Skip to main content
Erschienen in: International Journal of Computer Assisted Radiology and Surgery 11/2017

14.06.2017 | Original Article

Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures

verfasst von: Paola Casti, Arianna Mencattini, Marcello H. Nogueira-Barbosa, Lucas Frighetto-Pereira, Paulo Mazzoncini Azevedo-Marques, Eugenio Martinelli, Corrado Di Natale

Erschienen in: International Journal of Computer Assisted Radiology and Surgery | Ausgabe 11/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose

In clinical practice, the constructive consultation among experts improves the reliability of the diagnosis and leads to the definition of the treatment plan for the patient. Aggregation of the different opinions collected by many experts can be performed at the level of patient information, abnormality delineation, or final assessment.

Methods

In this study, we present a novel cooperative strategy that exploits the dynamic contribution of the classification models composing the ensemble to make the final class assignment. As a proof of concept, we applied the proposed approach to the assessment of malignant infiltration in 103 vertebral compression fractures in magnetic resonance images.

Results

The results obtained with repeated random subsampling and receiver operating characteristic analysis indicate that the cooperative system statistically improved (\(p<0.01\)) the classification accuracy of individual modules as well as of that based on the manual segmentation of the fractures provided by the experts.

Conclusions

The performances have been also compared with those obtained with those of standard ensemble classification algorithms showing superior results.
Literatur
1.
Zurück zum Zitat Rokach L (2010) Pattern classification using ensemble methods, vol 75. World Scientific, Singapore Rokach L (2010) Pattern classification using ensemble methods, vol 75. World Scientific, Singapore
2.
Zurück zum Zitat Dastgheib ZA, Pouya OR, Lithgow B, Moussavi Z (2016) Comparison of a new ad-hoc classification method with support vector machine and ensemble classifiers for the diagnosis of Meniere’s disease using EVestG signals. In: 2016 IEEE Canadian conference on electrical and computer engineering (CCECE). IEEE, pp 1–4 Dastgheib ZA, Pouya OR, Lithgow B, Moussavi Z (2016) Comparison of a new ad-hoc classification method with support vector machine and ensemble classifiers for the diagnosis of Meniere’s disease using EVestG signals. In: 2016 IEEE Canadian conference on electrical and computer engineering (CCECE). IEEE, pp 1–4
3.
Zurück zum Zitat Da Silva LA, Hernandez EDM, Rangayyan RM (2008) ’Classification of breast masses using a committee machine of artificial neural networks. J Electron Imaging 17(1):013017CrossRef Da Silva LA, Hernandez EDM, Rangayyan RM (2008) ’Classification of breast masses using a committee machine of artificial neural networks. J Electron Imaging 17(1):013017CrossRef
4.
Zurück zum Zitat Kuncheva LI (2012) Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern B 32(2):146–156CrossRef Kuncheva LI (2012) Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans Syst Man Cybern B 32(2):146–156CrossRef
5.
Zurück zum Zitat Antunes S, Esposito A, Palmisano A, Colantoni C, Cerutti S, Rizzo G (2016) Cardiac multi-detector CT segmentation based on multiscale directional edge detector and 3D level set. Ann Biomed Eng 44(5):1487–1501CrossRefPubMed Antunes S, Esposito A, Palmisano A, Colantoni C, Cerutti S, Rizzo G (2016) Cardiac multi-detector CT segmentation based on multiscale directional edge detector and 3D level set. Ann Biomed Eng 44(5):1487–1501CrossRefPubMed
6.
Zurück zum Zitat Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807CrossRefPubMed Zhao Y, Rada L, Chen K, Harding SP, Zheng Y (2015) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34(9):1797–1807CrossRefPubMed
7.
Zurück zum Zitat Siefert AW, Icenogle DA, Rabbah JPM, Saikrishnan N, Rossignac J, Lerakis S, Yoganathan AP (2013) Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann Biomed Eng 41(6):1258–1268CrossRefPubMedPubMedCentral Siefert AW, Icenogle DA, Rabbah JPM, Saikrishnan N, Rossignac J, Lerakis S, Yoganathan AP (2013) Accuracy of a mitral valve segmentation method using J-splines for real-time 3D echocardiography data. Ann Biomed Eng 41(6):1258–1268CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Guliato D, Rangayyan RM, Carnielli WA, Desautels JL (2003) Fuzzy fusion operators to combine results of complementary medical image segmentation techniques. J Electron Imaging 12(3):379–389CrossRef Guliato D, Rangayyan RM, Carnielli WA, Desautels JL (2003) Fuzzy fusion operators to combine results of complementary medical image segmentation techniques. J Electron Imaging 12(3):379–389CrossRef
9.
Zurück zum Zitat He R, Sajja BR, Datta S, Narayana PA (2008) Volume and shape in feature space on adaptive FCM in MRI segmentation. Ann Biomed Eng 36(9):1580–1593CrossRefPubMedPubMedCentral He R, Sajja BR, Datta S, Narayana PA (2008) Volume and shape in feature space on adaptive FCM in MRI segmentation. Ann Biomed Eng 36(9):1580–1593CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Melkemi KE, Batouche M, Foufou S (2006) A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics. Pattern Recognit Lett 27(11):1230–1238CrossRef Melkemi KE, Batouche M, Foufou S (2006) A multiagent system approach for image segmentation using genetic algorithms and extremal optimization heuristics. Pattern Recognit Lett 27(11):1230–1238CrossRef
11.
Zurück zum Zitat Benamrane N, Nassane S (2007) Medical image segmentation by a multi-agent system approach. In: Multiagent system technologies. Springer, Berlin, pp 49–60 Benamrane N, Nassane S (2007) Medical image segmentation by a multi-agent system approach. In: Multiagent system technologies. Springer, Berlin, pp 49–60
12.
Zurück zum Zitat Bovenkamp EG, Dijkstra J, Bosch JG, Reiber JH (2009) User-agent cooperation in multiagent IVUS image segmentation. IEEE Trans Med Imaging 28(1):94–105CrossRefPubMed Bovenkamp EG, Dijkstra J, Bosch JG, Reiber JH (2009) User-agent cooperation in multiagent IVUS image segmentation. IEEE Trans Med Imaging 28(1):94–105CrossRefPubMed
13.
Zurück zum Zitat Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046CrossRefPubMedPubMedCentral Chen X, Udupa JK, Bagci U, Zhuge Y, Yao J (2012) Medical image segmentation by combining graph cuts and oriented active appearance models. IEEE Trans Image Process 21(4):2035–2046CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Lê M, Unkelbach J, Ayache N, Delingette H (2016) Sampling image segmentations for uncertainty quantification. Med Image Anal 34:42–51CrossRefPubMed Lê M, Unkelbach J, Ayache N, Delingette H (2016) Sampling image segmentations for uncertainty quantification. Med Image Anal 34:42–51CrossRefPubMed
15.
Zurück zum Zitat Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Kohlberger T, Singh V, Alvino C, Bahlmann C, Grady L (2012) Evaluating segmentation error without ground truth. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 528–536 Kohlberger T, Singh V, Alvino C, Bahlmann C, Grady L (2012) Evaluating segmentation error without ground truth. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 528–536
17.
Zurück zum Zitat Casti P, Mencattini A, Salmeri M, Ancona A, Mangeri F, Pepe ML, Rangayyan RM (2016) Contour-independent detection and classification of mammographic lesions. Biomed Signal Process Control 25:165–177CrossRef Casti P, Mencattini A, Salmeri M, Ancona A, Mangeri F, Pepe ML, Rangayyan RM (2016) Contour-independent detection and classification of mammographic lesions. Biomed Signal Process Control 25:165–177CrossRef
18.
Zurück zum Zitat Martinelli E, Magna G, Vergara A, Di Natale C (2014) Cooperative classifiers for reconfigurable sensor arrays. Sens Actuator B Chem 199:83–92CrossRef Martinelli E, Magna G, Vergara A, Di Natale C (2014) Cooperative classifiers for reconfigurable sensor arrays. Sens Actuator B Chem 199:83–92CrossRef
19.
Zurück zum Zitat Magna G, Casti P, Jayaraman SV, Salmeri M, Mencattini A, Martinelli E, Di Natale C (2016) Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowl Based Syst 101:60–70CrossRef Magna G, Casti P, Jayaraman SV, Salmeri M, Mencattini A, Martinelli E, Di Natale C (2016) Identification of mammography anomalies for breast cancer detection by an ensemble of classification models based on artificial immune system. Knowl Based Syst 101:60–70CrossRef
20.
Zurück zum Zitat Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19(10):973–985CrossRefPubMed Brejl M, Sonka M (2000) Object localization and border detection criteria design in edge-based image segmentation: automated learning from examples. IEEE Trans Med Imaging 19(10):973–985CrossRefPubMed
21.
Zurück zum Zitat Peng Z, Zhong J, Wee W, Lee JH (2006) Automated vertebra detection and segmentation from the whole spine MR images. In: Proceedings of IEEE EMBS, pp 2527–2530 Peng Z, Zhong J, Wee W, Lee JH (2006) Automated vertebra detection and segmentation from the whole spine MR images. In: Proceedings of IEEE EMBS, pp 2527–2530
22.
Zurück zum Zitat Huang SH, Chu YH, Lai SH, Novak CL (2009) Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans Med Imaging 28(10):1595–1605CrossRefPubMed Huang SH, Chu YH, Lai SH, Novak CL (2009) Learning-based vertebra detection and iterative normalized-cut segmentation for spinal MRI. IEEE Trans Med Imaging 28(10):1595–1605CrossRefPubMed
23.
Zurück zum Zitat Kelm BM, Wels M, Zhou SK, Seifert S, Suehling M, Zheng Y, Comaniciu D (2013) Spine detection in CT and MR using iterated marginal space learning. Med Image Anal 17(8):1283–1292CrossRef Kelm BM, Wels M, Zhou SK, Seifert S, Suehling M, Zheng Y, Comaniciu D (2013) Spine detection in CT and MR using iterated marginal space learning. Med Image Anal 17(8):1283–1292CrossRef
24.
Zurück zum Zitat Barbieri PD, Pedrosa GV, Traina AJM, Nogueira-Barbosa MH (2015) Vertebral body segmentation of spine MR images using superpixels. In: Proceedings of IEEE CBMS Barbieri PD, Pedrosa GV, Traina AJM, Nogueira-Barbosa MH (2015) Vertebral body segmentation of spine MR images using superpixels. In: Proceedings of IEEE CBMS
25.
Zurück zum Zitat Frighetto-Pereira L, Rangayyan RM, Metzner GA, de Azevedo-Marques PM, Nogueira-Barbosa MH (2016) Shape, texture, and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med 73(1):147–156CrossRefPubMed Frighetto-Pereira L, Rangayyan RM, Metzner GA, de Azevedo-Marques PM, Nogueira-Barbosa MH (2016) Shape, texture, and statistical features for classification of benign and malignant vertebral compression fractures in magnetic resonance images. Comput Biol Med 73(1):147–156CrossRefPubMed
26.
Zurück zum Zitat Pizer S, Amburn E, Austin J, Cromartie AR, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptative histogram equalization and its varations. Comput Vis Graph Image Process 39:355–368CrossRef Pizer S, Amburn E, Austin J, Cromartie AR, Geselowitz A, Greer T, Romeny BTH, Zimmerman JB, Zuiderveld K (1987) Adaptative histogram equalization and its varations. Comput Vis Graph Image Process 39:355–368CrossRef
27.
Zurück zum Zitat Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y (2015) Correction: retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10(4):e0127486CrossRefPubMedPubMedCentral Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y (2015) Correction: retinal vessel segmentation: an efficient graph cut approach with retinex and local phase. PLoS ONE 10(4):e0127486CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Rosenfeld A, Kak A (1982) Digital picture processing, vol 2, 2nd edn. Academic Press, New York Rosenfeld A, Kak A (1982) Digital picture processing, vol 2, 2nd edn. Academic Press, New York
29.
Zurück zum Zitat Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277CrossRef Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Proc 10(2):266–277CrossRef
30.
Zurück zum Zitat Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9(1):62–66CrossRef
31.
Zurück zum Zitat Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New YorkCrossRef Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum Press, New YorkCrossRef
32.
Zurück zum Zitat Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647CrossRef Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647CrossRef
33.
Zurück zum Zitat Rangayyan RM (2005) Biomedical image analysis. CRC Press, Boca Raton Rangayyan RM (2005) Biomedical image analysis. CRC Press, Boca Raton
34.
Zurück zum Zitat Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Amsterdam Davies ER (2004) Machine vision: theory, algorithms, practicalities. Elsevier, Amsterdam
35.
Zurück zum Zitat Weinstein RS, Majumdar S (1994) Fractal geometry and vertebral compression fractures. J Bone Miner Res 9(1):1797–1802PubMed Weinstein RS, Majumdar S (1994) Fractal geometry and vertebral compression fractures. J Bone Miner Res 9(1):1797–1802PubMed
36.
Zurück zum Zitat Draper NR, Smith H (1998) Regression analysis. Wiley-Interscience, Hoboken Draper NR, Smith H (1998) Regression analysis. Wiley-Interscience, Hoboken
Metadaten
Titel
Cooperative strategy for a dynamic ensemble of classification models in clinical applications: the case of MRI vertebral compression fractures
verfasst von
Paola Casti
Arianna Mencattini
Marcello H. Nogueira-Barbosa
Lucas Frighetto-Pereira
Paulo Mazzoncini Azevedo-Marques
Eugenio Martinelli
Corrado Di Natale
Publikationsdatum
14.06.2017
Verlag
Springer International Publishing
Erschienen in
International Journal of Computer Assisted Radiology and Surgery / Ausgabe 11/2017
Print ISSN: 1861-6410
Elektronische ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-017-1625-2

Weitere Artikel der Ausgabe 11/2017

International Journal of Computer Assisted Radiology and Surgery 11/2017 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.