2196–2205.e2191CrossRefPubMed Benner JL, Hilberink SR, Veenis T, Stam HJ, van der Slot WM, Roebroeck ME (2017) Long-term deterioration of perceived health and functioning in adults with cerebral palsy. Arch Phys Med Rehabil 98:2196–2205.e2191CrossRefPubMed
Zurück zum Zitat Berweck S, Walther M, Brodbeck V, Wagner N, Koerte I, Henschel V, Juenger H, Staudt M, Mall V (2008) Abnormal motor cortex excitability in congenital stroke. Pediatr Res 63:84–88CrossRefPubMed Berweck S, Walther M, Brodbeck V, Wagner N, Koerte I, Henschel V, Juenger H, Staudt M, Mall V (2008) Abnormal motor cortex excitability in congenital stroke. Pediatr Res 63:84–88CrossRefPubMed
Zurück zum Zitat Bütefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481CrossRefPubMed Bütefisch CM, Netz J, Wessling M, Seitz RJ, Homberg V (2003) Remote changes in cortical excitability after stroke. Brain 126:470–481CrossRefPubMed
Zurück zum Zitat Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139CrossRefPubMed Capaday C, Lavoie BA, Barbeau H, Schneider C, Bonnard M (1999) Studies on the corticospinal control of human walking. I. Responses to focal transcranial magnetic stimulation of the motor cortex. J Neurophysiol 81:129–139CrossRefPubMed
Zurück zum Zitat Chan JH, Lin CS, Pierrot-Deseilligny E, Burke D (2002) Excitability changes in human peripheral nerve axons in a paradigm mimicking paired-pulse transcranial magnetic stimulation. J Physiol 542:951–961CrossRefPubMedPubMedCentral Chan JH, Lin CS, Pierrot-Deseilligny E, Burke D (2002) Excitability changes in human peripheral nerve axons in a paradigm mimicking paired-pulse transcranial magnetic stimulation. J Physiol 542:951–961CrossRefPubMedPubMedCentral
Zurück zum Zitat Darekar A, McFadyen BJ, Lamontagne A, Fung J (2015) Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil 12:46CrossRefPubMedPubMedCentral Darekar A, McFadyen BJ, Lamontagne A, Fung J (2015) Efficacy of virtual reality-based intervention on balance and mobility disorders post-stroke: a scoping review. J Neuroeng Rehabil 12:46CrossRefPubMedPubMedCentral
Zurück zum Zitat Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol 477:223–235CrossRefPubMedPubMedCentral Davey NJ, Romaiguere P, Maskill DW, Ellaway PH (1994) Suppression of voluntary motor activity revealed using transcranial magnetic stimulation of the motor cortex in man. J Physiol 477:223–235CrossRefPubMedPubMedCentral
Zurück zum Zitat Davey NJ, Smith HC, Wells E, Maskill DW, Savic G, Ellaway PH, Frankel HL (1998) Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury. J Neurol Neurosurg Psychiatry 65:80–87CrossRefPubMedPubMedCentral Davey NJ, Smith HC, Wells E, Maskill DW, Savic G, Ellaway PH, Frankel HL (1998) Responses of thenar muscles to transcranial magnetic stimulation of the motor cortex in patients with incomplete spinal cord injury. J Neurol Neurosurg Psychiatry 65:80–87CrossRefPubMedPubMedCentral
Zurück zum Zitat Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998a) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401CrossRefPubMed Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998a) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401CrossRefPubMed
Zurück zum Zitat Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998b) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268CrossRefPubMed Di Lazzaro V, Restuccia D, Oliviero A, Profice P, Ferrara L, Insola A, Mazzone P, Tonali P, Rothwell JC (1998b) Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits. Exp Brain Res 119:265–268CrossRefPubMed
Zurück zum Zitat Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058CrossRefPubMedPubMedCentral Di Lazzaro V, Oliviero A, Profice P, Meglio M, Cioni B, Tonali P, Rothwell JC (2001) Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. J Physiol 537:1047–1058CrossRefPubMedPubMedCentral
Zurück zum Zitat Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol (1985) 96:1954–1960CrossRefPubMed Dietz V, Harkema SJ (2004) Locomotor activity in spinal cord-injured persons. J Appl Physiol (1985) 96:1954–1960CrossRefPubMed
Zurück zum Zitat Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74:426–442PubMed Drew T, Jiang W, Kably B, Lavoie S (1996) Role of the motor cortex in the control of visually triggered gait modifications. Can J Physiol Pharmacol 74:426–442PubMed
Zurück zum Zitat Drew T, Jiang W, Widajewicz W (2002) Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 40:178–191CrossRefPubMed Drew T, Jiang W, Widajewicz W (2002) Contributions of the motor cortex to the control of the hindlimbs during locomotion in the cat. Brain Res Brain Res Rev 40:178–191CrossRefPubMed
Zurück zum Zitat Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248CrossRefPubMed Fisher RJ, Nakamura Y, Bestmann S, Rothwell JC, Bostock H (2002) Two phases of intracortical inhibition revealed by transcranial magnetic threshold tracking. Exp Brain Res 143:240–248CrossRefPubMed
Zurück zum Zitat Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, Becher JG, Gaebler-Spira D, Colver A, Reddihough DS, Crompton KE, Lieber RL (2016) Cerebral palsy. Nat Rev Dis Primers 2:15082CrossRefPubMed Graham HK, Rosenbaum P, Paneth N, Dan B, Lin JP, Damiano DL, Becher JG, Gaebler-Spira D, Colver A, Reddihough DS, Crompton KE, Lieber RL (2016) Cerebral palsy. Nat Rev Dis Primers 2:15082CrossRefPubMed
Zurück zum Zitat Honeine JL, Schieppati M, Gagey O, Do MC (2014) By counteracting gravity, triceps surae sets both kinematics and kinetics of gait. Physiol Rep 2:e00229CrossRefPubMedPubMedCentral Honeine JL, Schieppati M, Gagey O, Do MC (2014) By counteracting gravity, triceps surae sets both kinematics and kinetics of gait. Physiol Rep 2:e00229CrossRefPubMedPubMedCentral
Zurück zum Zitat Huynh W, Vucic S, Krishnan AV, Lin CS, Kiernan MC (2016) Exploring the evolution of cortical excitability following acute stroke. Neurorehabil Neural Repair 30:244–257CrossRefPubMed Huynh W, Vucic S, Krishnan AV, Lin CS, Kiernan MC (2016) Exploring the evolution of cortical excitability following acute stroke. Neurorehabil Neural Repair 30:244–257CrossRefPubMed
Zurück zum Zitat Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I (2004) Locomotion skills in adults with cerebral palsy. Clin Rehabil 18:309–316CrossRefPubMed Jahnsen R, Villien L, Egeland T, Stanghelle JK, Holm I (2004) Locomotion skills in adults with cerebral palsy. Clin Rehabil 18:309–316CrossRefPubMed
Zurück zum Zitat Lundh S, Nasic S, Riad J (2018) Fatigue, quality of life and walking ability in adults with cerebral palsy. Gait Posture 61:1–6CrossRefPubMed Lundh S, Nasic S, Riad J (2018) Fatigue, quality of life and walking ability in adults with cerebral palsy. Gait Posture 61:1–6CrossRefPubMed
Zurück zum Zitat Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. Conf Proc IEEE Eng Med Biol Soc 7:4888–4891PubMed Lunenburger L, Colombo G, Riener R, Dietz V (2004) Biofeedback in gait training with the robotic orthosis Lokomat. Conf Proc IEEE Eng Med Biol Soc 7:4888–4891PubMed
Zurück zum Zitat Morgan P, McGinley J (2014) Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil 36:1–9CrossRefPubMed Morgan P, McGinley J (2014) Gait function and decline in adults with cerebral palsy: a systematic review. Disabil Rehabil 36:1–9CrossRefPubMed
Zurück zum Zitat Morgan P, Murphy A, Opheim A, McGinley J (2016) Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: an observational study. Gait Posture 48:243–248CrossRefPubMed Morgan P, Murphy A, Opheim A, McGinley J (2016) Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: an observational study. Gait Posture 48:243–248CrossRefPubMed
Zurück zum Zitat Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398CrossRefPubMed Neptune RR, Kautz SA, Zajac FE (2001) Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J Biomech 34:1387–1398CrossRefPubMed
Zurück zum Zitat Nielsen JB (2002) Motoneuronal drive during human walking. Brain Res Brain Res Rev 40:192–201CrossRef Nielsen JB (2002) Motoneuronal drive during human walking. Brain Res Brain Res Rev 40:192–201CrossRef
Zurück zum Zitat Nielsen JB (2003) How we walk: central control of muscle activity during human walking. Neuroscientist 9:195–204CrossRefPubMed Nielsen JB (2003) How we walk: central control of muscle activity during human walking. Neuroscientist 9:195–204CrossRefPubMed
Zurück zum Zitat Nielsen J, Petersen N (1995) Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J Physiol 484:777–789CrossRefPubMedPubMedCentral Nielsen J, Petersen N (1995) Changes in the effect of magnetic brain stimulation accompanying voluntary dynamic contraction in man. J Physiol 484:777–789CrossRefPubMedPubMedCentral
Zurück zum Zitat Olney SJ, MacPhail HE, Hedden DM, Boyce WF (1990) Work and power in hemiplegic cerebral palsy gait. Phys Ther 70:431–438CrossRefPubMed Olney SJ, MacPhail HE, Hedden DM, Boyce WF (1990) Work and power in hemiplegic cerebral palsy gait. Phys Ther 70:431–438CrossRefPubMed
Zurück zum Zitat Palmer JA, Hsiao H, Awad LN, Binder-Macleod SA (2016) Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin Neurophysiol 127:1837–1844CrossRefPubMed Palmer JA, Hsiao H, Awad LN, Binder-Macleod SA (2016) Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin Neurophysiol 127:1837–1844CrossRefPubMed
Zurück zum Zitat Palmer JA, Zarzycki R, Morton SM, Kesar TM, Binder-Macleod SA (2017) Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation. J Neurophysiol 117:1615–1624CrossRefPubMedPubMedCentral Palmer JA, Zarzycki R, Morton SM, Kesar TM, Binder-Macleod SA (2017) Characterizing differential poststroke corticomotor drive to the dorsi- and plantarflexor muscles during resting and volitional muscle activation. J Neurophysiol 117:1615–1624CrossRefPubMedPubMedCentral
Zurück zum Zitat Parvin S, Taghiloo A, Irani A, Mirbagheri MM (2017) Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy. IEEE Int Conf Rehabil Robot 2017:485–490PubMed Parvin S, Taghiloo A, Irani A, Mirbagheri MM (2017) Therapeutic effects of anti-gravity treadmill (AlterG) training on reflex hyper-excitability, corticospinal tract activities, and muscle stiffness in children with cerebral palsy. IEEE Int Conf Rehabil Robot 2017:485–490PubMed
Zurück zum Zitat Petersen N, Christensen LO, Nielsen J (1998) The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol 513:599–610CrossRefPubMedPubMedCentral Petersen N, Christensen LO, Nielsen J (1998) The effect of transcranial magnetic stimulation on the soleus H reflex during human walking. J Physiol 513:599–610CrossRefPubMedPubMedCentral
Zurück zum Zitat Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, Nielsen JB (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol 537:651–656CrossRefPubMedPubMedCentral Petersen NT, Butler JE, Marchand-Pauvert V, Fisher R, Ledebt A, Pyndt HS, Hansen NL, Nielsen JB (2001) Suppression of EMG activity by transcranial magnetic stimulation in human subjects during walking. J Physiol 537:651–656CrossRefPubMedPubMedCentral
Zurück zum Zitat Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152:1–16CrossRefPubMed Petersen NT, Pyndt HS, Nielsen JB (2003) Investigating human motor control by transcranial magnetic stimulation. Exp Brain Res 152:1–16CrossRefPubMed
Zurück zum Zitat Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB (2012) The motor cortex drives the muscles during walking in human subjects. J Physiol 590:2443–2452CrossRefPubMedPubMedCentral Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB (2012) The motor cortex drives the muscles during walking in human subjects. J Physiol 590:2443–2452CrossRefPubMedPubMedCentral
Zurück zum Zitat Petersen TH, Farmer SF, Kliim-Due M, Nielsen JB (2013) Failure of normal development of central drive to ankle dorsiflexors relates to gait deficits in children with cerebral palsy. J Neurophysiol 109:625–639CrossRefPubMed Petersen TH, Farmer SF, Kliim-Due M, Nielsen JB (2013) Failure of normal development of central drive to ankle dorsiflexors relates to gait deficits in children with cerebral palsy. J Neurophysiol 109:625–639CrossRefPubMed
Zurück zum Zitat Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J Neurophysiol 4:167–183CrossRef Renshaw B (1941) Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J Neurophysiol 4:167–183CrossRef
Zurück zum Zitat Riad J, Modlesky CM, Gutierrez-Farewik EM, Brostrom E (2012) Are muscle volume differences related to concentric muscle work during walking in spastic hemiplegic cerebral palsy? Clin Orthop Relat Res 470:1278–1285CrossRefPubMed Riad J, Modlesky CM, Gutierrez-Farewik EM, Brostrom E (2012) Are muscle volume differences related to concentric muscle work during walking in spastic hemiplegic cerebral palsy? Clin Orthop Relat Res 470:1278–1285CrossRefPubMed
Zurück zum Zitat Roche N, Pradon D, Cosson J, Robertson J, Marchiori C, Zory R (2014) Categorization of gait patterns in adults with cerebral palsy: a clustering approach. Gait Posture 39:235–240CrossRefPubMed Roche N, Pradon D, Cosson J, Robertson J, Marchiori C, Zory R (2014) Categorization of gait patterns in adults with cerebral palsy: a clustering approach. Gait Posture 39:235–240CrossRefPubMed
Zurück zum Zitat Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246CrossRefPubMed Schubert M, Curt A, Jensen L, Dietz V (1997) Corticospinal input in human gait: modulation of magnetically evoked motor responses. Exp Brain Res 115:234–246CrossRefPubMed
Zurück zum Zitat Schubert M, Curt A, Colombo G, Berger W, Dietz V (1999) Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 126:583–588CrossRefPubMed Schubert M, Curt A, Colombo G, Berger W, Dietz V (1999) Voluntary control of human gait: conditioning of magnetically evoked motor responses in a precision stepping task. Exp Brain Res 126:583–588CrossRefPubMed
Zurück zum Zitat Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD (2018) Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle 9:453–464CrossRefPubMedPubMedCentral Verschuren O, Smorenburg ARP, Luiking Y, Bell K, Barber L, Peterson MD (2018) Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: a narrative review of the literature. J Cachexia Sarcopenia Muscle 9:453–464CrossRefPubMedPubMedCentral
Zurück zum Zitat Vry J, Linder-Lucht M, Berweck S, Bonati U, Hodapp M, Uhl M, Faist M, Mall V (2008) Altered cortical inhibitory function in children with spastic diplegia: a TMS study. Exp Brain Res 186:611–618CrossRefPubMed Vry J, Linder-Lucht M, Berweck S, Bonati U, Hodapp M, Uhl M, Faist M, Mall V (2008) Altered cortical inhibitory function in children with spastic diplegia: a TMS study. Exp Brain Res 186:611–618CrossRefPubMed
Zurück zum Zitat Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 111:746–754CrossRefPubMed Willerslev-Olsen M, Andersen JB, Sinkjaer T, Nielsen JB (2014) Sensory feedback to ankle plantar flexors is not exaggerated during gait in spastic hemiplegic children with cerebral palsy. J Neurophysiol 111:746–754CrossRefPubMed
Zurück zum Zitat Willerslev-Olsen M, Petersen TH, Farmer SF, Nielsen JB (2015) Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain 138:589–603CrossRefPubMedPubMedCentral Willerslev-Olsen M, Petersen TH, Farmer SF, Nielsen JB (2015) Gait training facilitates central drive to ankle dorsiflexors in children with cerebral palsy. Brain 138:589–603CrossRefPubMedPubMedCentral
Zurück zum Zitat Winters TF Jr, Gage JR, Hicks R (1987) Gait patterns in spastic hemiplegia in children and young adults. J Bone Jt Surg Am 69:437–441CrossRef Winters TF Jr, Gage JR, Hicks R (1987) Gait patterns in spastic hemiplegia in children and young adults. J Bone Jt Surg Am 69:437–441CrossRef
Zurück zum Zitat Zewdie E, Damji O, Ciechanski P, Seeger T, Kirton A (2017) Contralesional corticomotor neurophysiology in hemiparetic children with perinatal stroke. Neurorehabil Neural Repair 31:261–271CrossRefPubMed Zewdie E, Damji O, Ciechanski P, Seeger T, Kirton A (2017) Contralesional corticomotor neurophysiology in hemiparetic children with perinatal stroke. Neurorehabil Neural Repair 31:261–271CrossRefPubMed
Zurück zum Zitat Zuur AT (2013) Human locomotion and the motor cortex: drive to the motoneuron and the role of afferent input. PhD Thesis, Aalborg University Zuur AT (2013) Human locomotion and the motor cortex: drive to the motoneuron and the role of afferent input. PhD Thesis, Aalborg University
Metadaten
Titel
Contribution of corticospinal drive to ankle plantar flexor muscle activation during gait in adults with cerebral palsy
verfasst von
Rasmus Feld Frisk
Jakob Lorentzen
Jens Bo Nielsen
Publikationsdatum
01.06.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Experimental Brain Research / Ausgabe 6/2019
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-019-05520-3

Kompaktes Leitlinien-Wissen Neurologie (Link öffnet in neuem Fenster)

Mit medbee Pocketcards schnell und sicher entscheiden.
Leitlinien-Wissen kostenlos und immer griffbereit auf ihrem Desktop, Handy oder Tablet.

Neu im Fachgebiet Neurologie

Kaum Vorteile durch intraarterielle Lyse während Thrombektomie

Nach der Thrombektomie kleinere Fragmente über eine intraarterielle Lyse auflösen – dies könnte die Schlaganfalltherapie verbessern. Zwei aktuelle Studien ergeben für die periprozedurale Lyse jedoch keine großen Vorteile. Die Frage, wie viel sie nützt, bleibt weiter offen.

Nasenstimulation lindert chronische Migräne

Wird die Naseninnenseite durch Vibrationen stimuliert, kann dies offenbar die Zahl der Migränetage von Menschen mit chronischer Migräne deutlich senken. Darauf deuten die Resultate einer randomisiert-kontrollierten deutsch-finnischen Untersuchung.

Stumme Schlaganfälle − ein häufiger Nebenbefund im Kopf-CT?

In 4% der in der Notfallambulanz initiierten zerebralen Bildgebung sind „alte“ Schlaganfälle zu erkennen. Gar nicht so selten handelt es sich laut einer aktuellen Studie dabei um unbemerkte Insulte. Bietet sich hier womöglich die Chance auf ein effektives opportunistisches Screening?

Die elektronische Patientenakte kommt: Das sollten Sie jetzt wissen

Am 15. Januar geht die „ePA für alle“ zunächst in den Modellregionen an den Start. Doch schon bald soll sie in allen Praxen zum Einsatz kommen. Was ist jetzt zu tun? Was müssen Sie wissen? Wir geben in einem FAQ Antworten auf 21 Fragen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.